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Abstract

We propose a hybrid coded modulation scheme which composes of inner and outer codes. The outer-code can be any standard binary
linear code with efficient soft decoding capability (e.g. low-density parity-check (LDPC) codes). The inner code is designed using a deep
neural network (DNN) which takes the channel coded bits and outputs modulated symbols. For training the DNN, we propose to use a
loss function that is inspired by the generalized mutual information. The resulting constellations are shown to outperform the conventional
quadrature amplitude modulation (QAM) based coding scheme for modulation order 16 and 64 with 5G standard LDPC codes.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Machine learning methods for channel coding is an emerg-
ing field which can help overcome many challenging problems
in error-correction coding. In particular, end-to-end learning
for designing encoders and decoders have been proposed in [1]
that utilizes a deep neural network (DNN) autoencoder. An
interesting insight of this approach is that the end-to-end
structure does not utilize conventional quadrature amplitude
modulation (QAM) constellations nor does it make use of
the de-facto architecture, bit interleaved coded modulation
(BICM) [2,3]. Instead, it is a clean slate approach to find
the optimal encoder and decoder pair using a DNN. One
benefit of this approach is that the encoder is not restricted
to the suboptimal QAM constellation and may learn a better
input distribution overall. End-to-end transceiver design uti-
lizing DNNs has been applied in various contexts including
additive white Gaussian noise (AWGN) channels [4–6], fast
fading [7], intersymbol interference (ISI) channels [8], ultra
low-latency [9], and model free design [10]. Other works have
also used DNNs focusing on specific components such as
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decoder design [11–17] and constellation shaping for modu-
lation [18]. Several other approaches to canonical problems
have been proposed for feedback channels [19], quantized
channel observations [20], joint source–channel coding [21],
and the wiretap channel [22]. More recently, theoretical studies
on end-to-end design have been given in [23]. While these
approaches provide breakthroughs in various situations, one
challenge in the end-to-end design approach is that the ex-
ponential growth on the number of codewords in code length
makes learning end-to-end codes quite difficult for long codes.

In another line of work, hybrid architectures were pro-
posed which consist of a DNN inner code (or modulator)
that is concatenated to an outer linear code (e.g. turbo and
low-density parity-check (LDPC) codes). For example, hybrid
architectures were designed and applied for AWGN with radar
interference [24], optical fiber communications [25], one-bit
quantized AWGN channels [20], and AWGN channels [26].
The work of [26] also generalizes the decoder for iterative
demodulation and decoding (IDD) and gives implementation
results on software defined radios. In these approaches, the
binary cross entropy (BCE) [27] metric was used to train the
DNN which enables the inner code to be compatible with
the outer linear code decoder, i.e., the DNN output is in the
form of bit-level decoding metrics. An advantage of the hybrid
structure approach is that it can benefit from learning a better
constellation (shaping gain) while maintaining practical code
lengths for error correction performance (coding gain).
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Following this approach, we propose a generic architecture
that can take some off-the-shelf linear code (e.g. LDPC codes)
and concatenate it with a DNN autoencoder inner-code for
modulation. With this goal in mind, we design and train a
DNN inner-code that is compatible for the linear channel code
decoder, for example, to be compatible with the sum–product
algorithm (SPA). Our main contribution in this direction is that
we propose an approximated formulation of the generalized
mutual information (GMI) [3,28] as a loss function that is
tailored for learning the inner DNN encoder and decoder pair.
We further outline some useful training techniques that we
have learned through extensive evaluations.

In the numerical evaluations section, we provide our per-
formance evaluations with our trained DNN inner code con-
catenated with a 5G standard LDPC code [29] and compare its
performance with QAM based BICM systems for modulation
order M = 16 and M = 64.

In the sequel, we define C and F2 as the complex and binary
eld. Random variables are denoted by upper-case letters X ,

and expected values are noted by E[X ]. We define cn
:=

(c1, . . . , cn), i.e., an n-length sequence (or vector) and will
often re-index a sequence cn by its j th subsequence c( j)

=

(c( j)
1 , . . . , c( j)

m ) of length m such that cn
= (c(1), . . . , c(N )),

where N = n/m. The length of the subsequence will be noted
in the context when needed.

