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Abstract: The daily life-log routines of elderly individuals are susceptible to numerous complications
in their physical healthcare patterns. Some of these complications can cause injuries, followed by
extensive and expensive recovery stages. It is important to identify physical healthcare patterns
that can describe and convey the exact state of an individual’s physical health while they perform
their daily life activities. In this paper, we propose a novel Sustainable Physical Healthcare Pattern
Recognition (SPHR) approach using a hybrid features model that is capable of distinguishing multiple
physical activities based on a multiple wearable sensors system. Initially, we acquired raw data
from well-known datasets, i.e., mobile health and human gait databases comprised of multiple
human activities. The proposed strategy includes data pre-processing, hybrid feature detection,
and feature-to-feature fusion and reduction, followed by codebook generation and classification,
which can recognize sustainable physical healthcare patterns. Feature-to-feature fusion unites the
cues from all of the sensors, and Gaussian mixture models are used for the codebook generation.
For the classification, we recommend deep belief networks with restricted Boltzmann machines
for five hidden layers. Finally, the results are compared with state-of-the-art techniques in order
to demonstrate significant improvements in accuracy for physical healthcare pattern recognition.
The experiments show that the proposed architecture attained improved accuracy rates for both
datasets, and that it represents a significant sustainable physical healthcare pattern recognition
(SPHR) approach. The anticipated system has potential for use in human–machine interaction
domains such as continuous movement recognition, pattern-based surveillance, mobility assistance,
and robot control systems.

Keywords: deep belief networks; hybrid-features; restricted Boltzmann machines; sustainable physi-
cal healthcare pattern recognition; wearable sensors system

1. Introduction

The global elderly population is increasing every day, which requires an indepen-
dent and aging-in-place lifestyle [1]. Research on Sustainable Physical Healthcare Pattern
Recognition (SPHR) has a long tradition, because physical activity recognition can deliver
great benefits to society. However, complex SPHR remains a challenging and active re-
search area. A commonly-used strategy is to acquire, analyze, and classify the data for
physical activity recognition [2]. It has a wide range of applications, including video surveil-
lance systems, healthcare monitoring, uncertain event detection, interactive 3D games,
and smart homes [3]. In order to examine the effectiveness of SPHR for indoor/outdoor
environments, the major systems are categorized into two types of data retrieval devices,
namely, vision-based and wearable-sensors–based [4]. In vision-based systems, SPHR is
relatively prominent, and has been studied extensively, providing acceptable recognition
rates. It is challenging to accomplish vision-based setups in real-life environments due
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to elevated acquisition costs, privacy issues, and image collection challenges. Wearable
systems can exploit common portable devices with embedded sensors due to their low
cost, portability, convenience, and capacity to log the real-time physical locomotion of
users. Therefore, due to such valuable features and affordances, our research work is fo-
cused on wearable hybrid features for sustainable physical healthcare Pattern Recognition
(HF-SPHR) technology.

Meanwhile, several studies involving wearable devices have been proposed by re-
searchers. These can be categorized by two main types of learning algorithm, namely,
classical machine learning (C-ML) and deep learning (DL). In the case of C-ML, the al-
gorithms almost always require structured data, and are designed to ‘learn’ to act by
understanding labeled data. Every time the result is incorrect, there is a need to ‘teach’
them again. On the other hand, DL methods help in handling the imperfections of C-ML
techniques, and do not require human interventions, as the multi-layers in artificial neural
networks (ANN) store data in a hierarchy of different models. This hierarchy consists
of three types of layers which support the networks to learn from their own mistakes,
specifically, input, output, and hidden layers.

Specific to DL concepts, recent theoretical and practical developments have revealed
that deep learning has embraced visible changes in the modeling of high-level perceptions
from convoluted data in many research areas [5], e.g., computer vision, natural language
processing, and speech processing. Various deep learning methods have become available
for SPHR in recent research, including deep neural networks (DNN), recurrent neural
networks (RNN), and modular neural networks (MNN). DNN include auto-encoders,
convolution neural networks (CNN), restricted Boltzmann machines (RBM), and long
short-term memory (LSTM) [6]. LSTM requires longer training periods due to a variety
of parameters being updated during the training process [7]. Similarly, CNN is able
to learn important features [8], but—due to its single-parameter setting—the limited
flexibility of the model has been observed. Meanwhile, RBMs are fully-connected, bipartite,
and undirected graphs that have both a visible and a hidden layer, and are examples
of artificial neural networks [9]. If stacked together, they create a deep belief network
(DBN) [10]. DBNs are probabilistic generative neural networks that use the connection
weights of cross-layered RBM architecture. RBMs detect the features of data between
different classes according to the connection weights across two layers, and not within each
layer. When trained, a DBN can learn to reconstruct its input, and the layers act as feature
detectors. After the unsupervised learning, a DBN can be further trained, with supervision,
to perform classification. Therefore, our model encircles the properties of DBN and RBMs.

There are two well-known ways to investigate SPHR, namely, vision-based SPHR
and wearable-sensors–based SPHR, which are applied in studies of both C-ML and DL.
Vision-based SPHR is dependent on visual sensing technologies, namely, CCTV and dig-
ital cameras. Sequences of images and video clips are analyzed for features, modelling,
segmentations, classification, and tracking [11]. Jalal et al. [12] proposed a depth vision-
based model for activity recognition using hidden Markov models (HMM) to monitor
the activities of elderly individuals. Multiple features are fused together to make robust
multi-features, which are then processed, trained, and tested with respect to their classes.
Espinosa et al. [13] designed a fall-detection system using 2D CNN and multiple cameras.
They presented a method with fixed time windows and an optical flow method for feature
extraction for an UP-Fall dataset in order to test the proposed approach. In [14], the authors
proposed human pose estimation and event classification using a pseudo-2D stick model.
They used energy, sine, distinct body parts movements, and 3D Cartesian view features to
extract full-body human silhouettes. Yang and Tian [15] described a low-level polynormal
assembled from a local neighboring hypersurface. A methodology including hybrid feature
descriptors, GMM, entropy optimization, and maximum entropy Markov model (MEMM)-
based classification was developed by Jalal et al. in [16]. Mahmood et al. [17] presented a
model for human interaction recognition called WHITE STAG. Angular-geometric sequen-
tial methods based on space, time, and shape have been incorporated to extract features.



Sustainability 2021, 13, 1699 3 of 28

In [18], Jalal et al. represented a technique using spatiotemporal multi-fused features to
classify segmented human activity. The proposed study used vector quantization for code
vector generation, and HMM for SPHR.

