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Abstract: The memory characteristics of a flash memory device using c-axis aligned crystal indium
gallium zinc oxide (CAAC-IGZO) thin film as a channel material were demonstrated. The CAAC-
IGZO thin films can replace the current poly-silicon channel, which has reduced mobility because of
grain-induced degradation. The CAAC-IGZO thin films were achieved using a tantalum catalyst
layer with annealing. A thin film transistor (TFT) with SiO2/Si3N4/Al2O3 and CAAC-IGZO thin
films, where Al2O3 was used for the tunneling layer, was evaluated for a flash memory application
and compared with a device using an amorphous IGZO (a-IGZO) channel. A source and drain using
indium-tin oxide and aluminum were also evaluated for TFT flash memory devices with crystallized
and amorphous channel materials. Compared with the a-IGZO device, higher on-current (Ion),
improved field effect carrier mobility (µFE), a lower body trap (Nss), a wider memory window (∆Vth),
and better retention and endurance characteristics were attained using the CAAC-IGZO device.

Keywords: CAAC-IGZO; NAND flash; thin film transistor; high-k

1. Introduction

Flash memory devices have evolved from two-dimensional to three-dimensional (3D)
structures, which enable better performance and higher density, enabling large capacity
data storage [1–3]. Polycrystalline silicon (poly-Si) is a necessary component to form 3D
NAND flash memory as a channel material. However, there are several issues in using
poly-Si for 3D flash devices [4]. For example, the poly-Si channel material causes mo-
bility degradation, high current leakage, and threshold voltage (Vth) variation because
poly grains induce degradation, including scattering at grain boundaries and random
distribution of the grain shape and size. Additionally, poly-Si suffers from temperature
instability. Therefore, there is a growing need for alternative channel materials such as
indium-gallium-zinc oxide (IGZO). Since IGZO was discovered in 2004, thin film transistor
(TFT) devices using amorphous IGZO (a-IGZO) semiconductor material have received
attention as the back plane of flat panel display applications because of their high field
effect mobility [4–21]. In this regard, a-IGZO was demonstrated as a channel material in a
flash memory device. However, because of the nature of the amorphous material, a-IGZO
also has limited mobility, Vth variation, and weak resistance to electrical stress [22]. There-
fore, new oxide semiconductor materials are required. Compared with the amorphous
structure, a crystalline structure has a low density of defect states, thereby suppressing
carrier scattering and leading to improved device performance. A new crystalline structure,
c-axis-aligned crystalline (CAAC) IGZO thin film material, is of great interest because of its
improved mobility and stability [23–34]. A CAAC-IGZO-based field effect transistor (FET)
device achieved very low off-leakage current (Ioff) down to yocto ampere (10−24 A/µm)
because of the wider bandgap than that of conventional Si-based FET and effective suppres-
sion of the short-channel effects [24,25]. A CAAC-IGZO structure can be formed through
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various methods, such as Ta metal-induced crystallization [22] and substrate heating dur-
ing sputter deposition [28,29], and the structure has been applied to memory and sensor
devices [35–37]. However, studies applying these CAAC-IGZO materials to flash memory
devices are limited. SiO2/Si3N4/SiO2 (ONO) layers can also be replaced by high-k thin film
to enhance the flash memory performance [38–41]. Therefore, research on flash memory
devices using CAAC-IGZO channel materials and high-k thin film is of great interest.

Our work focuses on the effect of crystallized IGZO material as a channel for the
flash memory device application as an alternative to current poly-Si and a-IGZO materials.
Even though many amorphous oxide semiconductor materials have been explored as
the channel material within the flash memory, crystallized oxide semiconductors have
not been investigated yet with a high-k layer as a tunneling layer (TNL) and alternative
source and drain (S/D) material to further improve flash memory characteristics. The
crystallized oxide semiconductor is superior to the amorphous oxide semiconductor in
terms of transistor characteristics and memory behavior.

In this study, CAAC-IGZO thin film was realized by a heat-treated catalytic transition
metal layer on an a-IGZO thin film, and the film was applied as a channel material to a TFT-
type flash memory device. In addition, Al2O3, a high-k thin film, was used as the TNL, and
different materials were studied for the S/D. To evaluate the performance improvement of
the flash memory, TFT flash devices based on the a-IGZO channel were compared. The TFT
flash memory device using CAAC-IGZO exhibits low leakage current and high mobility,
and the additional use of high-k TNL and aluminum (Al) S/D contact provides a wider
memory window.

