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Abstract: Railways speedily transport many people and goods nationwide, so railway accidents can
pose immense damage. However, the infrastructure of railways is so complex that its maintenance is
challenging and expensive. Therefore, using artificial intelligence for railway safety has attracted
many researchers. This paper examines artificial intelligence applications for railway safety, mainly
focusing on deep learning approaches. This paper first introduces deep learning methods widely
used for railway safety. Then, we investigated and classified earlier studies into four representa-
tive application areas: (1) railway infrastructure (catenary, surface, components, and geometry),
(2) train body and bogie (door, wheel, suspension, bearing, etc.), (3) operation (railway detection,
railroad trespassing, wind risk, train running safety, etc.), and (4) station (air quality control, accident
prevention, etc.). We present fundamental problems and popular approaches for each application
area. Finally, based on the literature reviews, we discuss the opportunities and challenges of artificial
intelligence for railway safety.

Keywords: railway; railway safety; deep learning; AI application

1. Introduction

Artificial intelligence, which began in the 1950s with the question “Can computers
think?”, has become a modern concept that means “a computing-based technology system
that automates intelligent tasks generally performed by ordinary people.” [1–3]. Artificial
intelligence has been widely used in various fields and has advanced sensing and data
processing technologies. This paper presents an overview of deep learning applications
for railway safety. We analyzed earlier studies over four representative application areas:
(1) railway infrastructure, (2) train body and bogie, (3) operation (train running), and
(4) station.

There have been many studies monitoring railway infrastructure, such as catenary and
rail surfaces. Railway defects can occur for diverse reasons, such as long-term accumulated
operation, rain, sunlight, wind, etc. Regular inspections are essential since rail defects can
cause significant accidents. Recently, many studies have been conducted to detect defects
in railways and related parts with rapidly developed artificial intelligence technology to
prevent railway accidents. Diverse data sources have been used for detecting railway
defects, such as images [4,5], accelerometers [6,7], and ultrasonic sensors [8,9].

There have also been many studies conducted on detecting train defects using artificial
intelligence. The railway train has a complex structure that combines various parts, such
as vehicle wheels, split pins, tram lines, and pantographs. Each train accessory has the
characteristic that the degree of corrosion or decrease in durability is not constant because
of the difference in function and environment. Fault detection and prediction are essential
because even small-area or early-progress defects (cracks, cuts, aging, etc.) on trains can
cause severe threats to passenger safety. These features can be even more critical for high-
speed trains as their parts are exposed to harsh environments compared to other trains.
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Additionally, safety accidents during train operation can occur, such as railroad tres-
passing or derailment. Such train accidents during train operation can lead to many
casualties and various artificial intelligence technologies for train operation safety have
been studied. For example, segmentation methods based on deep learning models have
been proposed to detect rail tracks during operation or to check the existence of any obsta-
cles on railways (e.g., people, cars). In addition, there have been attempts to quantify wind
risk or train running safety for controlling and managing further operation.

Finally, many studies have been conducted wherein artificial intelligence is used for
railway station safety. A railway station is dynamic and complex due to the presence
of many people, including passengers and station staff, and trains that stop and depart
quickly. Therefore, it is necessary to prevent and deal with various safety accidents that
may occur in stations. For example, diverse artificial intelligence models were developed
to quickly identify three different types of safety incidents (fall, slip, and trip) [10] and to
monitor air quality in a station. Furthermore, many studies have modeled the station as a
dynamic and complex system.

This paper provides a comprehensive view of railway safety by covering the four
representative areas. Table 1 shows the railway safety areas addressed by earlier reviews.
While most review papers have focused on a specific problem, few studies covered various
areas. For example, Tang et al. [11] and Liu et al. [12] covered the four application areas we
covered. However, these studies aimed to overview artificial intelligence for the railway, so
some specific safety issues were rarely covered. This review more widely includes studies
about railway safety. For example, it further covers safety issues related to the catenary
in the railway infra, the train’s door and suspension, and wind risk during the operation.
In addition, although many studies have focused on visual inspection methods based
on image data, this study includes diverse data types. For example, various sensor data
(e.g., vibration, current, acoustic emission signals) and image-shaped data (e.g., 2D-camera
images and laser ultrasound scanning data) are explained in this review.

Table 1. Coverage of Existing Reviews about the Railway Safety.

Papers Application Areas 1 Data Types

Ref Year Railway
Infra Train OperationStation Image Others 2

Tang et al. [11] 2022 © 4 4 4 © ©
Liu et al. [12] 2019 © © 4 4 © ×
Ghofrani et al. [13] 2018 4 4 4 × © ©
Hu et al. [14] 2021 4 × × × © ×
Sedghi et al. [15] 2021 4 4 4 4 × 4
Yin et al. [16] 2020 4 × × 4 © 4
Wen et al. [17] 2019 × × × 4 © ©
Chenariyan et al. [18] 2019 4 × × × © 4

This study 2022 © © © © © ©
1 ©: almost subdomains listed in Sections 4–7,4: about half of the subdomains, ×: rarely covered. 2 ©: more
than two other types,4: one type, ×: none.

The subsequent parts of this review are organized as follows: Section 2 provides an
overview of deep learning approaches that have been used for railway safety. We classi-
fied the deep learning methods according to their data source and task. In Section 3, we
described the methodology for searching and analyzing related studies. From Section 4
to Section 7, we explained the four application domains in railway safety (i.e., railway
infra, train, operation, and station) and representative studies. Lastly, Section 8 concludes
the paper by discussing the opportunities and challenges of artificial intelligence for rail-
way safety.
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2. Overview of Deep Learning Approaches

A deep neural network (DNN) is a machine learning that emulates brain neuron cells.
Therefore, DNN can extract patterns and features like the human brain from numerous
datasets. DNN is constructed of several layers (e.g., input layer, hidden layer, output layer).
The input layer is responsible for receiving input values. On the other hand, the output
layer is responsible for output values. There can be many hidden layers between the output
and input layers. The greater the number of these hidden layers, the deeper the neural
network. In the hidden layer, the following operations are performed:

u = W× x + b (1)

z = f (u) (2)

where x is input vector. W and b are the weight matrix and the bias term, respectively,
and these are updated through training. f (u) is the activation function that makes neural
networks nonlinear. z is the output vector of the hidden layer.

Diverse deep learning architectures have been studied by extending the DNN structure.
They can be distinguished according to their data types and tasks.

2.1. Data Types
2.1.1. Image Data

Image data are represented in a two-dimensional structure in the form of a numerical
matrix consisting of points called pixels. Pixels represent the contrast of colors in numbers
ranging from 0 to 255, where 0 is black and 255 is white. In the case of a color image,
the color of the image is expressed using the light and shade of red, green, and blue with
three channels of RGB. Before processing images using a deep learning model, image
preprocessing, such as image alignment, cropping, and adjustment (e.g., brightness and
contrast), can be conducted.

A convolutional neural network (CNN) is a representative deep neural network
used in image data processing. CNN can extract image patterns with spatial structures
because filters composed of multiple weight values move spatially. The following equation
represents the convolution in CNN:

Ui,j = (W× X)i,j = ∑
m

∑
n

Xm,nWi−m,j−n (3)

Z = f (U) (4)

where i, j are the index of the output matrix, and m, n are the index of the input matrix. ∗ is
convolution. X is the input matrix. Xm,n is the value of row m and column n of X. Z is the
output matrix of the convolution layer.

A CNN performs convolutional operations commonly used in image or signal pro-
cessing. The CNN moves a mask, also called a kernel, filter, or window, and performs
convolutional operations with input data to extract data features. Because this approach
allows the detection of relevance between one element and neighboring elements, CNNs
are suitable for data processing with grid structures, such as images. CNNs have shown
superior performance to humans in some complex image processing problems and have
also contributed significantly to image retrieval services, autonomous vehicles, and image
automatic classification systems.