On the other hand, wearable sensors can be attached to the human body in order
to capture human motion data constantly. In [19], Irvine et al. focused on data-driven
approaches and proposed a new ensemble of neural networks. The authors generated four
base models and integrated them using a support function fusion method to compute the
output decision score for each base classifier. In a study of wearable sensors by Xi et al. [20],
surface electromyography (sEMG) wearable sensors are attached on the limbs to monitor
the performance of daily activities for frail individuals. They proposed time-, frequency-
and entropy-based feature abstraction. Gaussian Kernel Support Vector Machines (GK-
SVM) and Fuzzy Min-Max Neural Networks (FMMNN) are used for activity classification.
In [21], Wijekoon et al. described a knowledge-light method, as opposed to knowledge
intensive methods. They proposed the use of a few seconds of data to help personalize
SPHR models, and to further transfer recognition knowledge to identify unknown activities.
In [22], Quaid et al. introduced a human pattern behavior recognition method using
inertial sensors. They proposed extracting statistical, cepstral, temporal, and spectral
features, and then reweighting these features to adapt varying signal patterns. Finally,
the classification is performed using biological operations of crossover and mutation.
Tahir et al. [23] presented a wearable inertial sensor-based activity recognition system using
filters and multifused features. Feature optimization has been accomplished using adaptive
moment estimation (Adam) and AdaDelta, which is further patterned using MEMM.
Debache et al. The authors of [24] proposed a low-complexity model that is comparable
to heavily-featured models for SPHR. They used mobile health (mHealth) and daily Life
Activity (DaLiAc) datasets to compare their model’s performance using logistic regression
(LR), gradient boosting (GB), k-nearest-neighbors (KNN), support vector machines (SVM),
and CNN. The authors of [25] proposed a novel method based on the Human Gait Database
(HuGaDB) dataset. Their contributions include the identification of direction and sensor
position, a best feature selection method, and achieving the highest recognition accuracy for
HuGaDB. Furthermore, the model has four different classifiers, namely, Random Forest [26]
(RF), SVM, KNN, and Decision Tree (DT). Jalal et al. [27] presented a genetic-based classifier
approach for human activity recognition. They proposed a reweighted genetic algorithm
for SPHR using inertial data.

Considering our focal schema, we know that SPHR is eventually associated to the
real-time monitoring of activities. Additionally, it contains tradeoffs between computa-
tional time and activity pattern recognition accuracies. In spite of all of these advanced
research methodologies being proposed, there is still a deficiency in the classification of
human activities using state-of-the-art techniques. Thus, our research is dedicated to the
development of an efficient method that maintains high accuracy rates along with low
computational complexities.

Here, we propose an innovative methodology for SPHR using wearable sensors,
including an inertial measurement unit (IMU), electrocardiography (ECG), and electromyo-
graphy (EMG). Our model was able to recognize diverse human activities with better
performance measures. Moreover, the proposed methodology consists of de-noising sig-
nals, pre-processing, and hybrid feature abstraction. For hybrid features, this research
proposed the following four types of features:

• Statistical nonparametric operator; i.e., a 1D local binary pattern (1D-LBP) generates a
code [28] that can describe larger data in its compressed form using the sample and
its neighbors.

• Entropy-based features: these features are used to find the optimal characteristics of a
signal [29], and can easily differentiate between noisy and plain signals.

• Wavelet transform features: these features provide an inherent multiresolution ap-
proach and wavelet transform properties [30,31] during the signal analysis.
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• Mel-frequency cepstral coefficient (MFCC) features: a powerful algorithm to process
signals based on Mel-frequency cepstrum coefficients, which can detect the difference
between a signal’s variations [32,33] for multiple activities.

After extracting the hybrid features, the proposed model performs feature-to-feature
fusion, feature selection, a codebook using Gaussian models, and classification for state-
of-the-art datasets. Through experimental results, we showed that the proposed model
outperformed other comparative state-of-the-art approaches. The major contributions of
this model are as follows:

1. We developed hybrid approaches for feature abstraction, including statistical non-
parametric, entropy-based, wavelet transform, and Mel-cepstral features.

2. We designed a multi-layer sequential forward selection (MLSFS) to differentiate and
select the optimal features for SPHR.

3. A combination of a Gaussian mixture model (GMM) with Gaussian mixture regression
(GMR) was introduced to generate the codebook and optimum interpretation of the
features.

4. We used two publicly-available benchmark datasets for our model, and fully validated
it against other state-of-the-art methods, including CNN, AdaBoost, and ANN-based
algorithms.

The rest of the paper is structured as follows. Section 2 presents the details of the
proposed model. Section 3 reports on the investigation and dataset details, along with the
results. Section 4 discusses the methodology. Section 5 reports related discussions in the
field of SPHR. Section 5 concludes the paper and provides some forthcoming directions.

2. Materials and Methods

The proposed system acquires raw signals from wearable sensors, specifically, an iner-
tial measurement unit, an electrocardiogram, and an electromyogram for biosignal-based
datasets. Initially, a pre-processing phase is used to remove any noise via three different
filters, namely, median, notch, and moving average filters. After that, we apply a sliding
window algorithm to find hybrid features of different types [34]. In the perspective of mul-
tisensory systems, these hybrid features are then fused [35] through a feature-in-feature-out
technique [36,37] to improve, refine, and obtain new merged features. The dimensions of
these fused data features are reduced using our novel modified multi-layer sequential for-
ward selection algorithm. Next, in order to symbolize these reduced features, we propose a
GMM along with GMR algorithms to generate a codebook. Finally, the codebook is then
fed to the deep belief networks along with multiple layers of RBMs. An overview of the
proposed system is shown in the Figure 1.

Figure 1. System architecture of the proposed HF-SPHR model.
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2.1. Data Acquisition and Pre-Processing

Feature abstraction is deeply reliant on the pre-processing phase; hence, it is impor-
tant to reduce all of the noise from the acquired data. The data from the sensors [38]—
including IMU, ECG, and EMG—are extremely susceptible to interference and random
noise, which can lead to signal variations, ultimately affecting the features. Therefore,
we have applied three different filter types—namely, a median filter for IMU, a notch filter
for ECG, and a moving average filter for EMG signals—to eliminate the associated noise.
Figure 2 shows the filtering effects on selected lead for ECG, and the axis for IMU.

Figure 2. Original and filtered sensor signals; (a) notch filtered data for ECG, (b) median filtered data
for IMU, and (c) moving average filtered data for EMG.

2.2. Data Segmentation

In the segmentation step, the signal samples are partitioned into segments of data
in order to capture the dynamic motion. Each window is an approximation of the signal,
which is provided for the signal analytics. We can segment a signal in different ways,
as activity-defined windows, event-defined windows and sliding windows [39,40]. Af-
ter the filtering in the pre-processing step, we segmented the filtered data using widows of
5 s duration for each of the signals’ axes and ECG/EMG leads, as defined in Algorithm 1,
in order to maximize the recognition accuracy.
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Algorithm 1 Signals Overlapping Segmentation
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Sliding windows are used to partition the bio-signal into fixed-sized time windows
that can be either non-overlapping or overlapping. Overlapping sliding windows have a
generalized positive impact on the performance of the proposed HF-SPHR system. Figure 3
demonstrates all of the windows generated for the x-axis of the IMU when it is placed on
the chest, and for lead 1 of the ECG.