2. System model

2.1. Communication system and channel model

Consider a memoryless channel (X , pY |X ,Y) which con-
sists of an input alphabet X , a receiver alphabet Y , and a
collection of conditional distributions pY |X .

A (2N R, N ) code for the channel consists of a message
set [1 : 2N R], an encoder which maps each message m ∈

[1 : 2N R] to a sequence x N (m) ∈ X N , and a decoder that
assigns estimates m̂(yN ) ∈ M to each received sequence
yN

∈ YN . From the memoryless channel assumption we
have P(yN

|x N ) =
∏N

i=1 pY |X (yi |xi ) where pY |X is the AWGN
channel, i.e.,

yi = xi + Z i , i ∈ [1 : n] (1)

where Z i ∼ CN (0, σ 2) and Y = X = C. We let σ 2
=

1/SNR where SNR is the signal to noise power ratio and we
assume that the input is subject to an average power constraint
1
n

∑n
i=1 |xi |

2
≤ 1. Note that the underlined channel distribution

f the AWGN channel is thus given by,

pY |X (y|x; σ 2) =
1
πσ 2 exp

(
−|y − x |

2

σ 2

)
.

.2. Bit interleaved coded modulation

A coded modulation architecture specializes the generic
ommunication system as follows. The messages are consid-
red as bit sequences bk , e.g., binary expansions of m ∈

. The encoder is specialized into two sub-components, a
inary code and a bit-to-symbol mapper (modulator), and the
26
decoder is specialized into two sub-components, symbol-to-
bit level log-likelihood ratio (LLR) mapper (demodulator) and
a binary channel code decoder. The input alphabet, i.e., the
constellation set X is fixed as a discrete subset of C of size
M , where M is the modulation order and m = log(M).

Specifically, we denote a length n = m N binary code
codebook by C which maps k binary inputs bk

∈ Fk
2 to n binary

equences cn(bk) ∈ Fn
2 . The rate of the binary code is RC =

k
n .

he modulator then maps the j th m-length subsequence c( j)

of cn to a point x ( j)
∈ X by the function

x ( j)
= µ(c( j)), j = 1, . . . , N .

The theoretical performance of a coded modulation strat-
egy can be measured by the generalized mutual information
(GMI)1 in the form of

I gmi(X; Y ) = E
[

log
q(X, Y )∑

x ′∈X PX (x ′)q(x ′, Y )

]
, (2)

here q(x, y) is a (symbol-level) decision metric. Note that
hen q(x, y) = pY |X (y|x), the GMI is equal to the coded

modulation capacity [3]. In this work, we are particularly in-
terested in a bit-level decision metric based coded modulation
strategy to be compatible with bit-level decoders (e.g. sum–
product algorithm). To this end, we define a generic bit-level
metric based demodulator that maps the j th received signal
y( j)

∈ Y to a set of m bit probabilities by the function

φ(y( j)) = p( j), j = 1, . . . , N

where p( j)
= (p( j)

1 , . . . , p( j)
m ), p( j)

i ∈ [0, 1] is the demodulated
bit probability estimate of c( j)

i .
In the following section, we give a detailed description of

our proposed architecture and explain how we specialize (2)
for bit-level decoding metrics.

3. Neural network

In this section, we give a detailed description of our pro-
posed architecture for the DNN components µθ and φθ .

A description of the proposed coded modulation system is
given in Fig. 1. Note that in the figure, the modulator and
demodulator are DNNs specified by parameters θ . Our goal
is to find a modulator and demodulator pair (µθ , φθ ) utilizing
a DNN architecture that finds the parameters θ to maximize
the GMI. Once the pair (µθ , φθ ) is fully trained, we treat it
as an inner-code that is combined with a binary linear code
(e.g. LDPC) as the outer code.

3.1. DNN inner-encoder (modulator)

The neural encoder µθ comprises of several layers. The first
input layer is a tanh layer, i.e., a fully connected linear layer
with tanh activation functions. Similarly, the following hidden
layers are rectified linear unit (ReLU) layers. The final two-
layers are a vanilla linear layer followed by a normalization
layer to satisfy the average power constraint. Recall that the
input to the overall DNN-encoder are m-length subsequences

1 This is a lower bound to the GMI given in [3] with s = 1.
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Fig. 1. Proposed coded modulation system architecture. At the encoder,
binary information bits bk are encoded into a binary linear code cn , inter-
leaved, and demuxed into subsequences of length m c( j)

= {c( j)
1 , . . . , c( j)

m },
hich is encoded by the DNN-encoder to send the j th input symbol x ( j).