2.1.2. Time-Series Data

Sequential data refer to data in which objects in the data set have a certain order.
Sequential data include numerous kinds of time series data with temporary properties,
such as language, stock quotes, electrocardiogram (ECG) signals, seismic waves, and DNA
sequencing. In railway safety, sensor data (e.g., vibration) and video (e.g., CCTV) are
prevalent time-series data types.
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The recurrent neural network (RNN) was developed to deliver information that
occurred at the previous time step to the next time step through the recurrent edge, which is
the edge connecting the hidden nodes. In other words, an RNN hidden layer can remember
important things about input information that allows them to predict what will come next.
The key operation in RNN can be described by the following formula:

a(t) = b + Wh(t−1) + Ux(t) (5)

h(t) = tanh(a(t)) (6)

o(t) = c + Vh(t) (7)

where U, V, W is a weight matrix that is updated through training, for input-to-hidden,
hidden-to-output and hidden-to-hidden. b, c are bias vectors. x(t) is input vector. t is the
time step. o(t) is output vector.

Long short term memory (LSTM) improves an original RNN structure by adding
gates that select inputs and outputs at a time step to properly understand the contextual
dependence of sequential data (e.g., long-term dependence). A gated recurrent unit (GRU)
is also a variant of RNN, like LSTM, but has fewer parameters.

2.2. Tasks
2.2.1. Classification

Classification is a sort of supervised learning that is the process of identifying the
category relationship of existing data and determining the category of newly observed data
by itself. In the field of images, it is used to assign an appropriate label (or class) to objects
in a given image as input. For example, a classification model can be trained to recognize a
number in handwritten images.

There are various types of image classification models. Visual geometry group (VGG)
is a relatively early classification model developed to determine how the depth (number
of layers) of neural networks affect performance [19]. VGG has a structure that combines
convolutional layers for feature representation and fully connected layers for classification.
Filters of 3 × 3 are used to reduce the number of model weights that require learning to
efficiently increase the depth of the model.

Residual Net (ResNet) [20] is a deep learning network with 152 layers. For ResNet,
a new concept called residual block was introduced. Unlike previous networks, which
aimed to generate output values as similar as possible to the correct answer, ResNet was
designed to minimize the residual (the difference between the output and input values).
This approach makes it possible to preserve previously learned information and to consider
only additionally learned information. DenseNet [21] is similar to ResNet, but it uses the
operation of the concatenation of the output of the previous layer with the next layer.

Res2Net [22] is a structure that combines ResNet with DenseNet and is a classification
model that leads to performance improvement by configuring hierarchical residual-like
connections in a bottleneck residual block. Res2Net is also characterized by segmentation
by increasing the range of receptive fields in each network layer rather than expressing
multi-scale layer-wise features.

Finally, Inception is a neural network structure designed to address problems that
arise when classification models of deep and wide structures learn [23]. The number of
channels was reduced while maintaining the input form using a convolutional layer of a
1 × 1 filter and matrix operations were densely performed to increase the computational
efficiency. In addition, Inception uses an auxiliary layer that delivers backpropagation
by calculating the intermediate learning error, to convey information to the deep layer
during learning, and batch normalization, to prevent overfitting that frequently occurs in
deep learning.
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2.2.2. Object Detection

Object detection and localization have been popular tasks for railway safety. Object
detection refers to a task that performs both classification and localization on multiple
objects. Localization is a task to display the location of a specific object in an image through
a bounding box. Object detection methods can be categorized into single-stage and two-
stage methods. A single-stage method detects the potential locations of the target object and
classifies them by a single network. The two-stage method separately performs a region
proposal first, extracts possible areas that the target object can locate, and then selects and
classifies regions.

Regions with CNN features (R-CNN) is a two-stage method that performs the task
of proposing an object region and classifying objects separately. The R-CNN first extracts
regions by the selective search algorithm and then uses a pre-trained CNN model to extract
image features for the classifier to distinguish the object and regressor to localize the object.
In R-CNN, learning and inference are slow during region proposal and image feature
extraction from regions because it processes about 2000 regions per image. Faster R-CNN
solves the bottleneck phenomenon that occurs when proposing regions [24]. It first extracts
image features from an input image and then performs the region proposal. Faster R-CNN
uses a region proposal network, a deep learning network runnable on a GPU, to improve
the region proposal extraction process by selective search.

You Only Look Once (YOLO) is a single-stage method for object detection using a
single neural network to perform both classifying and detecting of the potential location
area of the target objects [25]. In YOLO, the convolutional layers extract feature maps and
fully connected layers and then predict the bounding box and class probability. YOLO
divides the input image into S× S grids, and bonding box coordinates and confidence scores
are predicted for each grid. Since the whole detection pipeline is a single network, YOLO
can be optimized end-to-end directly on detection performance. Single-shot detectors
(SSD) [26] is also a single-stage method for object detection. This method begins with the
idea that a single feature map may be insufficient to detect objects of various sizes. SSD
predicts bounding boxes using a pyramidal feature hierarchy instead of image grids in
YOLO. The pyramidal feature hierarchy consists of feature maps extracted from various
layers using a single deep neural network. Each convolutional layer has a different receptive
field size and can provide unique image features at different scales.

In the object detection problem, the number of objects in the image is generally small,
so it is easy to develop a class balance problem with very few object areas compared to the
background area. RetinaNet [27] is a model that applies focal loss designed to focus on
hard negative samples by lowering the weights for easy samples. In addition, both local
and global features are utilized by adding a spatial attention map block (SAMB) and a
channel weight map block (CWMB) in the image feature extraction process. This allows
RetinaNet to weaken the influence of the background in the object detection process and
focus on important features.

2.2.3. Segmentation

Segmentation is a method of extracting an object of interest from an image in units
of pixels. By giving each pixel a label, it is possible to know which pixel belongs to which
object. Segmentation is necessary for identifying shapes of target objects in detail, such as
in traffic safety, autonomous driving services, and in reading magnetic resonance imaging
(MRI). Depending on the purpose of use, segmentation can be divided into semantic
segmentation and instance segmentation. Semantic segmentation assigns a class label to
every pixel in an image, such as a person or car. The objects of the same class have the same
label. However, instance segmentation identifies each object separately, even if they belong
to the same class.

You Only Look At CoefficienTs (YOLACT) is a real-time model that improves the
processing speed of instance segmentation by omitting the localization step [28]. Instead,
this model solves the problem by dividing the segmentation process into two parallel,
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instead of sequential, subtasks. The first task generates a dictionary of non-local prototype
masks over the entire image and another predicts the linear combination coefficient for each
instance. Then, YOLACT produces instance masks by linearly combining the prototypes
with the mask coefficients.

2.2.4. Feature Extraction

Feature extraction transforms raw data into numerical features more beneficial for the
main task (e.g., classification, object detection). This task often affects model performance,
helping reduce the dimensionality of the model and better represent latent patterns. Princi-
ple component analysis (PCA) is one of the traditional algorithms for feature extraction.
PCA is a method of reducing multidimensional data by selecting the axis with the largest
variance as the first principal component, then selecting the larger axis as the second princi-
pal component, and linearly converting the data when each variable (feature) is projected
onto one axis. Other known techniques include linear discriminant analysis (LDA) [29],
canonical correlation analysis (CCA) [30], singular value decomposition [31], isometric
feature mapping (ISOMAP) [32], and locally linear embedding (LLE) [33].

Auto encoder (AE) is a deep neural network that can be used for feature extraction [34].
AE is used for anomaly detection, which determines whether a sample is normal or ab-
normal, or for denoising operations that extract the original data by removing the noise
added to the data. AE is unsupervised learning that learns to output the same results as the
input data. However, since the dimension of the hidden layer is designed to be lower than
that of the input and output layers, AE learns in the direction of exploring representation
information that can effectively indicate input data. The restricted Boltzmann machine
(RBM) is also a deep learning model for feature learning that works through the process
of finding better representations of input values [35]. The RBM consists of a visible layer,
which is an input layer, and a hidden layer in which feature values are learned. The deep
belief network (DBN) is a probabilistic generative model built by layers of pre-trained
RBMs [36].

3. Methodology

In this review, we aim to (1) identify problems by railway safety category and solutions
using deep learning models, (2) evaluate the performance of the proposed deep learning
model and comparison with the previous model, and (3) summarize supplementary points
of the proposed method and additional issues to be dealt with afterward. For doing this,
we searched papers including the following keywords on Google Scholar: “railway” OR
“deep learning” OR “defect” OR “railroad” OR “safety” OR “artificial intelligence”. In
order to investigate in-depth safety issues for each category, category-specific keywords
were considered (e.g., “catenary” OR “surface”). In addition, the entire paper cited by the
key reference paper was examined whether to be included in the review.