Figure 3. Signal segmentation showing, (a) the windows for the IMU placed on the chest, and (b) the
windows for lead 1 of the ECG.
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2.3. IMU-Based Hybrid Feature Extraction

An inertial measurement unit is a mechanized device that is used to monitor and
provide data on object-specific force, angular degree [41] and positioning values. It uses
a combination of accelerometers, gyroscopes and magnetometers, which consist of x, y,
and z axes. After the pre-processing phase is completed, the second phase is to generate
hybrid features from each sensor’s processed signal separately. The four major domains of
hybrid features employed are statistical non-parametric, entropy-based, wavelet transform,
and Mel-frequency cepstral coefficient features. This paper proposes three features for
IMU signals: 1D-LBP, state-space correlation entropy (SSCE), and dispersion entropy
(DE), which is explained in the sections below. Algorithm 2 (1 SSCE and 2 Dispersion
Entropy [42–44]) shows the pseudocode for the overall IMU feature extraction.

Algorithm 2 IMU Feature Abstraction
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2.3.1. 1D Local Binary Pattern

1D-LBP is a non-parametric statistical feature extraction [45] technique. It focuses
on the vibration of the signal, and captures the descriptive information representing the
relative changes in the IMU signal amplitudes. This feature requires substantially less
computational power, and has strong discriminative capabilities.

1D− LBP(x) = ∑n
k=0 T (y)2i where, T =

{
0, y < threshold
1, y ≥ threshold

(1)

Here in Equation (1), x is the signal window for 1D-LBP, y is the threshold, T represents
selected binary values, and n is the number of total values in each selected window. Figure 4
denotes 1D-LBP features for the mHealth dataset. Each IMU axis is represented on the
x-axis, whereas the y-axis represents the number of windows. Each box in the figure
visually represents the 1D-LBP data for every IMU axis. The central red mark in the box
indicates the median, while the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively.
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Figure 4. Box plot of the 1D-LBP feature for all of the IMU sensors’ axes in the mHealth dataset.

2.3.2. State–Space Correlation Entropy

The data related to the time series can be divided into embedded vectors. The state
space covariance matrix captures the correlations of the embedded vectors in a time
series. The upper triangular and lower triangular elements of the matrix are identical.
The diagonal elements of the matrix capture the autocorrelation of the embedded vectors
which are calculated from the probability of the correlations between the embedded vectors
(See Figure 5) using Equation (2). The dimension of embedded vector is another important
parameter for SSCE, for which, when small, the number of embedded vectors is high.

SSCE(x) = −∑n
k=1 Pklog2Pk (2)

where Pk is the probability evaluation and n is the number of bins.

Figure 5. State-Space Correlation Entropy for each of the given 10 dimensions and windows.

2.3.3. Dispersion Entropy

Dispersion Entropy is used to quantify the regularity of a time series and detect noise
bandwidth, simultaneous frequencies, and amplitude changes. As a measure of uncertainty,
DE tackles the limitations of permutation entropy and Shannon entropy, including the
discrimination of different groups of similar traits with lesser computation time. Dispersion
entropy includes four main steps, and they are formulated according to Equation (3);

DE(x, m, c, d) = −∑cm

π=1 p
(
πv0v1 ...vm−1

)
. ln

(
p
(
πv0v1 ...vm−1

))
. (3)

p
(
πv0v1 ...vm−1

)
=

Number
{

i
∣∣ i ≤ N − (m− 1)d, zm,c

i has type πv0v1 ...vm−1

}
N − (m− 1)d

. (4)

where, x is the signal, m is the embedding dimension, c is the number of classes, d is the
time domain, and p

(
πv0v1 ...vm−1

)
is the number of dispersion patterns, computed as in

Equation (4). Meanwhile, zm,c
i is the embedding vector, and d is the time delay, as shown in

Figure 6.
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2.4. ECG-Based Hybrid Feature Extraction

ECG-based features are classified into five types that detect possible heart problems
and other abnormalities [46] related to SPHR. These ECG feature extractions are explained
in Algorithm 3 (1 MFCC [47–49]), which is provided in the section.

Algorithm 3 ECG Feature Abstraction
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alpha = coef., R = freq. range, M = no. of filter bank ch., C = no. of cepstral coef., and L = cepstral lifter*/ 
/*For each lead of ECG segmented signal*/ 
for i = 1 to size(Y2)  
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            /*Wavelet packet entropy feature extraction*/ 
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‘MinPeakWidth = 0.4’, ‘MaxPeakWidth = 1.7’); 
            for k = 1 to size(peaks) 
               if peaks(k+1) – peaks(k) >= 10 
                    z3 = z3 + peaks(k); // P-Waves 
                    z4 = z4 + peaks(k+1); // T-Waves 
                    z5 = z5 + peaks(k+2); // R-Wave 
               end 
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(DCs) and approximation coefficients (ACs)—using a wavelet decomposition tree [50] until
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the decomposition level is reached. Mathematically, this procedure of decomposition can
be defined as in Equation (5):

dx =


d0,0(t) = x(t),

di,2j−1(t) =
√

2 ∑k h(k)di−1,j(2t− k),
di,2j(t) =

√
2 ∑k g(k)di−1,j(2t− k),

(5)

where h(k) and g(k) are the two filters that are used to obtain ACs/DCs, and di,j represents
the reconstruction signals at the ith level and jth node. A decomposition wavelet tree
(DWT) is shown using four-level decomposition into ACs and DCs in Figure 7a, whereas a
two-level wavelet packet decomposition into AC and DC is presented in Figure 7b.

Figure 7. Wavelet Transform feature: (a) Wavelet Packet Decomposition Tree; (b) a Wavelet Packet decomposition Tree for
an ECG with two-level wavelet packet decomposition.

2.4.2. P-Wave and T-Wave Detection

P- and T-wave detection features are used to extract ECG signals using a Q-wave,
R-wave, and S-wave (QRS) complex and a Hamilton segmenter algorithm. According to
the Hamilton segmenter algorithm, we need to apply a few rules to every cycle, which is
called a QRS complex, in an ECG signal. Equations (6) and (7) explain the rules adopted
from the algorithm for P-wave θP and T-wave θT detection:

θP = x,
{

h(x) > 0.04
ω(x) > 0.3 and ω(x) < 1.8

(6)

θT = x,
{

h(x) > 0
ω(x) > 0.3 and ω(x) < 1.3

(7)

where h(x) represents the height of the peak detected, and ω(x) represents the width of the
peak. By using these formulas, we have developed an algorithm, which is presented in
Algorithm 3. The samples of the finding of P and T waves from two different activities,
like jogging and sitting, are given below in Figure 8. After discovering the QRS complex
for each ECG cycle in Figure 8a, the red squares denote the T wave detection, whereas
the green triangles represent the P-wave detection for the jogging activity. In Figure 8b,
the black triangles symbolize P waves, and the green squares represent T-wave detection
for the lying down activity.
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Figure 8. P–Wave and T–Wave Detection features for (a) jogging and (b) lying down activities.