2. Experiment

Before TFT-type flash memory fabrication, the conversion from a-IGZO to a CAAC-
IGZO layer was achieved by the catalytic transition metal layer via post annealing and
its crystallinity was confirmed. First, a 15-nm thick a-IGZO film was deposited on a
Si substrate or insulating film. This IGZO was deposited with a shadow mask (width/
length = 700 µm/700 µm) by RF sputtering at 100 watts, a working pressure of 4 mTorr,
and ambient Ar. This IGZO serves as the active layer for the back gate TFT. To form the
CAAC-IGZO thin film, a 20 nm thick Ta thin film was deposited on a-IGZO, and then heat
treated in an O2 atmosphere at a low temperature of 300 ◦C for 1 h.

This catalyst layer was formed in the 150 µm dimension located in the middle of
a-IGZO thin film [22]. During this heat treatment process, Ta acts as a catalyst to convert the
amorphous phase into a crystalline thin film. X-ray diffraction (XRD) and high-resolution
transmission (HRTEM) were used to confirm the crystallinity of IGZO layers.

A flash memory device using a CAAC-IGZO layer with a thickness of 10 to 30 nm was
fabricated and evaluated as a channel material, and the IGZO thin film was crystallized
by the metal catalyst method described above. The flash memory device was fabricated
with a TFT structure having a back gate. First, SiO2 and Si3N4 thin films were formed by
PECVD as the blocking oxide (BKL) and charge trap layer (CTL), respectively, on a heavily
doped p-type Si wafer substrate as a bottom gate electrode. The TNL was SiO2 or Al2O3.
SiO2/Si3N4/Al2O3 is denoted as ONA. To study the memory window, BKL/CTL/TNL
was changed to a thickness of 5/7/5 nm or 20/15/6 nm. S/D layers were formed by
sputtering indium-tin oxide (ITO) or Al, and patterns were formed using a shadow mask
or photolithography. These devices were processed by post-deposition annealing in an O2
atmosphere at 300 ◦C for 1 h. To compare the effect on the crystallinity of the IGZO thin
film, an a-IGZO thin film device was also fabricated and compared. The cross-sectional
data of the CAAC-IGZO-based flash device was obtained through atomic composition data
of the TEM analysis and EDS analysis, and the memory window, which is a characteristic
of flash memory, was evaluated by applying a programing and erasing voltage (VPROG and
VERASE) pulse of 18 to 20 V at the gate for 1 ms.
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3. Results and Discussion

Figure 1 compares the XRD spectra for IGZO crystallization between a-IGZO and
CAAC-IGZO. The Ta-capped IGZO film has two distinct peaks, and a crystallized IGZO
(009) XRD peak was detected near 32◦; however, no peak was observed in the case of
a-IGZO. The XRD peak near 38.5◦ corresponds to the tetragonal b-Ta metal layer (110) [42].
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Figure 1. XRD spectra of the IGZO thin film without and with Ta metal film that was annealed at
300 ◦C under O2 ambient for 1 h.

Figure 2 shows the surface roughness images of IGZO on the SiO2 or Al2O3 layers
using an atomic force microscope (AFM). In the TFT flash memory device structure, because
the active IGZO layer was formed on TNL, SiO2, and Al2O3, it was necessary to check
the surface roughness. The surface roughness of the SiO2 layer was smoother than that
of Al2O3 before a-IGZO deposition [43,44]. However, when a-IGZO was deposited, the
surface roughness of SiO2 and Al2O3 increased from 0.345 to 2.78 nm and from 0.697 to
1.20 nm, respectively; however, Al2O3 was less rough than a-IGZO/SiO2. As previously
reported, the Al2O3 film containing crystalline material is stable in a-IGZO because of the
low defect concentration; however, the SiO2 film containing amorphous material has more
defects [43].

Figure 3a,b show the TEM and structural images of flash memory devices with a-IGZO
and CAAC-IGZO channel materials, respectively. Compared with the a-IGZO layer, the
crystalline domains appear clearly within the CAAC-IGZO layer with the Ta catalyst layer,
indicating that Ta atoms can induce atomic rearrangement in the a-IGZO layer and convert
to the CAAC-IGZO layer. The EDS profile shows the atomic content through the structure,
where the Ta atoms remain in their original state without penetration. In addition, the
oxygen distributed in the crystallization process by the Ta metal layer in the IGZO layer
was confirmed. Therefore, a good interface with stable crystalline IGZO was obtained,
and it was expected that high-performance TFTs could be formed and good flash memory
behavior achieved.
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Figure 4 compares the characteristics of the a-IGZO TFT flash memory devices with
ONO and ONA. The energy band diagrams of each case are shown in Figure 4a. A memory
window via a change in threshold voltage (∆Vth) was obtained by adjusting a program
voltage of 20 V and a program pulse time (1 ms to 100 ns) in a back gate transistor-based
flash device (ONO and ONA: 20/15/6 nm). A more effective Vth change was obtained
when Al2O3 was used as a TNL with a low bandgap compared with that of SiO2, as shown
in Figure 4b,c. This superiority of Al2O3 to SiO2 was confirmed at the interface and in the
operating performance of the flash device [45] because Al2O3 has greater electron affinity
and a lower band gap [42], which contributes to easy passage of the carriers through
the barrier.
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Figure 4. Schematics of (a) the energy band diagrams of TFT flash memory devices with SiO2 and
Al2O3 as the TNL. Programing behaviors under various pulse times for a-IGZO TFT flash memory
devices with (b) SiO2 and (c) Al2O3 TNLs.