We checked the abstracts of all selected papers and excluded papers that were not
related to railway safety or did not address the applications of deep learning techniques for
solving problems. If it is not clear to determine about the papers, the introduction section
and methodology section were additionally reexamined. Cross-checking was performed
three times by independent authors. Four of the authors checked each part of the review
paper. Next, two authors individually examined the whole part of this paper without
discussion. If two papers had overlapping parts of the contents, a paper with a high
number of citations was selected. When the data source was not clearly marked on the
paper, it was classified as Custom. The performance of the model was selected as metrics
and values with the best results. The papers included in the review were finally updated
on September 2022. The details of the reivewed papers and the performance metrics were
described in Appendix A, Tables A1 and A2, respectively.
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4. Railway Infra Safety
4.1. Catenary

The catenary, which is responsible for supplying electricity to trains, is a critical facility
in the electric railway system. Therefore, defects in a catenary can pose a severe threat to
railway safety. While a human inspector usually needs to shut down the train power and
go up to the vehicle to examine the state of the catenary, this procedure can cause many
safety accidents. Prior studies have made efforts to study computer vision technologies to
detect catenary defects fast and early.

Kang et al. [37] focused on detecting defects in the insulator, which is a catenary
component. Figure 1 shows the proposed workflow of catenary defect detection. Their
proposed framework captured images of areas where insulators are usually located using
fixed-viewed cameras. Next, a Faster R-CNN model localized the specific location of
the insulator in the input image (i.e., object detection). Finally, two other deep learning
models were implemented to examine the extracted images of the insulator. One model
was a deep learning classifier that had a CNN-DNN structure to output the classification
score of the input image. The other model was an auto-encoder model that outputs the
abnormal score of the insulator. The abnormal score determines whether and how the
insulator is damaged. Actual data from Hefei–Fuzzhou high-speed railway line was used
for evaluation. The results showed that the proposed framework effectively mitigates the
small data problem and the complexity of processing catenary images, which can cause a
decrease in diagnosis performance.

Figure 1. Workflow of catenary defect detection. Reproduced with permission from IEEE [37].

There have been many studies on defect detection in a dropper, which connects a
catenary and a messenger wire. Guo et al. [38] proposed a method to detect defects in
a dropper from image data by deep learning models based on Faster R-CNN and fully
connected layers. A balanced attention feature pyramid network (BA-FPN) was proposed
that integrates multiple-level features onto the original Faster R-CNN structure. This
enhances detection performance by extracting useful image features from small areas
from the entire catenary image where the dropper is placed. Experimental results on
the VOC 2012 and MSCOCO 2014 datasets showed that the proposed models achieved
higher performance than conventional detection models (86.8% at mAP@0.5 and 83.9%
at mAP@0.7).

The clevis is another catenary component that is located between the registration arms
and the cantilever. The Faster R-CNN has also been widely used to detect clevis defects.
Han et al. [39] proposed a deep learning model that focuses on image features from the
surrounding areas of the clevis, as shown in Figure 2. This idea is under the heuristic
insight that the catenary has a typical structure, so there are specific areas where useful
image features for clevis crack diagnosis are likely placed. The evaluation results reveal
that the proposed model has higher crack detection performance than existing models,
such as Faster R-CNN and YOLO. In addition, the proposed model was robust to different
size, texture, and grayscale transformations that resulted from changes in shooting distance,
angle, and illuminance.

The split pin combines and supports diverse components in the catenary. Wang et al. [40]
studied a deep learning framework that determines three states of the split pin (missing,
loosening, and normal) according to the location of the joint. First, the proposed framework
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performed an object detection task based on YOLO v3 to explore split pins for five joints
extracted from the entire catenary image. Next, semantic segmentation was performed
in three parts (head, body, and tail) using DeepLab V3+ [41–43]. Finally, the classification
model determined the state of the split pins. The evaluation was conducted with 2670 cate-
nary images, including 21,472 split pins, and the split pin defects were detected with very
high accuracy (98.72%).

Figure 2. Catenary Inspection Using the Faster R-CNN network. Reproduced with permission from
Elsevier [39].

Chen et al. [44] studied an image-based deep learning model to check damage in
the current-carrying ring of a catenary. RetinaNet [27] was used to detect and classify
defects for fault diagnosis. RetinaNet was trained based on the focal loss that mitigates
the imbalance between classes of training data, instead of cross-entropy loss. Additionally,
RetinaNet contains a spatial attention map (SAM) and a channel weight map (CWM) to
harness the spatial characteristics of each feature map and consider patterns in the channel.
Performance tests were conducted with catenary images taken at various locations, and the
proposed model achieved the best performance in diagnosis accuracy.

4.2. Rail Surface

Scouring, breaking, and deficient fastening in bolts and sleepers are typical defects
on the rail surface. Figure 3 presents several types of rail surface defects. Santur et al. [45]
proposed a machine learning model based on image features of defects extracted based on
PCA, kernel principal component analysis (KPCA), singular value decomposition (SVD),
and histogram match (HM). Faghih-Roohi et al. [46] adopted deep convolution neural
networks to determine defect types of surface images (normal, weld, L-squat, M-squat,
S-squat, and joint). They designed and compared three CNN models (small, medium, and
large), each with different structures (number of layers, number of filters, sizes of filters,
activation functions). The large model outperforms small and medium models and shows
about 93% accuracy in detecting surface defects.

Many studies have been performed to develop object detection methods on rail surface
images. For example, Yanan et al. [47] developed a fast and accurate defect detection model
for rail surfaces using YOLO v3, which has the strength of accurately and quickly detecting
small-sized targets.
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Figure 3. Several types of rail surface defect images. Reproduced with permission from IEEE [47].

The detection model receives 416 × 416 images and divides them into boxes of vari-
ous sizes, calculates normalized coordinate values of defects depending on the location
of defects located inside the box, predicts defect inclusion scores for each box, and eval-
uates reliability. This method achieved high detection rates (97%) in 0.15 s. Similarly,
Yuan et al. [48] developed a model that detects the location of defects from existing rail
surface images. Their proposed model consisted of a MobileNetV2 for extracting image
characteristics and a YOLOv3 module for defect localization. Their performance test results
confirmed that the model increased the mean average precision (MAP) by more than 4%.
Shang et al. [49] presented a novel pipeline consisting of two stages. In the first stage, an
input image is localized to extract rail areas. The second stage detects defect areas using a
deep learning model, a fine-tuned Inception3.

Some studies proposed deep learning methods to extract defects more detailedly
using image segmentation. Kim et al. [5] adopted image segmentation to distinguish
specific areas of defects on rail surfaces. The defective part was labeled in units of image
pixels to train the segmentation model. The proposed model was implemented based
on the VGG-19 structure and showed IoU and F1 scores exceeding 90%. Liang [50]
proposed SegNet, a deep convolution neural network, to detect defects on rail surfaces.
As shown in Figure 4, SegNet comprises feature extraction (FE) and feature construction
(FC). This structure can learn rail surface types and their distributions from a given
training dataset.
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Figure 4. SegNet architecture for rail defect analysis. Reproduced with permission from IEEE [50].

Jiang et al. [8] proposed a technique for detecting rolling-contact fatigue (RCF), which
is a failure or material removal driven by crack propagation caused by a near-surface
alternating stress field. Specifically, this study used laser ultrasound scanning data to
detect RCFs. To extract features from ultrasonic signals, wavelet packet transform (WPT),
which decomposes signals in different frequency bands, and KPCA, which reduces the
correlation between all defective features, were used. A support vector machine (SVM)
model performed the final detection based on the features. A squat is an RCF defect and
often leads to rail breaks. Yuan et al. [51] proposed an algorithm to automatically detect the
position of rail squats using vehicle axle box acceleration signals. The convolutional variable
auto encoder (CVAE), an unsupervised manager, extracts critical features from signals, and
the one-class SVM (OCSVM) detects rail squats in abnormal conditions. In their study, the
proposed method was shown to be robust to signal noise and train speed variability.

Suwansin and Phasukkit [9] analyzed acoustic emission signals from fatigue cracks
on rails and developed a non-destructive localization model that determines the presence
and location of defects without damaging railways. A DNN structure consisting of three
hidden layers used the hyperbolic tangent function for considering the transient nature of
acoustic emission signals. The model processed the acoustic emission signals and classified
them into breaks at the head, web, or foot of the steel rail.