The decoding procedure is done in the reverse order, where ℓ( j) are the
demodulated LLRs (12) of the bits mapped to the j th symbol x ( j), and
ℓn is the multiplexed n length LLRs. In the decoder, the feature mapping
function ψ (5) before φθ and the p( j) to LLR ℓ( j) transition after φθ are

mitted for visual clarity.

f a binary codeword c( j)
∈ Fm

2 . The final normalization layer
s applied as follows. Define C̃µ as

˜
µ = {x̃ : x̃ = µ̃θ (cm), cm

∈ Fm
2 }, (3)

here µ̃θ (cm) is the output of the last linear layer, i.e., µθ
xcluding the normalization layer. Let η̃ and σ̃ 2 be the sample
ean and variance of C̃µ, respectively. Then, the normalization

ayer outputs are given by

x =
x̃ − η̃

σ̃
, (4)

here x is the output of the normalization layer. Thus, the final
ormalization layer makes the constellation points satisfy the
verage power constraint. We note that the number of points
n C̃µ is 2m and the points are fixed once the parameters are
xed. In the training stage, the sample mean η̃ and variance σ̃ 2

s updated for every parameter update (e.g. for each mini-batch
tochastic gradient descent (SGD) update). After training, the
ormalization layer does not need any update since the pa-
ameters are then fixed. Every layer except the final output
ayers of the encoder and decoder are implemented with batch
ormalization [30].

.2. DNN inner-decoder (demodulator)

The DNN-decoder (demodulator) has the following struc-
ure. First, the input of the DNN-decoder is formulated by

feature mapping function applied on the received signal
y. Upon receiving the j th channel output y( j), the received
ymbol is mapped to the logarithm of the channel distribution

pY |X as an M dimensional vector, i.e.,

(y( j), σ 2) = [ln pY |X (y( j)
|x; σ 2) : x ∈ Cµ]. (5)

he DNN-decoder input ψ(y( j), σ 2) is passed through some
eLU layers, and the final output layer is given by a sigmoid
27
layer with m output units representing the m bit probabilities

φθ (y( j)) = [p( j)
1 , . . . , p( j)

m ], (6)

where p( j)
i ∈ [0, 1] and we define φθ (y( j)) as a shorthand

notation for φθ (ψ(y( j), σ 2)).

3.3. Loss function

For the loss function, we use an approximate variant of (2).
To this end, we first approximate (2) by

Î gmi(X; Y ) := E

[
log

q(X, Y )∑
x ′∈Cµ PX (x ′)PY |X (Y |x ′)

]
(7)

= M + E

[
log

q(X, Y )∑
x ′∈Cµ PY |X (Y |x ′)

]
(8)

= M + E

[
log

∏m
i=1 q(Ci , Y )∑

x ′∈Cµ PY |X (Y |x ′)

]
, (9)

where we define the metric q(x, y) =
∏m

i=1 q(ci , y). Note
that we have defined the symbol level metric q(x ′, Y ) in
the denominator of (2) by its optimal value PY |X in (7) and
we further choose the symbol level decision metric q(x, y)
as a product of bit-level metrics

∏m
i=1 q(ci , y), which is a

function of the output of the DNN-decoder. We note that the
marginalization in the denominator of (9) is a function of the
constellation points Cµ. Also, we treat the bit-level decision
metric q(ci , y) to be estimates of p(y|ci ) in product form to
be compatible with linear code decoders, in particular, the
sum–product algorithm.

In the following, we explain how we integrate the metric
(9) with our proposed architecture. Firstly, the channel input
symbols are chosen as the outputs of the DNN encoder given
by

x = µθ (c1, . . . , cm),

which results in pX (x) = 1/M . For the decoding metric
mapping, recall that our DNN decoder outputs are given
by φθ (y( j)) defined in (6). In our proposed architecture, the
decision metric is defined by

θ (ci , y) =

{
pi if ci = 1
1 − pi otherwise.