2.4.3. Mel-Frequency Cepstral Coefficients

During the MFCC coefficient generation, we initially pre-processed the ECG signal
by applying pre-emphasis with α = 0.97. With an analysis frame duration of 3000 ms
and a frame shift of 10 ms, the signal is then windowed using hamming and N as 256.
Next, in order to take the discrete Fourier transform of the frame, Equation (8) is used,
where h(n) is a N sample long analysis window, K is the length of DFT, and si(n) is the
periodogram-based power spectral estimate for the frame, which is formulated as:

Si(k) = ∑N
n=1 si(n)h(n)e−j2πkn/N , 1 ≤ k ≤ K (8)

Meanwhile, Mel filtering, a Natural Logarithm, and DCT are applied (See Figure 9),
with the number of Mel filter-bank channels being 20, the number of cepstral coefficients be-
ing 12, and the liftering parameter being 22. The filter-banks are created using Equation (9),
where m is the number of filters and (f) is the list of m + 2 Mel-spaced frequencies:

Hm(k) =


0 k < f (m− 1)ˆk > f (m + 1)

k− f (m−1)
f (m)− f (m−1) f (m− 1) ≤ k ≤ f (m)

f (m+1)−k
f (m+1)− f (m)

f (m) ≤ k ≤ f (m + 1)
(9)

Figure 9. MFCC process overview.

However, in order to calculate the 12 cepstral coefficients, Equation (10) is used, where
dt is the coefficient from the t frame, and a typical value for N is 2. Figure 10 represents a
few outcomes of MFCC for different activities.

dt =
∑N

n=1 n(ct+n − ct−n)

2 ∑N
n=1 n2

(10)
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Figure 10. MFCC features extracted for (a) jumping forward and backward, (b) standing still and (c) walking activities.

2.4.4. R-Point Detection and R–R Interval

The R-point is the top peak in a QRS complex [51]; therefore, we extracted the R-points
first using Equation (11), where h(x) is the minimum height peak of a specific signal,
and ω(x) are the width limitations for R peaks. Then, the model calculated the difference
between two consecutive R-points in the same window. Such differences provide the R–R
Intervals in each window, and have a maximum of 3 R peaks. Here, we have extracted
three R-points from each window in order to ensure consistency in the feature extraction
and to avoid bias towards a particular activity. In Figure 11a, after finding a QRS complex,
the R-points are shown using blue circles, and R–R Intervals are detected and presented in
Figure 11b using a scatter plot.

θR = x,
{

h(x) > 0.06
ω(x) > 0.4 and ω(x) < 2.0

(11)

Figure 11. (a) R–Point Detection of a standing still activity, and (b) R–R Intervals representation with respect to the windows
for the ECG.

2.5. EMG-Based Hybrid Feature Extraction

EMG is a process that is used to record and assess the electrical activity formed
by skeletal muscles. For the EMG feature abstraction process, we used entropy-based
features, which include a nonlinear dynamic parameter [52] for the measurement of signal
complexity. We used the fuzzy entropy, approximate entropy, and Renyi entropy of
orders 2 and 3. Algorithm 4 (1 Fuzzy Entropy [53,54]; 2 Approximate Entropy [55]; 3 Renyi
Entropy [56]) in the section explains the implementation of all three types of entropies for
the EMG signal.
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Algorithm 4 EMG Feature Abstraction
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2.5.1. Fuzzy Entropy

Fuzzy entropy is the negative natural logarithm of the conditional probability in which
two vectors with similar m points remain similar for m + 1 points. Fuzzy entropy measures
the regularity of time series more efficiently as:

ϕm(n, r) =
1

N −m
× ∑N−m

i=1 (
1

N −m− 1
) ∑N−m

j=1, j 6=i Dm
ij (12)

ϕm+1(n, r) =
1

N −m
× ∑N−m

i=1 (
1

N −m− 1
) ∑N−m

j=1, j 6=i Dm+1
ij (13)

FuzzEntro(m, n, r, N) = ln ϕm(n, r)− ln ϕm+1(n, r). (14)

where, in Equations (12)–(14), m is the consecutive vector sequence, n is the gradient, r is
the width of the boundary of the exponential function, N is the sample time series, and Dm

ij
is the degree of similarity. Following, we used different values for n and r, which leads to
a decrease in the standard deviation. Here, we selected r = 0.24 and n = 0.2 for all of the
windows of both ECG leads in the HuGaDB dataset, as shown in Figure 12.

Sustainability 2021, 13, x FOR PEER REVIEW 13 of 28 
 

2.5.1. Fuzzy Entropy 
Fuzzy entropy is the negative natural logarithm of the conditional probability in 

which two vectors with similar m points remain similar for m + 1 points. Fuzzy entropy 
measures the regularity of time series more efficiently as:  𝜑 (𝑛, 𝑟) =   × ∑ (  ∑ 𝐷,    (12)

 𝜑 (𝑛, 𝑟) =   ×  ∑ (  ∑ 𝐷,    (13)𝐹𝑢𝑧𝑧𝐸𝑛𝑡𝑟𝑜(𝑚, 𝑛, 𝑟, 𝑁) = 𝑙𝑛 𝜑 (𝑛, 𝑟) − 𝑙𝑛 𝜑 (𝑛, 𝑟).  (14)

where, in Equations (12)–(14), m is the consecutive vector sequence, n is the gradient, r is 
the width of the boundary of the exponential function, N is the sample time series, and 𝐷  is the degree of similarity. Following, we used different values for n and r, which leads 
to a decrease in the standard deviation. Here, we selected r = 0.24 and n = 0.2 for all of the 
windows of both ECG leads in the HuGaDB dataset, as shown in Figure 12. 

 
Figure 12. Fuzzy Entropy features extracted for EMG lead 1 and lead 2 for the HuGaDB dataset. 