Shebani and Iwnicki [52] developed a neural network model that predicts wheel and
rail wear using an artificial neural network. Nonlinear autoregressive models with an
exogenous input neural network (NARXNN) were developed for wheel and rail wear
prediction. Wheel and rail profiles, plus load, speed, yaw angle, and first and second
derivative of the wheel and rail profiles, were used as inputs to the neural network while
the neural network output was wheel and rail wear. Their laboratory tests confirmed the
feasibility of the proposed wear prediction methods for realistic wheel and rail profiles
and materials.

Studies have also been conducted to facilitate the acquisition and utilization of rail
surface data necessary for artificial intelligence models. Wu et al. [53] attempted to develop
a robust detection framework for the quality and sampling rates of rail surface images.
Unmanned aerial vehicles (UAV), capable of moving at speeds ranging 2–15 m/s, were
used to collect rail images. In addition, the proposed model used enhanced residual blocks
for time and memory optimization in defect detection. Two image datasets from high-speed
train sections between Beijing and Shanghai and Class I freight lines in South Carolina
were used for training and testing the model.

Zhang et al. [54] proposed an efficient learning method based on line-level labels. Use
of line-level labels can decrease the time and effort needed to collect data compared to
pixel-level labels. In addition, this method can lower the model complexity and is more
suitable for small data. The proposed model converted color information into numeric
vectors using a 1D-CNN and LSTM, and detected rail surface defects line by line. Ha-
jizadeh et al. [55] focused on the data imbalance in detecting rail surface defects. Most rail
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image datasets have an overwhelming proportion of normal state data than abnormal data
including defects. Many captured images are not labeled to indicate whether they contains
defects or not. Hajizadeh et al. [55] proposed semi-supervised learning methods to detect
defects on rail surfaces. The proposed semi-supervised learning methods showed compli-
ance performance, more than other methods, to data imbalance, such as undersampling
and oversampling.

Santur et al. [56] addressed degraded image quality due to substances, such as dust or
oil, which often cause false-positive cases. A high-resolution camera can also help deal with
substances but leads to loss of time and additional costs in the railway maintenance process.
Santur et al. [56] presented hardware and software architectures to perform railway surface
inspection using a three-dimensional (3D) laser camera and deep learning. The use of 3D
laser cameras in the railway inspection process provided high accuracy rates in real-time.

Falamarzi et al. [57] utilized train acceleration data to estimate the degradation of tram
rails. Machine learning algorithms (Random Forest, SVM, and ANN) were trained and
tested using Melbourne tram network data. The study results revealed that the proposed
method allows for cost-effective maintenance strategies by reducing the time and effort in
collecting data for evaluation.

4.3. Rail Components

Defect inspection of rail components (e.g., spikes that secure rails to ties and clips
that press down on the bottom of the rail to concrete ties) commonly depends on the
judgement of individual human inspectors. Many studies have used deep learning models
to improve manual rail component inspection. Guo et al. [58] proposed a framework that
can detect pixel-wise rail accessories in real time using CNN-based models that receive
high-resolution rail images, shown in Figure 5. Their proposed framework shows a speed
of over 30 FPS in high-resolution processing video in real-time. These results show that
inspection video can be quickly converted into helpful information to aid rail maintenance.
Similarly, Gibert et al. [59] proposed CNN models to perform defect detection in rail ties
and fixtures.

Figure 5. Example of original image and label result: (a) ground truth; (b) instance label visualization.
Reproduced with Permission from Blackwell [58].

Sresakoolchai and Kaewunruen [60] developed a model that detects defects in rail
dipped joints and track settlements and quantifies the degree of defects. Their proposed
deep learning method receives 14 features, including weight, speed, and peak acceleration
sensor data measured on wheels. The CNN and RNN modules in the model used time
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series acceleration values, and the DNN modules used train weight, speed, and wheel
acceleration feature point values.

A train delivers high acceleration to wheelsets, axle boxes, the bogie, and total vehicle
bodies as it passes through the rail. If defects occur in rail components, the acceleration data
show different patterns. Yang et al. [7] proposed a deep learning-based approach for defect
detection in rail joints through CNNs on acceleration sensor data. CNN-based models can
work directly with raw data to reduce the heavy preprocessing of feature engineering and
directly detect joints located on either the left or the right rail. Similarly, Sun et al. [61] used
acceleration data to detect defects on rail joints. A single CNN model was designed to
detect both left and right joints together. This can mitigate the interference issue when a
different model is used for each side, which increases a high false-positive rate.

A clamp is a rail component that ties a rail so it does not move from side to side.
The clamp should maintain railway safety by maintaining the spaces on the left and right
sides of the rail. Inspecting clamps is time-consuming and expensive because it depends
on visual inspections made by a human expert. Chandran et al. [62] attempted to check
clamps using two differential eddy current signals. The current signals were collected
using sensors capable of measuring eddy-phase current signals of 18 kHz and 27 kHz and
missing clamps in the fastening system were detected using machine learning algorithms.

Soares et al. [63] derived malfunction patterns of a rail switch machine. Mean, inter-
mediate, maximum, and minimum values were extracted from current signals during the
switch operation. Then, similar defects were formed into one group by using k-means
clustering. The proposed model evaluated the performance by receiving current data
generated during switch operation provided by the railway company and showed a high
score (.860) in the silhouette score, a clustering performance index.

Guo et al. [64] designed a real-time monitoring system to detect rail slab deformation
of high-speed railways. This work combined fiber optic sensing methods and machine
learning models to identify track slab deformation by using on-site track-side vibration ac-
celeration data. The proposed method could identify the track slab deformation effectively
and the detection rate could reach 96.09%.

4.4. Rail Geometry

Recent studies have utilized deep learning to analyze vibration data to evaluate
railway track quality. Ma et al. [65] proposed a method to evaluate the quality of the
rail track based on vehicle-body vibration. CNN and LSTM structures were integrated
to process vehicle-body accelerations and predict vertical vehicle-body vibration. Such
vehicle-body vibration prediction is beneficial for locating potential track geometry defects
with lower costs than existing methods, such as using track inspection vehicles.

Hao et al. [66] further proposed a deep learning-based model applying attention
structure and gated current unit (GRU) structure. CNN and GRU learn shape features
and sequential features, respectively, and the attention structure receives the vertical,
horizontal vibration, and train speed of the train as inputs, outputting the degree of vertical
rail irregularity.

5. Train Safety
5.1. Train Door

Train door failures damage the train system and account for 40% of all train failure
cases, leading to huge operation and maintenance expenditures. Ham et al. [67] studied
a data-based approach to address train door failures. Eight failures were considered
in four different scenarios. For each scenario, the change in the amount of current in
the electric motor operating the train entrance was measured. Then, two techniques
were used to analyze the current change data. First, 13 features were extracted from the
time-series signal data using traditional feature engineering techniques based on pass
filters (high and low). A KNN (k-nearest neighborhood) model detected door failures
based on the extracted features. Another method is a deep learning model based on 1D
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convolution. Figure 6 shows components of a train door test rigs for the experiments. The
evaluation results showed that both methods showed an accuracy of 98% or more, and
CNN models showed slightly higher performance, even though they used row current
signals without preprocessing.

Figure 6. Components of a train door test rigs. Reproduced with permission from MDPI (Creative
Commons Attribution License) [67].

5.2. Wheel

Wheel defects in trains are also one of the main causes of damage to railway systems
and railway-related facilities. Neglecting train wheel defects will shorten the service life of
a railway infrastructure, which may result in unnecessary maintenance costs. Furthermore,
ground vibration and noise are generated when train wheel defects are present, causing
significant damage to the surrounding environment. To determine train wheel faults,
Krummenacher et al. [68] focused on the vertical force of the train. They continuously
measured a load of trains running at top speed from wheel load checkpoints (WLCs) placed
on rails at regular intervals and studied two methods to detect train defects. The first
method determined train wheel defects using an SVM model based on the train load data
processed by the discrete wavelet transform (DWT), a time series data processing method.
Second, a CNN-based model was developed to detect train wheel defects. They found
that these proposed methods show better performance than conventional defect detection
methods. In particular, the CNN-based model had strengths identifying flat spots (wheel
defects that stop wheel rotation and drag along the rails) and non-roundness (wheel defects
that cause vibration and noise generation).