(10)

We note that the metric qθ (ci , y) is a function of the DNN
parameters θ since pi is the output of the overall DNN. When
it is clear in the context, we will omit the subscript θ and use

(ci , y) for brevity.
The final step is to approximate Î gmi(X; Y ) by its sample

mean given as

L(θ ) = M +

N∑
j=1

1
N

log
∏m

i=1 qθ (c
( j)
i , y( j))∑

x ′∈Cµ PY |X (y( j)|x ′)
, (11)

where c( j)
i is the i th bit of the j th input symbol, i.e., x ( j)

=

µθ (c
( j)
1 , . . . , c( j)

m ) and y( j) is the channel output of the j th
input symbol x ( j). The DNN parameters θ are trained to

maximize (11).
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As a final note in this section, we point out some differences
between the binary cross-entropy (BCE) loss [27] often used
for binary classification and the loss given in Eq. (9). In
the Appendix, we show that the BCE loss is equal to a
specialized GMI (up to a constant difference) when the metric
is defined as an estimate of p(ci |y) while assuming that the
bit probabilities are conditionally independent. We note that
the conditional independence assumption is not true in general
due to the linear encoding structure. Further improvements to
account for the linear structure in the demodulation stage can
be done by integrating iterative decoding and demodulation
(IDD) as in [26]. In our approach, we define our metric as an
approximation of p(y|ci ) in formulating the GMI which results
in an additional term represented by the numerator inside
the expectation of (9). We note that the numerator term is a
function of the DNN modulation constellation points which in
turn makes it a function of the DNN parameters. Our proposed
loss function explicitly utilizes the marginal p(y) in the loss
function and produces estimates of p(y|ci ) that is directly
ompatible with SPA. Performance comparison on the BCE
oss and our proposed metric are given in Section 4.

.4. Concatenation with linear codes

Once the DNN is trained, we can combine it with outer
inear codes. For ease of presentation, we will focus on LDPC
odes, however, the structure can be combined with any bi-
ary linear code with efficient soft decoding algorithms. Let
n

∈ C be a linear code codeword and assume n = Nm.
The codewords are interleaved and demultiplexed into m-bits
c( j)

= (c( j)
1 , . . . , c( j)

m ). The j th subsequence is encoded by
the DNN-encoder µθ (c( j)), then sent through the channel to
receive y( j), and finally decoded at the DNN-decoder p( j)

=

φθ (ψ(y( j), σ 2)). The output of the decoder p( j) are then con-
verted to decoding metrics q(c( j)

i , y( j)), i = 1, . . . ,m (10)
for training. For channel code decoding, the DNN outputs are
translated to log-likelihood ratios (LLRs) by

ℓ
( j)
i = ln

1 − p( j)
i

p( j)
i

, j = 1, . . . , N , i = 1, . . . ,m. (12)

Then, the LLRs are multiplexed into n-sequences and is de-
coded by the linear code decoder, e.g., sum–product algorithm.

4. Training methods and numerical evaluations

The evaluations in this section have been implemented us-
ing the Pytorch [31] framework. In our evaluations, we use the
5G standard LDPC codes [29] with BG=1 and Zc = 24, rate
1/2 LDPC codes which translate to length 1104 (1056 after
puncturing) bit codewords and use the sum–product decoding
algorithm with 50 iterations for decoding of the outer code.

Training of the DNN inner code is done independent of
the linear channel code. That is, at training stage, cm are
simply generated randomly and independently. For testing,
we use the encoded bits from the linear code. We use a
two-stage training process which we will refer to as the first

stage training (pretraining) and the second stage training. The

28
Table 1
DNN training parameters for 1st stage and 2nd stage training.

Parameters M = 16 M = 64

Enc. hidden units [16, 64, 32] [64, 128, 128, 128]
1st stage dec. hidden units [128] [128]
2nd stage dec. hidden units [128] [64, 128]
Training SNR 7 dB 11.5 dB
1st stage batch size M × 20 M × 20
2nd stage batch size M × 1600 M × 1600
Number of samples M × 4800 M × 3200
Learning rate 0.1 ∼ 0.001 0.1 ∼ 0.001
1st stage optimizer AdamW (0.01) AdamW (0.2)
2nd stage optimizer Adam Adam
Activation functions tanh, ReLU tanh, ReLU

Fig. 2. Learned constellation Cµ for M = 16 with GMI maximization.

raining parameters for each training steps are summarized in
able 1.