For the performance evaluation of the a-IGZO and CAAC-IGZO devices, the trans-
fer characteristic (Id-Vg) was compared, as shown in Figure 5. Different thicknesses (10
and 30 nm) of the active channel layer and tunneling oxide type (SiO2 and Al2O3) were
used. Compared with the a-IGZO device shown in Figure 5a, the CAAC-IGZO device
exhibited improved mobility, lower interface state density (Dit), and better Vth stability
with the active layer thickness (Figure 5b). These characteristics were attributed to less
oxygen vacancy in the crystallized IGZO than in a-IGZO [22,46–50]. These results indi-
cate that the crystallinity of the channel material is an important parameter to enhance
device performance. In addition, the device performance is also affected by the active layer
thickness and tunneling oxide. Figure 5c compares the mobility and Dit for both devices.
For the a-IGZO device, an the field effect mobility (µFE) was approximately 17 cm2/Vs
for the IGZO thickness range from 10 to 30 nm. Alternatively, the CAAC-IGZO device
has an µFE of approximately 43 cm2/Vs for the same thickness range. The crystallized
channel could effectively suppress the subthreshold swing (SS) degradation. The Dit of
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the a-IGZO device was 2.5 × 1012 cm−2ev−1, whereas that of the CAAC-IGZO device was
1.2 × 1012 cm−2ev−1, where Dit was extracted from the SS value [51]. This improvement
of the proposed CAAC-IGZO device structure was similar to other reported crystalline
IGZO channel-based devices [42]. Figure 5d compares the device parameters of the mo-
bility and SS in our devices with previously reported devices. The crystallized IGZO
shows an improvement over a-IGZO and our materials show better enhancement than
the other crystallized IGZO materials. The crystallization is also helpful to improve the
interface quality.
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active layer thickness on µFE and Dit. (d) Comparison of reported IGZO-based devices with this
work [42,52].

For program characteristic between two devices, various measurement conditions
were applied, as shown in Figure 6. These devices have SiO2 and Al2O3 as a TNL, and
the film thickness was reduced from 20/15/6 nm to 5/7/5 nm for BKL/CTL/TNL. Using
ONO thin films, compared with the a-IGZO device, a slightly wider Vth shift was attained
using the CAAC-IGZO device even for different measurement pulse widths, as shown
in Figure 6a,b. The Vth shift values were 0.66 and 0.74 V under a 100 µs pulse width for
amorphous and crystallized devices, respectively, and the difference increased as the pulse
width was reduced. Using Al2O3 as a TNL, better programming behavior was achieved.
Compared to the device using SiO2 as a TNL, when Al2O3 was used as TNL, the a-IGZO
device improved the programming characteristics by 28~35% and CAAC-IGZO device by
30–36%, and the crystallized channel device was still superior to the amorphous channel
device. This advantage occurs because the fast carrier mobility can easily trap electrons in
the CTL [42]. Figure 6c compares the programming characteristic with channel materials
and TNL type with respect to the pulse width from 10−6 to 10−3 s at a 20 V programing
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voltage. The active layer crystallization and adoption of Al2O3 as a TNL clearly improved
the programing characteristics.
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ITO and Al were used for S/D regions to improve the memory window of the IGZO-
based flash memory device. Using capacitor devices, we demonstrated that the flash
operation depends on the S/D contact metals, as shown in Figure 7. Compared with ITO
metal, the flat band voltage shift (C–V shift) was enhanced using the Al metal contact in
the capacitor device, as shown in Figure 7b,d. This wider memory window was attributed
to different band gap properties of the metal and IGZO layers. Figure 7a,c shows the
corresponding energy band diagram of the corresponding capacitors with different metal
contacts and IGZO active material. The barrier of the IGZO/metal (ITO [53] and Al [54])
can block the electron sinking from IGZO to the metal under pulse conditions; as a result,
the Al metal contact can easily make electrons sink because of its lower electron affinity than
that of IGZO [42]. Thus, the S/D contact metal is also an important parameter to increase
the performance of IGZO-based flash memory with an Al2O3 TNL and the crystallized
active channel material.