In addition, acceleration sensors for inspecting the position of railway wheels have
been widely studied to increase information utilization and efficiently perform maintenance
decisions. However, the acceleration sensor has a limitation of relatively accurate detection
of the longitudinal movement of train wheels but poor lateral movement accuracy. Shi et
al. [69] attempted to solve this problem by utilizing an image-based point tracking method
with acceleration sensor data. Their proposed model was designed based on YOLO and
generated a wheel reference point indicating a wheel position from the input image and
comparing it with a normal position. Furthermore, they adopted various filters and data
acquisition methods to improve performance, even in weather environments such as snow
and fog.

5.3. Suspension

Wu et al. [70] detected defects in bogie suspension components (coil spring, air spring,
vertical damper, and yaw damper) by considering the increased vibration and stability of a
high-speed train during accelerated operation. They developed a Bayesian deep learning-
based predictive model based on accelerometer (vertical and horizontal) data collected
from a bogie and accelerometer sensors attached to trains, and data with each degree
of deviation of each component (vertical and horizontal). Their developed predictive
model imposed perturbation by the Monte Carlo algorithm to more clearly distinguish the
difference between frequent and sudden faults. Class of faults was diagnosed using drop-
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out-based Bayesian deep learning. The proposed methods accurately detected rare but
fatal defects, even with a small number of samples. Xie et al. [71] analyzed train vibration
signals using a fast Fourier transform (FFT) that decomposed input signals by a frequency
band and automated feature extraction by a deep belief network (DBN). With four different
conditions (normal train, without anti-yaw shock absorber, air spring failure, and without
transverse shock absorber), a total of 28,600 vibration data were collected using vibration
sensors installed at various locations on a train. DBN models consisting of four restricted
Boltzmann machines (RBMs) showed significant improvement in diagnosis performance.

5.4. Bearing

Bearing is a principal component widely used in most modern mechanical equipment.
Defect inspection of bearings takes a long time and the cost of repairs is generally high,
which can significantly decrease train productivity. While there have been many attempts
to detect bearing defects, conventional methods have two limitations. First, methods based
on features depending on expert rules or prior knowledge take too much time and human
effort because different processes conducted by experts should be performed according
to each specific problem. Second, traditional machine learning methods with shallow
structures have had difficulty estimating nonlinear functional relationships in complex
systems. In order to overcome these limitations, there have been studies to adopt deep
learning to detect bearing defects.

Xu et al. [72] proposed a CNN-based model for bearing defect detection. Their pro-
posed model used bearing vibration signals for defect detection. It converts original signals
into two-dimensional features by CWT. Then, a CNN based on LeNet-5 processes fea-
tures and determines its state. In addition, an ensemble method was adopted to utilize
three Random Forest (RF) models with features of three specific layers as input values.
He et al. [73] have developed a deep learning model that diagnoses defects using the Large
Memory Storage and Retrieval Neural Network (LAMSTAR). This multi-layer fast deep
learning structure can use many filters simultaneously. In addition, the short-time Fourier
transform (STFT) is used to process acoustic data generated from bearings to determine
when signals for each frequency band separated from the composite signal are generated.
Performance tests performed in laboratory environments showed better performance than
other conventional CNN models.

The features of bearing vibration signals, such as high nonlinearity, non-stationarity,
and background noise, make it hard to diagnose bearing faults effectively and accurately.
Zou et al. [74] proposed a deep learning method based on discrete wavelet transform (DWT)
and improved DBN. First, the vibration signals from faulty bearings were converted to a
two-dimensional (2D) time–frequency map. Then, the time–frequency map was processed
by an improved DBN model, aiming to identify the correlation between fault features and
fault types. In this way, the fault state of the bearing in the traction motor was diagnosed
and identified in a semi-supervised manner.

Figure 7 shows examples of railway equipment detection. Zhan et al. [75] proposed
a model that utilizes Faster R-CNN to detect the location of the target component and
whether it is defective from a complex background in a bogie image. In particular, they
improved the original faster R-CNN by using two layers of different sizes for extracting
defect regions and enabling region of interest (ROI) pooling. Experiments on 6499 test data
on four parts (cut-out cock handle, dust collector, fastening bolts, and bogie block key)
showed high detection accuracy with fast speed. Sun et al. [76] proposed a CNN model that
detects defects in the side frame key (SFK) and shaft bolt (SB) among bogie components.
The detection model accurately located the SFK and SB from the Trouble of Running Freight
Train Detection System (TFDS) image data and then cropped it to diagnose each defect.
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Figure 7. Some typical samples of the vehicle brake system of freight trains. (a–c) Normal images.
(d) Dirt collector damaged and cut-out cock handle closed (the handle of cut-out cock is not visible in
a normal image). (e) The absence of fastening bolt. (f) Bogie block key missing. Reproduced with
permission from IEEE [75].

Xiao et al. [77] proposed a hierarchical feature-based instance detection (HID) model to
detect lost or broken defects in bogie components. Their proposed model consisted of three
modules. The first module extracts hierarchical image features from train images through a
CNN model. The second module delivers the extracted feature map to the region proposal
network to generate a defect object area. The last module finally detects defects based on
the generated regions and the feature maps. The proposed instance-level detection was
evaluated on six train defects (lost pin, lost bolt, lost rivet, foreign object, broken chain, and
broken wire).

Ye et al. [78] proposed a multi-feature fusion network (MFF-net) to address the loss
of small-sized areas when reducing feature map size, which results in poor detection
performance. To this end, three modules were devised. First, the feature fusion method
(FFM) module incorporates deep and shallow features, such as spatial location and semantic
information. Second, the multi-branch dilated convolution module (MDCM), which the
Inception model inspires, simultaneously enhances feature extraction around objects of
different sizes. The MDCM utilizes convolution networks and multi-branch networks to
accommodate multi-scale features. Finally, the squeeze and excitation block (SE) module
compresses and readjusts the features to improve model representation. The proposed
model outperformed other conventional models in testing with the PASCAL VOC dataset.
In addition, it showed excellent stability, even for complex environmental noises.

6. Operation Safety
6.1. Railroad Trespassing

Figure 8 shows an example of railroad trespassing detection. Zaman et al. [79] pro-
posed a deep learning framework based on mask R-CNN that automatically detects railroad
trespassing in real time. The model was trained based on the COCO dataset and detects
trespassing events and classifies trespasser types (car, motorcycle, truck, pedestrian, etc.).
In addition, Gao et al. [80] developed a railroad trespassing detection method based on
one light detection and ranging (LiDAR) system and two different focal length cameras.
The cameras can provide high-resolution images and rich semantic information, while
their performance can be easily affected by lighting or weather conditions, and distance
estimation accuracy is limited. LiDAR can measure the distance to an object accurately and
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provides a 3D image to work. However, sparse point cloud data provide limited detection
capabilities in the case of small and dynamic obstacles. This work modifies an SSD network
to incorporate multi-sensor data.

Figure 8. Example of railroad trespassing detection. Reproduced with permission from IEEE [80].

6.2. Railway Detection

Quickly detecting the front rail area can help prevent train accidents, such as derail-
ments. However, railway detection in outdoor environments suffers from light-related
issues, such as shadows, reflections, tunnels, and low contrast to the ground. In addition,
railway detection becomes challenging in areas of overlapping multiple rails. Wang et
al. [81] proposed a CNN-based deep learning model trained by the BH-rail dataset that
contains railway images captured at various times. Wang et al. [82] proposed RailNet,
a railway detection deep learning-based algorithm that processes video from front-view
on-board cameras. RailNet consists of two networks: a network for feature extraction and
another for railway segmentation. The feature extraction network has a pyramid structure
to allow features to have top-to-bottom propagation. The railway segmentation network
combines a ResNet50 backbone network with a fully convolutional network to generate
the segmentation map.