2.5.2. Approximate Entropy 
During approximate entropy, we measure the randomness of a series of data without 

any previous knowledge [57] about the dataset. Equations (15) and (16) show the inner 
concept of the calculation of approximate entropy, where m is the embedding dimensions 
and r is the noise filter. We used m = 2 and r = 2.0 for our data. Figure 13 shows the ap-
proximate entropy calculated for the EMG leads using the above-mentioned parameters: 𝜑 (𝑟) =  (𝑁 − 𝑚 + 1) ∑ 𝑙𝑛𝐶 (𝑟).  (15)𝐴𝑝𝐸𝑛𝑡𝑟𝑜(𝑚, 𝑟, 𝑁) = [ 𝜑 (𝑟) − 𝜑 (𝑟)].  (16)

 
Figure 13. Approximate Entropy feature Extraction using r = 2.0 and m = 2. 

  

Figure 12. Fuzzy Entropy features extracted for EMG lead 1 and lead 2 for the HuGaDB dataset.

2.5.2. Approximate Entropy

During approximate entropy, we measure the randomness of a series of data without
any previous knowledge [57] about the dataset. Equations (15) and (16) show the inner
concept of the calculation of approximate entropy, where m is the embedding dimensions
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and r is the noise filter. We used m = 2 and r = 2.0 for our data. Figure 13 shows the
approximate entropy calculated for the EMG leads using the above-mentioned parameters:

ϕm(r) = (N −m + 1)−1 ∑N−m+1
i=1 lnCm

i (r). (15)

ApEntro(m, r, N) =
[

ϕm(r)− ϕm+1(r)
]
. (16)
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2.5.3. Renyi Entropy Order 2 and Order 3

Renyi entropy is the generalization of Shannon’s entropy explained in Equation (18),
which preserves the additivity of statistically-independent systems [58,59], and is com-
monly used for the analysis of biosignals [60]. Equation (17) presents the formula for the
calculation of the Renyi entropy for order α, where s is the signal sample values, α is the
order = 2, 3, . . . , M is the finite number of possible values from s, and p is the probability
of each s. Figure 14 shows the Renyi entropy of α = 2 and α = 3 for the EMG signal leads.

RenyiEntro(s) =
1

1− α
log2 ∑M

i=1 pα
i (17)

ShannonEntro(s) = −∑n
i=1 pilog2 pi (18)

Figure 14. Renyi entropy feature extraction for (a) order 2 and (b) order 3.

2.6. Feature-to-Feature Fusion

After the separate extraction of the IMU, ECG, and EMG, the model proposes to fuse
the hybrid features for each sensor type together, as described in Equations (19)–(21);

IMU f use = ∪n
x=11DLBP(x) ∪ ∪n

x=1SSCE(x) ∪ ∪n
x=1DE(x) (19)

ECG f use = ∪n
x=1dx ∪ ∪n

x=1θP(x) ∪ ∪n
x=1θT(x) ∪ ∪n

x=1dt(x) ∪ ∪n
x=1θR(x) ∪n

x=1 θR,R(x) (20)
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EMG f use = ∪n
x=1FuzzEntro(x) ∪ ∪n

x=1 ApEntro(x) ∪ ∪n
x=1RenyiEntro(x, 2) ∪n

x=1 RenyiEntro(x, 3) (21)

Furthermore, in order to obtain more complete global information, the fused features
from all three sensors will again be merged together based on time. This type of data fusion
is also known as feature in–feature out, where the input and output of the fusion show
both features, as shown in Figure 15. Equation (22) shows the formula to fuse the hybrid
features from each sensor:

Data f use = IMU f use ∪ ECG f use ∪ EMG f use (22)

Figure 15. Proposed feature–to–feature fusion concept.

2.7. Feature Reduction: Modified Multi-Layer Sequential Forward Selection

In the feature reduction phase, we eliminate unnecessary features based on a search
strategy and an objective function. In search strategies, the algorithms are further cate-
gorized into sequential algorithms and randomized algorithms. Similarly, the objective
functions are also categorized into filters and wrappers [61]. Dimension reduction not only
helps to obtain better results for classification; it can also be used to find those features
which act as the best predictors. Here, we proposed a unique algorithm for the feature
reduction, designated as modified multi-layer sequential forward selection.

Whitney’s implementation for sequential forward selection (SFS) has been used by
many data scientists, and is based on the formula given in Equation (23), where Sd is the
feature set of size d, D is the dataset values, and M is the classification model used as KNN.
Equation (24) explains how to maintain the monotonicity condition in two subsets of the
feature set Sd while J is the condition.

S = argmaxSd G(Sd, D, M). (23)

S1 ⊂ S2 ⇒ J(S1) ≤ J(S2) (24)

The outdated SFS selected feature sets using a single layer. The MLSFS preserves
the features of a signal until the correlation rates for all of the features are established.
Furthermore, MLSFS will select the most correlated features captured from the well-defined
correlation rates. It achieved better accuracy in feature reduction, and it is presented in
Algorithm 5, which is provided in the section.
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Algorithm 5 Multi-layer Sequential Forward Selection algorithm
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2.8. Codebook Generation

In order to encode the resultant fused features, a codebook known as a Gaussian
mixture model is used. It is a widely accepted method for representing complex information
and feature matching [62] based on an expectation maximization (EM) algorithm. The EM
algorithm estimates the unknown parameter sets Θ of probabilistic weights, and helps to
find the maximum likelihood function by giving an initial parameter set Θ1 and continuing
to apply E and M steps. Then, the EM algorithm generates a sequence {Θ1, Θ2, . . . , Θm,
. . . } and considers both E and M steps, as in Equations (25) and (26):

γm (zj
k | xj , Θm) =

ωm
k f
(
xj
∣∣µm

k , ∑m
k )

∑K
i=1 ωm f

(
xj| µm

i , ∑m
i )

(25)

∑m−1
k =

∑N
j=1 γm(zj

k|xj, Θm)
(

xj − µm+1
k

)
(xj − µm+1

k )
T

∑N
j=1 γm(zj

k|xj, Θm)
. (26)

where, γm (zj
k

∣∣∣ xj , Θm) presents the probability of the jth sample with the kth Gaussian
element at the mth iterations along weights ωm

k , means µm
k , and covariance ∑m

k values.
Similarly, Gaussian mixture regression provides a way of extracting a single generalized
signal from the set of features given. Hence, we can clearly retrieve an analytically smooth
signal through regression by encoding the temporal signal features [63] into a mixture of
Gaussians. This technique takes each vector of the signals’ GMM as an input of xI and
finds the output xO using GMR.

Finally, GMR is considered to provide better results compared to other stochastic
approaches because it gives a fast and logical means to restructure the ‘best’ sequence from
a Gaussian model. Figure 16 provides a glimpse of GMM–GMR encoded vectors for the
HuGaDB and mHealth datasets.



Sustainability 2021, 13, 1699 17 of 28

Sustainability 2021, 13, x FOR PEER REVIEW 16 of 28 
 

Similarly, Gaussian mixture regression provides a way of extracting a single generalized 
signal from the set of features given. Hence, we can clearly retrieve an analytically smooth 
signal through regression by encoding the temporal signal features [63] into a mixture of 
Gaussians. This technique takes each vector of the signals’ GMM as an input of xI and 
finds the output xO using GMR.  