Based on the findings of the effect of S/D metal contact, the memory window was
also studied in a back gate TFT. Figure 8 shows transfer characteristics of amorphous and
crystallized IGZO-based flash memory with a S/D contact of ITO and Al metal. Figure 8a,c
show a-IGZO devices with ITO and Al, respectively, while Figure 8b,d how CAAC-IGZO
devices with ITO and Al, respectively. The TNL is Al2O3 and the active layer thickness is
15 nm. The flash memory operation properties with a-IGZO and CAAC-IGZO active layers
were attained by applying a VPROG/ERASE pulse of ±18 V range for 1 ms for VD = 0.3 V. For
both devices with Al for a S/D contact, a Vth shift was observed; however, a larger window
occurred for the CAAC-IGZO device. The Vth shift of the amorphous and crystallized active
channel devices were 0.28 and 0.4 V, respectively. However, the a-IGZO and CAAC-IGZO
devices with ITO for a S/D contact had a negligible or narrower memory window than the
Al for a S/D contact metal even though a higher VPROG/ERASE pulse of ±20 V for 1 ms was
applied, as shown Figure 8a,b. This result suggests that the S/D contact metal significantly
influences the flash memory operation.
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Reliability characteristics, such as endurance and retention, were investigated to
determine if the crystallized IGZO active channel material maintains its superiority over
amorphous IGZO material. Figure 9 shows the retention characteristics for amorphous
and crystallized IGZO channel devices using Al2O3 as TNL. Figure 9a,b corresponds to the
retention behaviors of the a-IGZO and CAAC-IGZO channel devices, respectively, where
the charge loss state was tested for up to 104 s. The memory window of the CAAC-IGZO
device was wider and more stable than that of the a-IGZO device, indicating that the CAAC-
IGZO active channel was quite stable. The charge of the a-IGZO-based flash memory can
easily be lost at low bias. The a-IGZO and CAAC-IGZO-based devices were expected to
have charge loss degradation of 39% and 65%, respectively, over 10 years from their pristine
state. As previously reported, the crystallized IGZO-based flash memory retention can
suppress the charge loss more than the amorphous IGZO channel device [42].
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The endurance characteristics of the amorphous and crystallized IGZO channel devices
up to 104 cycles are shown in Figure 10a,b, respectively. Both devices increased in terms of
Vth shift during the program and erase pulse cycling. However, the endurance degradation
of the crystallized IGZO device was less than that of the amorphous IGZO device. Similar
to the retention behavior, the crystallized active layer provides more suitable memory
properties than the amorphous layer.

Electronics 2022, 10, x FOR PEER REVIEW 9 of 12 
 

 

 

Figure 9. Retention characteristics of (a) a-IGZO and (b) CAAC-IGZO devices tested up to 104 s. 

The endurance characteristics of the amorphous and crystallized IGZO channel de-

vices up to 104 cycles are shown in Figure 10a,b, respectively. Both devices increased in 

terms of Vth shift during the program and erase pulse cycling. However, the endurance 

degradation of the crystallized IGZO device was less than that of the amorphous IGZO 

device. Similar to the retention behavior, the crystallized active layer provides more suit-

able memory properties than the amorphous layer. 

 

Figure 10. Endurance characteristics of (a) a-IGZO and (b) CAAC-IGZO devices tested up 104 cycles. 

4. Conclusions 

In summary, we demonstrated a metal-induced c-axis crystallized IGZO-based flash 

memory with excellent performance compared with an a-IGZO device. The CAAC-IGZO 

layer shows improved μFE, SS, and Ion. In conjunction with Al2O3 as the TNL and Al as the 

S/D metal, the CAAC-IGZO flash memory exhibits a wider memory window and superior 

endurance and retention characteristics, indicating that crystallized IGZO may be an al-

ternative channel material for advanced flash memory device applications. 

Author Contributions: Methodology, paper writing, investigation, conceptualization, H.H.; Vali-

dation, S.J., D.K., T.K., H.C., H.S.; funding acquisition, supervision and editing, C.C. All authors 

have read and agreed to the published version of the manuscript. 

Funding: This work supported by the Future Semiconductor Device Technology Development Pro-

gram (10080689, 20003808, 20004399) funded by MOTIE (Ministry of Trade, Industry & Energy) and 

KSRC (Korea Semiconductor Research Consortium), This research was supported by the BK21 

Figure 10. Endurance characteristics of (a) a-IGZO and (b) CAAC-IGZO devices tested up 104 cycles.



Electronics 2022, 11, 53 10 of 12

4. Conclusions

In summary, we demonstrated a metal-induced c-axis crystallized IGZO-based flash
memory with excellent performance compared with an a-IGZO device. The CAAC-IGZO
layer shows improved µFE, SS, and Ion. In conjunction with Al2O3 as the TNL and Al as
the S/D metal, the CAAC-IGZO flash memory exhibits a wider memory window and
superior endurance and retention characteristics, indicating that crystallized IGZO may be
an alternative channel material for advanced flash memory device applications.
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tion, S.J., D.K., T.K., H.C., H.S.; funding acquisition, supervision and editing, C.C. All authors have
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