6.3. Wind Risk

High-speed railways are susceptible to strong winds, which can pose a major threat
to train safety. In order to ensure train safety, it is necessary to measure the wind speed
of the preceding area in real time or to inform the train of the information in advance
by short-term prediction. However, measured and predicted wind speed alone are not
sufficient to explain wind conditions. For example, if the expected wind speed is slightly
lower than the strong wind threshold, it is difficult to estimate whether a substantial wind
accident can occur. Liu et al. [83] proposed a multiple attention layer based multi-instance
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learning (MAL-MIL) model to predict substantial wind risk alongside a high-speed railway
(HSR). Based on attention mechanisms and LSTM networks, the model extracted features
of the future wind status and identified the relationships between the current features and
strong wind incidents.

6.4. Train Running Safety

There are many studies on monitoring the current state of train operation and quanti-
fying train running safety [84–87]. However, these studies have mainly considered limited
situations that can be monitored relatively simply, such as train bridges and tunnel passes.
Lee et al. [88] presented a model that combines deep neural networks and recurrent neural
networks for efficient train-running safety prediction. Their proposed model processed
train vibration data, which was measured by an accelerometer, and predicted the wheel de-
rail coefficient, wheel rate of lad reduction, and wheel lateral pressure. Numerical analyses
were conducted using the transit simulation and the actual train-railway model, and these
analysis results revealed that the proposed method has better prediction performance.

6.5. Managing Accident Reports

Accident reports can help minimize risk factors to prevent future accidents. Accident
reports mostly contain diverse input field entries, such as fixed field entries, which include
the primary cause of accidents, or a narrative field, which is a short text description of
the accident. The narratives can provide more information than a fixed field entry, but
the terminologies used in the reports are not easy to understand by a non-expert reader.
Heidarysafa et al. [89] applied word embedding methods, such as Word2Vec and GloVe,
to narrative texts in train accident reports. As shown in Figure 9, the proposed method
classifies accident cause values for the primary cause field based on embedding vectors
about the narrative text. This NLP approach can help label accidents more accurately
and consistently.

Figure 9. Proposed network structure for managing accident records. Reproduced with permission
from IEEE [89].

7. Station Safety
7.1. Accident Prevention

A railway station is dynamic and complex due to the presence of many people,
including passengers and station staff, and trains that stop and depart quickly. Therefore, it
is necessary to prevent and deal with various safety accidents in stations. Alawad et al. [10]
proposed a model that quickly identifies three safety incidents (fall, slip, and trip). It used
diverse images of platforms, escalators, and tunnels captured by CCTV in the station. The
CNN-based deep learning model classified input images into two classes (fall and not fall),
and it achieved a high accuracy of 82.20% and an AUC value of 82.33%.

7.2. Air Quality Control

Air quality measurement sensors are installed in railway stations for air quality con-
trol. However, the measurement sensors often fail due to being in the wrong location for
measurement, expired sensor equipment, malfunctioning electrical equipment, etc. Since
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air quality data are collected from several sensors, it is difficult to identify normal data by
models having a linear or fixed structure because the variance of the data is significant,
and values that do not follow a normal distribution are included. Loy-Benitez et al. [90]
proposed a machine-learning-based soft sensor verification technique for detecting, diag-
nosing, identifying, and reconstructing abnormal measurements of multivariate air quality
data. Figure 10 presents a diagram of the air quality monitoring and supervisory control
process. Normal and abnormal values were extracted from the collected air quality data.
A memory-gated current network auto encoder (MG-RNN-AE) algorithm based on an
auto-encoder was developed to process air quality data. Furthermore, experimental results
showed that the proposed method has a sustainable balance between power consumption
and air quality levels, effectively performing air quality management within the station.

Figure 10. Diagram of the air quality monitoring and supervisory control process. Reproduced with
permission from IEEE [90].

7.3. Simulation and Scheduling

Transportation modeling is difficult because it is a dynamic and complex system with
interdependent factors, such as humans, equipment, and their temporal attributes. Recently,
a deep learning approach that can extract complex high-level representations through hi-
erarchical learning processes was applied to transportation modeling. Huang et al. [91]
proposed CLF-Net, a deep learning model that combines 3D-CNN, LSTM, and fully con-
nected neural networks to handle complex variables in dynamic systems. The proposed
model separately processes data with different attributes for better predictive performance,
uses spatio-temporal variables to capture space-time dependencies, and receives variables
to learn the potential effects of static factors.

With the development of cities, short-term traffic prediction has become the core of the
intelligence transportation system (ITS). Accurate short-term traffic forecasting can provide
technical support to monitor train passenger flow and warn of excessive traffic congestion.
Tang et al. [92] proposed a spatio-temporal long-term network (ST-LSTM) that captures
spatio-temporal features from railway traffic data. Their proposed model improved the
original LSTM structure, focusing on temporal rather than spatial features.

Predicting train delays can improve the quality of train operation, which helps to
estimate train operation and more accurately make reasonable operational decisions. A
train delay is affected by many factors, such as passenger flow, failure, extreme weather,
and dispatch strategies. Considering such temporal and spatial factors between multiple
trains and routes is challenging, which makes it difficult to accurately predict train delays.
Zhang et al. [93] focused on predicting the cumulative effects of train delays over a certain
period of time, represented by the total number of arrival delays in one station, rather than
predicting each specific delay time of a single train. A deep learning framework based on
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the spatio-temporal attention mechanism and spatio-temporal convolution was proposed.
Their model receives recent input of daily and weekly time series data and each component
includes a spatio-temporal attention mechanism and spatio-temporal convolution, which
can effectively capture spatio-temporal characteristics. Experiments on train operation data
in the railway passenger ticket system of China demonstrated that the proposed model
clearly outperforms existing performance criteria in train delay prediction.

8. Discussion and Conclusions

Our literature survey shows that artificial intelligence has been widely applied to
various railway safety issues, such as railway infrastructure, trains, operations, and sta-
tions. This review details both opportunities and challenges for artificial intelligence in
railway safety.

First of all, advances in data-driven artificial technologies can improve conventional
railway safety performance methods. In addition, many studies have shown the feasibility
of automating or supplementing conventional railway safety inspection procedures that
depend on visual analysis or domain knowledge of a human expert. The proposed model
structures in the discussed studies were determined based on the input data types. An
image or video is one of the most common data types in artificial intelligence applications
for railway safety. Many studies for defect detection (e.g., catenary and rail surface defects)
developed CNN-based deep learning models and train vibration is another popular data
source for railway safety. Accelerometers can easily measure train vibrations and LSTM-
based models have been used to extract unique patterns from accelerometer data.

On the other hand, there are also challenging issues in utilizing artificial intelligence
for railway safety that further studies should consider. We divided the addressed issues into
two categories: (1) performance optimization and (2) generalization. First, many studies
addressed the necessity of further performance improvement in artificial intelligence. For
example, model accuracy needs to be improved to reach practical requirements or the model
structure should be more optimized to be executed in real-time. Second, generalization of
the proposed methods was issued by many studies. Some studies used simulation data in
a lab setting, so in-situ validation needs to be performed for practical application.

More details regarding research issues in artificial intelligence for railway safety,
addressed by prior studies, are explained in subsequent subsections.

8.1. Performance Optimization
8.1.1. Dealing with a Lack of Data

Developing deep learning models for railway safety is challenged by practical limi-
tations of data volume or quality, such as diverse noises in railway environments and
insufficient labeled data. Therefore, it is necessary to deal with such data deficiencies
when developing artificial intelligence for railway safety. For example, Xiao et al. [77]
utilized a hierarchy of features for training a deep learning model with a small number
of labeled data. Ensemble methods that integrate different machine learning algorithms
can help increase the efficiency of model learning. For example, Xu et al. [72] consid-
ered an ensemble method that integrates a CNN-based model and RF for bearing fault
diagnosis. The ensemble approach can be efficient with a relatively small number of
data rather than the end-to-end deep learning approach. In addition, unsupervised
models can help deal with a small number of labeled data. Soares et al. [63] expected
to improve system performance by analyzing other clustering algorithms or adjusting
internal parameters.

8.1.2. Processing Time

Beyond model accuracy, processing time can be one of the essential requirements in
artificial intelligence for railway safety. In particular, real-time processing can be required
for high-speed train applications. For example, Wang et al. [81] suggested further studies
to develop a real-time system that recognizes moving obstacles by combining railway area
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recognition and obstacle detection steps. In addition, Lee et al. [88] expected that their
system could be utilized for real-time train control to reduce the risk of train derailment.