In the first stage of training, we keep the decoding structure
imple compared to the 2nd stage training, we have a relatively
ow batch size, and use the AdamW [32] optimizer with
L2 regularization with regularization coefficients given in the
arenthesis of Table 1. These choice of hyper parameters help
he optimizer escape local minima or saddle points to find a
ood initial constellation shape for further precise training at
he second stage.

The second stage of training is used to fine-tune the DNN
nd train a better decoder via transfer learning. Firstly, we
xchange the decoder with a randomly initialized larger set
f decoding layers (while keeping the pretrained encoder).
e train both the encoder and decoder parameters with a

arger batch size and use the Adam optimizer without
egularization.

In the following we present our numerical evaluations. In
igs. 2 and 3, we show examples of trained constellation points
µ for M = 16 and M = 64, respectively. Notice that
he constellation points have round edges compared to QAM
onstellations resulting in better shaping gains. It is interesting
o note that the constellations seem to have structures with
Gray mapping” like labels, for example, the most significant
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Fig. 3. Learned constellation Cµ for M = 64 with GMI maximization.

Fig. 4. Performance evaluations of block error and bit error rates for
M = 16 and M = 64. The plots compare our hybrid DNN strategy which
maximizes GMI with a standard QAM coding scheme. The plots are results
from the constellations given in Figs. 2 and 3.

bits (MSB) are distinguished by the left-half and the right-half
of the plane. In Fig. 4, we compare the bit-error rate (BER)
and block-error rate (BLER) of our hybrid coded modulation
strategy with the conventional QAM based BICM strategy.
For hybrid coded modulation strategy provides approximately
0.3 dB gain and 1 dB gain over the conventional QAM based
strategy for M = 16 and M = 64, respectively.

Next, to highlight the effectiveness of our proposed loss
function Eq. (11) and training method, we compare the perfor-
mance of two trained hybrid architectures, one using the GMI
loss function Eq. (11) and one trained with the conventional
BCE metric similar to the approach in [26]. The simulation
environment and base codes are equivalent to Fig. 4. In Fig. 5
we can see that the performance of our proposed training

method has the best overall performance while the BCE loss

29
Fig. 5. Evaluation and comparison between GMI loss in (11) and BCE for
M = 64.

function approach still learns a better constellation compared
to the conventional QAM based scheme.

5. Conclusion

In this paper, we propose a hybrid BICM architecture that
combines binary linear codes with DNN based inner-codes.
We formulate a GMI inspired loss function and design the ar-
chitecture to be compatible with conventional linear codes and
soft decoding algorithms. The inner DNN based code offers
shaping gain compared to standard QAM based approaches
while maintaining coding gains from practical length codes
resulting in overall better error correcting performance. More-
over, we provide some useful training methods for optimizing
the DNN. Numerical results show that the proposed hybrid
approach outperforms the QAM based BICM architectures
which can provide gains for future high-order modulation
communication systems.

Some interesting future research directions would be to
extend the framework to fading channels, multiple antennas,
and multi-user channels.
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ppendix

Consider the joint distribution pCm ,X,Y (cm, x, y) =

p(cm)p(x |cm)p(y|x) where p(cm) = 1/2m , cm
∈ Fm

2 , p(x |cm)
is the bit-to-symbol mapping distribution and p(y|x) is the
channel distribution. We define a decision metric in conditional
distribution form as

˜(x |y) :=

m∏
i=1

q̃(ci |y). (13)

Then, specializing the GMI function with the metric (13), we
have

I gmi(X; Y ) = H (X ) + E
[
log q̃(X |Y )

]
= H (X ) + E

[
log

m∏
i=1

q̃(Ci |Y )

]

= H (X ) +

m∑
i=1

E
[
log q̃(Ci |Y )

]
= H (X ) +

m∑
i=1

E

[∑
ci

p(ci |Y ) log q̃(ci |Y )

]

= H (X ) −

m∑
i=1

BCE(p(ci |Y ), q̃(ci |Y )),

here the expectation is with respect to pCm ,X,Y and BCE(p, q)
s the binary cross entropy function. Thus, minimizing the
CE is equivalent to maximizing the GMI with decision
etric in (13).
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