Finally, GMR is considered to provide better results compared to other stochastic 
approaches because it gives a fast and logical means to restructure the ‘best’ sequence 
from a Gaussian model. Figure 16 provides a glimpse of GMM–GMR encoded vectors for 
the HuGaDB and mHealth datasets. 

 
Figure 16. Codebook generation via a GMM–GMR model applied to the (a) HuGaDB and (b) mHealth datasets. 

2.9. Deep Belief Network Implementation Using RBMs 
DBNs are multi-layered probabilistic models [64] which consist of multi-parameters 

for model learning. Each layer contains simple undirected graphs called RBMs. RBM lay-
ers are of two types, which are hidden layers and visible layers. The visible layer is the 
bottom layer, and hidden layers are the top layers. Figure 17 explains the workings of the 
hidden and visible layers of RBMs. Hidden layers model the probability distribution of 
the visible variables, and are fully bidirectionally connected with symmetric weights. In 
RBMs, the layers are not interconnected. The hierarchical processing of stacked RBMs can 
be used to create a DBN model (See Figure 17). An RBM encodes the joint probability 
distribution via the energy function, as in Equation (27), in which v is the visible data, h is 
the hidden data, w is the weight, and 𝜃  = (w, b(v), b(h)). We can write the encoded joint 
probability as in Equation (28): 𝐸(𝑣, ℎ;  𝜃) =  − ∑ ∑ 𝑤 𝑣 ℎ  − ∑ 𝑏( )𝑣 − ∑ 𝑏( )ℎ   (27)𝑝(𝑣, ℎ|𝜃) =  𝑒𝑥𝑝(−𝐸(𝑣, ℎ: 𝜃)∑ ∑ 𝑒𝑥𝑝 (−𝐸(𝑣 , ℎ ; 𝜃). (28)

These rules are derived to update the initial states, such that every update gives a 
lower energy state and ultimately settles into equilibrium. Here, in Equations (29) and 
(30), σ(x) = 1/(1 + exp(−x)), where the sigmoid function is observed as: 𝑝(𝑣 = 1 | ℎ, 𝜃) = 𝜎 (∑ 𝑤 ℎ + 𝑏( ))  (29)𝑝(ℎ = 1 | 𝑣, 𝜃) = 𝜎 (∑ 𝑤 𝑣 + 𝑏( ))  (30)
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2.9. Deep Belief Network Implementation Using RBMs

DBNs are multi-layered probabilistic models [64] which consist of multi-parameters
for model learning. Each layer contains simple undirected graphs called RBMs. RBM layers
are of two types, which are hidden layers and visible layers. The visible layer is the
bottom layer, and hidden layers are the top layers. Figure 17 explains the workings of the
hidden and visible layers of RBMs. Hidden layers model the probability distribution of the
visible variables, and are fully bidirectionally connected with symmetric weights. In RBMs,
the layers are not interconnected. The hierarchical processing of stacked RBMs can be used
to create a DBN model (See Figure 17). An RBM encodes the joint probability distribution
via the energy function, as in Equation (27), in which v is the visible data, h is the hidden
data, w is the weight, and θ = (w, b(v), b(h)). We can write the encoded joint probability as in
Equation (28):

E(v, h; θ) = −∑i ∑j wijvihj − ∑i b(v)i vi − ∑j b(h)j hj (27)

p(v, h|θ) = exp(−E(v, h : θ)

∑v′ ∑h′ exp(−E(v′, h′; θ)
. (28)

These rules are derived to update the initial states, such that every update gives a
lower energy state and ultimately settles into equilibrium. Here, in Equations (29) and (30),
σ(x) = 1/(1 + exp(−x)), where the sigmoid function is observed as:

p(vi = 1 | h, θ) = σ (∑
j

wijhj + b(v)i ) (29)

p(hi = 1 | v, θ) = σ (∑
i

wijvi + b(h)j ) (30)

In order to train the RBMs, the visible layer is provided with the input data. Here,
the learning is to adapt the parameter θ such that the probability distribution in Equation
(28) becomes maximally similar to the true values, which means that it will maximize the
log-likelihood of each generation of the observed data. A contrastive divergence (CD)
algorithm samples the new values for all of the hidden layers in parallel with the current
input in order to give a complete sample (vdata, hdata). Furthermore, it generates a sample
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for the visible layer, and then samples the hidden layer again. Then, we obtain the sample
from the model as (vmodel, hmodel). The weights can be updated according to Equation (31).

∆ wij = η
(

vi , datahj,data − vi , modelhj,model

)
. (31)
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3. Experimental Performance

In order to evaluate the accomplishment of the DBN classifier [65] for human ac-
tivity recognition, this paper considered using accuracy, sensitivity, specificity, precision,
recall, F-measure and misclassification scores as the performance measures. The accu-
rate classification of the SPHR is called accuracy [66], as expressed in Equation (32).
In Equations (32)–(36), TN, TP, FN, and FP represent true negative, true positive, false
negative, and false positive, respectively.

Accuracy (100) =
TN + TP

TN + TP + FN + FP
× 100 (32)
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Sensitivity measures the proportion of actual positives that are correctly identified,
and this is called the true positive rate (TPR). Equation (33) describes the formula used to
calculate the sensitivity.

Sensitivity (%) =
TP

TN + TP
× 100 (33)

Specificity is defined as the measure of the proportion of negatives that are correctly
identified. Equation (34) gives us the formula to measure the specificity, given TN and FP.

Speci f icity (%) =
TN

TN + FP
× 100 (34)

Precision is the proportion of true positives correctly identified from total positives.
Equation (35) describes the formula for the calculation of precision.

Precision (%) =
TP

TP + FP
× 100 (35)

Recall is the proportion of all true positives out of true positives and false negatives.
Equation (36) tells us the formula for recall.

Recall (%) =
TP(n)

TP(n) + FN(n)
× 100 (36)

where n represents all classes for classification.
The F-measure is a method to combine precision and recall together into a single

measure that captures the quality of both performance measures. The misclassification rate
can be calculated from the accuracy:

F-measure =
2 × Precision × Recall

Precision + Recall
(37)

Misclassi f ication rate = 1− accuracy (38)

3.1. Datasets Description

In order to appraise the testing/training abilities of our proposed model, we used two
public benchmark datasets, i.e., the mHealth dataset [67] from the UCI Machine Learning
repository, and the HuGaDB dataset [68] from the GitHub repository.