8.1.3. New Data Source

Most prior studies were conducted with a limited data source. For example, Wang et
al. [40] emphasized the necessity of improvement of data quality. Their data were collected
in limited circumstances, such as fixing the camera angle when taking the image data. In
addition, Jiang et al. [8] argued that experiments in various railway conditions, such as
the angle or length of the rail, should be conducted to develop a fault detection system.
Furthermore, Ma et al. [65], who developed a method for rail defect inspection based on
vibration signals, commented that considering various train types and driving speeds can
help improve performance.

While most studies about artificial intelligence for railway safety have utilized image
or vibration data, some studies have explored other data sources to improve model per-
formance. For example, Wolf et al. [94] proposed using LiDAR sensor data to understand
situations and components in 3D railway images. Suwansin and Phasukkit [9] utilized
acoustic emission signals from rails for rolling contact fatigue. Furthermore, artificial
intelligence could be improved and optimized by harnessing various situational features
in the railway domain. Krummenacher et al. [68] developed an efficient model for detect-
ing machine-learning-based train wheel defects by additionally considering the exterior
characteristics of the train.

8.2. Generalization
8.2.1. Tasks

Many prior studies have proposed a deep learning framework for defect detection in
railways. However, the proposed frameworks were developed and evaluated with certain
types of defects and there is much room for improvement to satisfy practical requirements.
For example, Chandran et al. [62] focused on one fastener type and addressed the need to
study the feasibility of the proposed method for other types. Similarly, Akhila et al. [4] also
noted that the proposed framework needs to be improved with other examples and under
different contexts. Wu et al. [70] conducted a study to detect defects in truck joints and
accessories, further noting that a partial defect detection study should also be conducted to
eliminate potential risk factors for train operation.

8.2.2. Validation with In-Situ Data

Because in-situ data acquisition is challenging in railways, many studies have been
conducted with artificial data acquired in lab experiments. Even though the models
trained by lab-setting datasets can ensure feasibility of the proposed methods and provide
initial insights, these studies have addressed the need for further research with actual
train-running data for validation. Shebani and Iwinicki [52] performed laboratory testing
under limited conditions and noted that validation of the developed method in the field
is necessary. Similarly, Kim et al. [5] addressed a gap between an actual train situation
and simulation data. Shi et al. [69] developed a model to monitor rail-track geometry
defects but reported that the model performance decreased in harsher outdoor situations.
Unexpected noises can also cause such decreases in field performance [60]. Additionally,
actual data can contain more diverse and complex conditions that are rarely covered by lab
experiments. Ham et al. [67] detected a train entrance door failure using data generated by
manipulating doors with several abnormal conditions, so their model should be further
studied using actual train door failure data.
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Appendix A

Table A1. Studies of AI applications for railway safety.

Ref Safety Type Category Target Data Type Source Training Data Test Data Method Performance

[37] Railway Infra Catenary Insulator Image Custom 12,000 6000 Faster R-CNN, CNN,
AE (Auto-Encoder) 0.95 (F1-score)

[38] Railway Infra Catenary Dropper Image PASCAL VOC 1,
MSCOCO 2 1172 293

Faster R-CNN, FPN
(Feature Pyramid
Network), ResNet

0.87 (mAP@0.5),
0.84 (mAP@0.7)

[39] Railway Infra Catenary Clevis Image PASCAL VOC 1 4000 (5075 clevis) 2000 (2563 clevis) Faster R-CNN, CNN 0.76–0.97
(Accuracy)

[40] Railway Infra Catenary Split pin Image Custom 8256
(66,259 split pins)

2670
(21,472 split pins)

YOLOv3,
DeepLab v3+ 0.99 (Accuracy)

[44] Railway Infra Catenary Current-carrying ring Image Custom 3050 1500 Attention, RetinaNet 0.70 (mAP@0.5)

[45] Railway Infra Surface
Scouring, Breakage,

Corrugation,
Headcheck

Video Custom Unknown Unknown PCA, SVD, RF
(Random Forest)

0.85–0.98
(Accuracy)

[47] Railway Infra Surface Defect Image PASCAL VOC 1 184 11 YOLOv3, ResNet 0.97–1 (Detection Rate),
0.15 s (Time Cost)

[48] Railway Infra Surface Defect Image Custom 142,416 9494 MobileNetV2,
YOLOv3 0.87 (mAP)

[5] Railway Infra Surface Defect Image Custom 1905 211 CNN, VGG19 3 0.92–0.92 (F1-score)

[50] Railway Infra Surface Defect Image Custom 120 7 SegNet 1 (Detection Rate), 0.99
(Accuracy)

[46] Railway Infra Surface Defect Image Custom 2916 324 CNN 0.90–0.91 (F1-score),
1.00–2.03 s (time cost)

[49] Railway Infra Surface Defect Image Custom 5793 1517 Inception3, CNN 0.92 (Recall), 0.92
(Precision)

[8] Railway Infra Surface Rolling Contact
Fatigue

Signal (Laser
ultrasonic) Custom Unknown 256 SVM 0.99 (Accuracy)

[51] Railway Infra Surface Squat Signal (Acceleration) Custom 819 204
CVAE (Convolutional

Variational Auto
Encoder)

0.93–0.97 (Accuracy)

[9] Railway Infra Surface Crack Signal (Acoustic
emission) Custom 360 90 DNN 0.77 (Accuracy)

[52] Railway Infra Surface Wear
Measurements (Load,

Yaw angle, Speed,
Wheel, Rail profile)

Custom 182 39 ANN 0.81–0.93 (Accuracy)

[53] Railway Infra Surface Defect Image Custom 540 60 CNN, ResNet 0.93–0.97 (F-measure)

[54] Railway Infra Surface Defect Image Custom 146 49 1D-CNN, LSTM
0.93–0.94 (Recall),

0.84–0.92 (Precision),
0.88–0.93 (F1-Score)

[56] Railway Infra Surface Dust, Oil Signal (3D Laser
camera) Custom 7500 2500 CNN 0.98 (Accuracy)

[57] Railway Infra Surface Degradation Signal (Acceleration) Melbourne Tram
Network Data Unknown Unknown SVM, RF, ANN 0.71–0.78 (Adjusted

R2), 0.80–0.91 (RMSE)

[58] Railway Infra Components Spike, Clip, Tie Plate Image Custom 4 800 200 YOLACT, Res2Net,
ResNet 0.60–0.64 (mAP)

[59] Railway Infra Components Fastener, Crosstie,
Ballast, Gage Image Custom 650,518 162,629 CNN 0.95 (Accuracy)
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Ref Safety Type Category Target Data Type Source Training Data Test Data Method Performance

[60] Railway Infra Components Settlement, Dipped
joint Signal (Acceleration) Custom 1155 495 DNN, CNN, RNN 0.84–0.99 (Accuracy)

[7] Railway Infra Components Joint, Crossing,
Turnout Signal (Acceleration) Custom 23 41 CNN, ResNet 0.99 (Accuracy)

[61] Railway Infra Components Joint Signal (Acceleration) Custom 129 295 CNN, ResNet 0.74–0.91 (F1-score)

[62] Railway Infra Components Clamp Signal (Eddy current) Custom 2076 890 SVM, k-NN, RF 0.97 (Precision), 0.96
(Recall)

[63] Railway Infra Components Rail Switch Machine Signal (Electric
current) Custom Unknown 615 K-means clustering 0.86 (Silhouette score)

[64] Railway Infra Components Rail Slab Signal (Vibration) Custom 1774 760 RF 0.96 (Accuracy)

[65] Railway Infra Geometry Quality Signal (Vibration)
Custom

(Comprehensive
Inspection Train)

5,400,000 600,000 CNN, LSTM 0.005–0.006 (MAE),
0.007–0.008 (RMSE)

[66] Railway Infra Geometry Irregularity Signal (Acceleration)

Custom
(Beijing–Shanghai,

Beijing–Guangzhou
and

Nanjing–Hangzhou
HSRs)

200 km 100 km Attention, CNN, GRU 0.25–0.51 (MAE),
0.33–0.66 (RMSE)

[67] Train Door Defect Signal (Current) Custom 440 186 CNN, k-NN 0.98–0.99 (Accuracy)
[68] Train Wheel Defect Signal (Vertical force) Custom 7860 2565 DNN, SVM 0.81–0.89 (Accuracy)

[69] Train Wheel Displacement Image Custom 5 2301 767 CNN, YOLOv3 6 0.35 (Miss Detection
Rate)

[70] Train Suspension

Coil Spring, Air
Spring, Vertical
Damper, Lateral

Damper, Yaw Damper

Signal (Vibration)
Case Western Reserve

University (CWRU)
Bearing Data Center

59,520 7440 Bayesian DL 0.77–0.99 (AUROC)

[71] Train Suspension

Anti-yaw Shock
Absorber, Air Spring,

Transverse Shock
Absorber

Signal (Vibration) Custom 14000 208 DBN (Deep Belief
Network) 0.23–0.54 (Accuracy)

[72] Train Bearing Defect Signal (Vibration)
Case Western Reserve

University (CWRU)
Bearing Data Center 7

2000 2000 CNN, RF (Random
Forest), LeNet-5 0.97 (Accuracy)

[73] Train Bearing Defect Signal (Acoustic
emission) Custom 270 180 DNN 0.96–1 (Accuracy)

[74] Train Bearing Defect Signal (Vibration) Custom 640 160 DBN (Deep Belief
Network) 0.95 (Accuracy)

[75] Train Other Components

Cut-out cock handle,
Dust collector,

Fastening bolt, Bogie
block key

Image PASCAL VOC 1 8794 6493 Faster R-CNN, CNN 0.98–1 (Correct
Detection Rate)

[76] Train Other Components Side Frame Key, Shaft
Bolt Image PASCAL VOC 1 2321 354 CNN 0.93–1 (Accuracy)

[77] Train Other Components Bolt, Pin, Rivet, Chain,
Wire Image Custom 307 72 CNN, ResNet

0.90 (Recall), 0.86
(Precision), 0.88

(F1-score)
[78] Train Other Components Bolt, Retaining key Image Custom 3614 903 SSD, CNN 0.89(mAP)
[79] Operation Railroad trespassing Trespasser Video Custom Unknown 69 h Mask R-CNN Unknown



Appl. Sci. 2022, 12, 10572 24 of 29

Table A1. Cont.

Ref Safety Type Category Target Data Type Source Training Data Test Data Method Performance

[80] Operation Railroad Trespassing Obstacle Image (Camera,
LiDAR) Custom Unknown Unknown SSD 0.05–0.21 (Error Rate)

[81] Operation Railway Detection Railway area Image
Custom (Beijing metro

Yanfang line and
Shanghai metro line 6)

4494 1123 CNN 0.99 (MIoU), 0.99
(Mean Pixel Accuracy)

[82] Operation Railway Detection Railway area Image Custom 2500 300 ResNet50 0.92 (Accuracy), 0.90
(mIoU), 0.87 (F1-score)

[83] Operation Wind Risk Wind Speed Wind Speed
Custom

(Beijing-Shanghai
HSR)

23,792 9517 Attention, LSTM 0.82 (AUC), 0.95
(F1-score)

[88] Operation Train Running Safety

Wheel Derail
Coefficient, Wheel

Rate of Lad Reduction,
Wheel Lateral Pressure

Signal (Vibration) Custom 9600 2400 DNN, LSTM 0.42 (RMSE)

[89] Operation Managing Accident
Reports Accident Narrative Accident Narrative

Documents

Federal Railroad
Administration (FRA)

reports 8

None (Pre-trained
Model) 40,164 CNN, LSTM, GRU 9 0.57–0.65 (F1-score)

[10] Station Accident Prevention Fall, Slip, Trip Video Custom & Le2i Dataset 10,459 1307 CNN 0.72–0.82 (Accuracy)

[90] Station Air Quality Control Air Quality

NO, NO2, NOx, PM10,
PM2.5, CO, and CO2,

Temperature, and
Humidity

Custom 504 168
MG-RNN

(Memory-Gated RNN),
AE

1.74–15.01 (RMSE)

[91] Station Simulation and
Scheduling Dynamic System Train Operation

Record Custom 171,990 57,330 3D-CNN, LSTM 10 0.63–0.87 (RMSE),
0.44–0.51 (MAE)

[92] Station Simulation and
Scheduling Transportation Flow Card Records

Custom (Chongqing
City Transportation

Development &
Investment Group)

4,800,000 1,200,000 LSTM 5.72 (RMSE), 4.41
(MAE)

[93] Station Simulation and
Scheduling Delay Train Operation

Record

China Railway
Passenger Ticket

System
Unknown Unknown Attention, CNN 0.16 (MAE), 0.45

(RMSE)

1 http://host.robots.ox.ac.uk/pascal/VOC/ (accessed on 29 September 2022), 2 https://cocodataset.org/#download (accessed on 29 September 2022), 3 https://github.com/lottopotato/
railroad_surface_defect_segmentation.git (accessed on 29 September 2022), 4 https://github.com/jonguo111/Rail_components_image_data.git (accessed on 29 September 2022),
5 http://doi.org/10.14279/depositonce-12223 (accessed on 29 September 2022), 6 https://github.com/quickhdsdc/Point-Tracking-for-Displacement-Measurement-in-Railway-
Applications.git (accessed on 29 September 2022), 7 https://engineering.case.edu/bearingdatacenter/download-data-file (accessed on 29 September 2022), 8 https://railroads.dot.gov/
safety-data/forms-guides-publications/dataset-downloads (accessed on 29 September 2022), 9 https://github.com/Heidarysafa/train_accidents.git (accessed on 29 September 2022),
10 https://github.com/PingH129/A-deep-learning-approach-for-multi-attribute-data_-A-study-of-train-delay-prediction-in-railway-syst.git (accessed on 29 September 2022).
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https://engineering.case.edu/bearingdatacenter/download-data-file
https://railroads.dot.gov/safety-data/forms-guides-publications/dataset-downloads
https://railroads.dot.gov/safety-data/forms-guides-publications/dataset-downloads
https://github.com/Heidarysafa/train_accidents.git
https://github.com/PingH129/A-deep-learning-approach-for-multi-attribute-data_-A-study-of-train-delay-prediction-in-railway-syst.git


Appl. Sci. 2022, 12, 10572 25 of 29

Table A2. Performance metrics.

Category Name Formula Description

Classification

Accuracy Accuracy =
Tp+Tn

Tp+Tn+Fp+Fn
Fraction of the total samples that were correctly classified

Recall Recall = Tp
Tp+Fn

Fraction of the number of true positives (Tp) over the number of true positives plus the number of false negatives (Fn)

Precision Precision =
Tp

Tp+Fp
Fraction of the number of true positives (Tp) over the number of true positives plus the number of false positives (Fp)

mAP (mean Average Precision) mAP = 1
n ∑n

i=1 APi
Average Precision (AP): Area under the precision-recall curve above

mean Average Precision(mAP): Mean of all the AP
F1-score F1 = 2× Precision×Recall

Precision+Recall Harmonic mean of precision and recall
AUROC (Area under ROC) AUROC =

∫ 1
0 ROC(x)dx The entire two-dimensional area underneath the ROC curve from (0,0) to (1,1)

Silhouette score S = (nearest−intra)
max(intra,nearest)

intra: Mean distance between the observation and all other data points in the same cluster
nearest: Mean distance between the observation and all other data points of the next nearest cluster

Regression

Adjusted R2 Adjusted R2 = 1− (1−R2)(N−1)
N−p−1

Percentage of variance in the target field that is explained by the input.
R2 = Sample R-squared
N = Total Sample Size

p = Number of independent variable

RMSE (Root Mean Squared Error) RMSE =
√

MSE MSE: Difference between the predicted and observed values in model
RMSE: Square root of the MSE

MAE (Mean Absolute Error) MAE = 1
n ∑n

i=1 |xi − x| Mean of absolute difference between model prediction and target value

Segmentation
mIoU (mean Intersection over Union) mIoU =

∑n
i=1 IoUn

n
Average between the IoU(Intersection over Union) of the segmented objects over all the images of the test dataset

IoU = Area o f Overlap
Area o f Union

mPA (mean Pixel Accuracy) mPA = 1
k ∑k

j=1
njj
tj

njj : Total number of pixels both classified and labeled as class j
tj : Total number of pixels labeled as class j
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