In the mHealth dataset, there are a total of 12 activities with 24 attributes each. It uses
21 attributes for IMU sensors on the chest, left ankle and right arm, two attributes for the
ECG sensor, and one attribute for the labels describing the activity performed. The dataset
represents 10 subjects and locomotion activities: standing still, sitting and relaxing, lying
down, walking, climbing stairs, waist bending forward, the frontal elevation of arms, knees
bending (crouching), cycling, jogging, running, and jumping back and forth. Each subject
had all of the above-mentioned sensors attached, with a frequency of 50 Hz.

The second dataset used to evaluate performance was a human gait database. It con-
sists of 12 activities and 39 attributes for each activity. For IMU, there are 36 attributes;
for EMG, there are two attributes; and the last attribute is for the activity label. This dataset
was collected for 18 subjects with repeated activities. The activities were walking, running,
going up, going down, sitting, sitting down, standing up, standing, bicycling, going up by
elevator, going down by elevator, and sitting in car. Six IMUs and two EMG sensors were
attached to each subject, and a sample rate of 1000 Hz was used.

In our work, the data from all of the subjects is separated with respect to the sensors’
nature, and then preprocessed to remove noise. Finally, the signals were split into windows
of 5 s each, with 12 overlapping values. We used the ‘leave-one-subject-out’ (LOSO) [69]
cross-validation technique for the training and testing.
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3.2. Results Evaluations

The experiment was performed with a laptop, with the specification of the CPU being
i7-8550 and the RAM being 24 GB, and a NVIDIA GeForce GTX GPU 2 GB. The pro-
gramming tool was MATLAB, with multiple frameworks available in the tool and online.
For efficient results, the sample data from HuGaDB was sent to the Gaussian mixture
models in batches of half the sample length for the walking activity. The model used deep
belief network with RBMs of four layers in order to minimize reconstruction errors and
set the number of training samples according to the cross-validation. RBMs use CD as a
sampling method type. The learning rate for each RBM was set to 0.05, and the model uses
discriminative RBMs, as explained in Figure 18.
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In the first layer of the RBMs, we set the number of nodes to the number of input
variables. The second, third, fourth, and fifth RBM layers had 500, 500, 500, and 1000 nodes.
All of the training and testing sample sets from the cross-validation were looked into one
after the other in order to see which set performed best. By training and testing the test set,
the classification confusion matrix was produced for the mHealth dataset as in Table 1; for
the HuGaDB dataset, see Table 2.

Table 1. Confusion matrix for SPHR classification of all activities using the mHealth dataset.

Activities L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

L1 9 0 0 1 0 0 0 0 1 0 0 0
L2 1 10 0 0 0 0 0 0 0 0 0 0
L3 0 0 9 0 0 1 0 0 0 0 0 0
L4 0 0 0 9 0 0 0 0 1 1 0 0
L5 0 0 0 0 10 0 1 0 0 0 0 1
L6 0 0 0 0 0 9 0 0 0 0 0 0
L7 1 0 1 0 0 0 10 0 1 0 0 0
L8 0 0 0 0 1 0 0 9 0 0 0 0
L9 0 1 0 0 0 0 0 1 9 0 0 0
L10 0 0 1 1 0 1 0 0 0 10 0 1
L11 0 0 0 0 0 0 1 0 0 0 9 0
L12 0 0 0 0 0 0 0 1 1 0 0 9

Mean Accuracy = 93.33%
L1 = Standing Still; L2 = Sitting and Relaxing; L3 = Lying down; L4 = Walking; L5 = Climbing Stairs; L6 = Waist
bending forward; L7 = Frontal elevation of the arms; L8 = Knees bending (crouching); L9 = Cycling; L10 = Jogging;
L11 = Running; and L12 = Jumping back and forth. In addition, the diagonal values represent the exact accuracy
rate for each activity.
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Table 2. Confusion matrix for the SPHR classification of all of the activities using the HuGaDB dataset.

Activities H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

H1 10 1 0 0 0 0 0 0 0 0 0 0
H2 0 9 1 0 0 0 0 0 1 0 0 0
H3 0 0 9 0 0 0 0 0 0 0 0 0
H4 0 0 0 9 0 0 1 0 0 1 0 0
H5 1 0 0 0 9 0 0 0 0 0 0 0
H6 0 0 0 0 1 10 0 0 0 0 0 0
H7 0 1 0 0 0 1 9 1 0 0 0 0
H8 0 0 0 1 0 0 0 9 0 1 0 1
H9 0 0 1 0 0 0 0 0 9 0 0 0

H10 0 0 0 0 0 0 0 0 0 10 0 0
H11 0 0 0 0 0 0 0 0 1 0 9 0
H12 0 0 0 0 1 0 0 0 0 0 0 9

Mean Accuracy = 92.50%
H1 = Waking; H2 = Running; H3 = Going up; H4 = Going down; H5 = Sitting; H6 = Sitting down; H7 = Standing
up; H8 = Standing; H9 = Bicycling; H10 = Going up by elevator; H11 = Going down by elevator; and H12 = Sitting
in a car. In addition, the diagonal values represent the exact accuracy rate for each activity.

It can be observed from Figure 19 column 1 that there are activities with high altitudes
of signal closeness to each other, i.e., standing still, sitting, and lying down. Similarly,
the walking, running and jogging signals bear a resemblance to each other in column
2. It is important to notice that our proposed model is able to distinguish between such
activities with decent accuracy rates of 93.33% for the mHealth dataset and 92.50% for the
HuGaDB datasets.

Figure 19. Signal representing Chest acceleration for standing still, sitting and relaxing, and lying down (left column), and
Chest acceleration for walking, running, and jogging (right column).
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Comparisons of the sensitivity and specificity are given in Table 3 for the mHealth
dataset and Table 4 for the HuGaDB dataset. Table 5 shows the precision, recall, and
F-measure for each activity for both datasets.

Table 3. Comparison of the sensitivity and specificity of the classification results using the
mHealth dataset.

Activities Sensitivity Specificity

L1 0.692 0.984
L2 0.758 0.992
L3 0.687 0.992
L4 0.692 0.984
L5 0.763 0.984
L6 0.687 0.992
L7 0.775 0.975
L8 0.687 0.992
L9 0.703 0.983

L10 0.775 0.967
L11 0.677 0.992
L12 0.698 0.984

Table 4. Comparison of the sensitivity and specificity of the classification results using the
HuGaDB dataset.

Activities Sensitivity Specificity

H1 0.800 0.991
H2 0.732 0.983
H3 0.720 1.000
H4 0.726 0.983
H5 0.726 0.991
H6 0.800 0.991
H7 0.732 0.974
H8 0.732 0.974
H9 0.726 0.991
H10 0.800 1.000
H11 0.714 0.992
H12 0.720 0.991

Table 5. Precision, Recall, and F-measure classification results using the mHealth and
HuGaDB datasets.

Activities Precision Recall F-Measure

L1 0.818 0.818 0.818
L2 0.909 0.909 0.909
L3 0.818 0.900 0.857
L4 0.818 0.818 0.818
L5 0.909 0.833 0.870
L6 0.818 1.000 0.900
L7 0.833 0.769 0.800
L8 0.818 0.900 0.857
L9 0.692 0.818 0.750
L10 0.909 0.714 0.800
L11 1.000 0.900 0.947
L12 0.818 0.818 0.818

Mean 0.847 0.850 0.845
H1 0.909 0.909 0.909
H2 0.818 0.818 0.818
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Table 5. Cont.

Activities Precision Recall F-Measure

H3 0.818 1.000 0.900
H4 0.900 0.818 0.857
H5 0.818 0.900 0.857
H6 0.909 0.909 0.909
H7 0.900 0.750 0.818
H8 0.900 0.750 0.818
H9 0.818 0.900 0.857
H10 0.833 1.000 0.909
H11 1.000 0.900 0.947
H12 0.900 0.900 0.900

Mean 0.877 0.880 0.875

A comparison between the different layers of the RBMs using the time and number
of iterations is presented in Table 6. Parameter tuning [70] is an important step of DBN.
Hence, a batch size of 15 samples was used; the weight cost for each node was set to 0.0002,
and a maximum of seven epochs for each layer was proposed as the list of parameters [71]
being tuned. The reconstruction error for each layer decreases as the RBM moves towards
the next layer. The time in seconds is given, and the number of nodes can also be observed.

Table 6. Comparisons of the RBM layers in the deep belief network for the mHealth and HuGaDB datasets.

Dataset No. of RBMs-
Performance Method No. of Epochs No. of Nodes in

Each RBM
Average

Reconstruction Error Time (s)

mHealth

r = 1
Reconstruction 7 n = 500 49,458,754.7895 2290

r = 2
Reconstruction 7 n = 500 24,327.784 4689

r = 3
Reconstruction 7 n = 500 0.04582 6087

r = 4
Reconstruction 7 n = 1000 0.00037 8786

r = 5
Classification 7 n = 12 0.0000002 12,784

HuGaDB

r = 1
Reconstruction 7 n = 500 65,215,315,432.3545 2340

r = 2
Reconstruction 7 n = 500 78,652,131.2563 4808

r = 3
Reconstruction 7 n = 500 156,325.012 7090

r = 4
Reconstruction 7 n = 1000 0.024563 10,910

r = 5
Classification 7 n = 12 0.000000284 15,580

Table 7 presents the comparative study results using the accuracies for the proposed
model and other statistically–well-known classifiers and methodologies i.e., random forest,
artificial neural network, ensemble algorithms, Adam based optimization, decision trees,
SVM, kNN, and Hampel Estimated. The overall results show that the proposed model
achieved better classification results using a deep belief network and discriminative RBMs,
which shows a novel contribution for SPHR. The proposed HF-SPHR model has to be
assessed and adjusted according to the following challenges:

• In its actual implementation, pattern recognition challenges were faced while the same
activity was performed by different individuals.
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• Wearable-sensors–based architectures are susceptible to placement changes and other
locomotion activities.

Table 7. Comparison of the proposed model with state-of-the-art deep learning algorithms using the
mHealth and HuGaDB datasets.

Method Accuracy Using
mHealth (%) Method Accuracy Using

HuGaDB (%)

Abedin et al. [72] 57.19 Fang et al. [73] 79.24
Maitre et al. [74] 84.89 Rasnayaka et al. [75] 85

O’Halloran et al. [76] 90.55 Sun et al. [77] 88
Tahir et al. [23] 90.91 Badawi et al. [25] 88

Masum et al. [78] 91.68 Kumari et al. [79] 91.1
Ha et al. [80] 91.94 - -

Guo et al. [81] 92.3 - -
Proposed

HF-SPHR Model 93.33 Proposed
HF-SPHR Model 92.50

We used other state-of-the-art classifier techniques like random forest and AdaBoost
for comparison with the proposed DBN and RBM model. Table 8 shows that DBN signifi-
cantly outperforms other classifiers with regard to its accuracy rate.

Table 8. Comparison of DBN, Random Forest, and AdaBoost Classifiers for the mHealth and
HuGaDB datasets.

Algorithm Dataset Accuracy Dataset Accuracy

DBN mHealth 93.33% HuGaDB 92.50%
Random Forest mHealth 92.7% HuGaDB 91.9%

Adaboost mHealth 49.9% HuGaDB 57.0%

4. Discussion

This paper proposed a robust sustainable system with consistency across different
challenging datasets; because elderly and disabled individuals [82] stay indoors, two
indoor activity-based datasets were used for stability. The proposed HF-SPHR system
produced a good quality performance with both datasets, handling problems of varying
human activities and a variety of signal shapes due to the incorporation of multiple types
of sensors. The actions performed in both datasets are complex, because the movements
involved in performing most of the activities are quite similar—namely, jogging, running,
walking and standing, sitting, lying-down—as described in Figure 19. However, HF-SPHR
remained composed and reliable in recognizing and distinguishing between similar actions
due to the robust hybrid features. The proposed system showed high accuracy, specificity,
precision, recall, and F-measure rates.

The ECG cycle extraction was challenging due to the similarity in actions like lying-
down and sitting. In the feature extraction phase, the QRS complex was identified suc-
cessfully using a few important ECG peak rules, followed by the extraction of the P wave,
T wave, R wave, and R–R Intervals as features of the ECG signals. However, the similarity
between some actions caused QRS complex cycles to overlap more significantly with each
other in a few instances. For example, in classes such as jogging and running, the QRS
complex cycles overlapped at some points. As such, the performance of such actions was
been compromised due to the overlapping of the QRS complexes. However, our system
offered different domains’ features—namely, WPE and MFCC in hybrid form—to keep the
performance at a high level.

5. Conclusions

This paper proposed a robust model for sustainable physical healthcare Pattern Recog-
nition with hybrid feature manipulation and Gaussian mixture models. It also suggested
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the application of a deep belief network classifier with discriminative RBMs, which auto-
matically extracts features and also reduces the dependence on domain experts. This model
achieved excellent recognition results. HF-SPHR can also serve the purpose of a deep
learning model that can efficiently and sustainably recognize activities. By introducing
the structure of MFCC, entropy and other features, HF-SPHR effectively extracts the raw
data from different sensors more comprehensively, extracts more relevant features, and in-
creases the diversity of the feature sets. The experiments also revealed the influence of
the HF-SPHR model in terms of accuracy, sensitivity, specificity, precision, recall, and the
F-measure. HF-SPHR helped in constructing an ideal human behavior recognition model.
It is worth mentioning that the proposed HF-SPHR technique recognized static activities
with lower accuracies compared to dynamic activities where further improvements are
necessary. It will be of interest to see how the model performs for complex activities.
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