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Immunotherapy holds enormous promise to create a new outlook of cancer therapy by
eliminating tumors via activation of the immune system. In immunotherapy, polymeric
systems play a significant role in improving antitumor efficacy and safety profile. Polymeric
systems possess many favorable properties, including magnificent biocompatibility and
biodegradability, structural and component diversity, easy and controllable fabrication,
and high loading capacity for immune-related substances. These properties allow
polymeric systems to perform multiple functions in immunotherapy, such as immune
stimulants, modifying and activating T cells, delivery system for immune cargos, or as an
artificial antigen-presenting cell. Among diverse immunotherapies, immune checkpoint
inhibitors, chimeric antigen receptor (CAR) T cell, and oncolytic virus recently have been
dramatically investigated for their remarkable success in clinical trials. In this report, we
review the monotherapy status of immune checkpoint inhibitors, CAR-T cell, and oncolytic
virus, and their current combination strategies with diverse polymeric systems.
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1 INTRODUCTION

According to the World Health Organization (WHO), cancer is among the top leading causes of
nearly 10.0 million deaths worldwide in 2020 (1, 2). Even though traditional treatment methods,
such as invasive surgery, chemotherapy, targeted therapy, and radiation, have prevailed and made
tremendous progress in the clinical setting, these regimens still face some inherent limitations in
terms of therapeutic efficacy and safety (3–6). To address these issues, cancer immunotherapy, also
known as immuno-oncology, has stepped into the spotlight and many kinds of immune
therapeutics are investigated in the research and development stage (7, 8). Some of them have
even been commercialized (9, 10). Cancer immunotherapy is a type of biological therapy that
utilizes the body’s immune system to generate the attacking response of the tumor cells and thus
produce an anti-tumor effect (11, 12). It can train the immune system to recognize and strike
specific cancer cells and boost immune cells to help them eliminate cancer. It is noteworthy that
cancer immunotherapy targets not only the primary tumor but also the secondary tumor metastasis
by stimulating systemic immune response (13, 14). Further, it can inhibit tumor recurrence through
cancer-specific memory immune response which will be reactive when encountering tumor
associate antigens (TAA) (15, 16).
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There have been diverse cancer immune therapeutics, such as
cancer vaccines, antibody therapy, cytokines, immune checkpoint
inhibitors (ICI), adoptive cell transfer (ACT), and oncolytic viruses
(OV) (17, 18). Among those immune therapeutics, remarkable
success in the commercialization of ICI and chimeric antigen
receptor (CAR)-T cells have driven cancer immunotherapy into
the limelight (19–22). ICI, which blocks the binding of checkpoint
proteins with their partner proteins and allows T cells to kill cancer
cells, has been revolutionarily developed, since Yervoy, the first ICI
and CTLA-4 inhibitor, was approved by the U.S. FDA in 2011.
CAR-T is a genetically engineered T cell to express artificial T cell
receptors and specifically target tumor cells. In addition to ICI and
CAR-T, theutilizationsofOVhave rapidly expanded in thepast few
years since the U.S. FDA approved the first OV, Imlygic, in 2015
(23).OVhas been recognized as a novel therapeutic platformdue to
its unique feature, selectively replicating in and eradicating cancer
cells through a domino-like cascading infection of tumor cells,
which other conventional therapeutics cannot mimic (24).
Moreover, it is also highlighted with its capacity to target cancer
immunity in multiple steps, leading to potent clinical benefits
(25, 26).

Even though these immunotherapies possess dramatic
breakthroughs in the last decade, manifold obstacles regarding
therapeutic efficacy and safety remain to be overcome. To further
elaborate, previous research has shown that less than 50% of the
solid tumor types have positive responses to ICI therapy (27).
Moreover, regarding safety issues, many researchers have
demonstrated the association of ICI therapy with several side
effects such as colitis, fatigue, pneumonitis, endocrinopathies,
and dermatitis (28, 29). Meanwhile, for the CAR-T cell therapy,
safety is also still an utmost concerning issue according to
neurotoxicity and severe side effects, which include death,
cytokine release syndrome, hyperuricemia, hyperkalemia, acute
anaphylaxis, and B-cell aplasia (30, 31). These obstacles are also
found in systemically administered OV, which demonstrates
limited therapeutic efficacy due to its hepatotoxicity and
immunogenicity that respectively trigger nonspecific liver
toxicity and inflammatory responses, making it difficult to cure
inaccessible tumors (32, 33). Further, the complex tumor
microenvironment (TME) is also a difficult hurdle that limits
the application of current immunotherapies (34, 35). In addition,
the above immunotherapies required a large dose of therapeutic
drugs regarding their instability and short half-life, which
exhibits toxicity and severe side effects in a certain number
of patients.

To lower the negative effects and enhance the targeting of
immunotherapies, advanced delivery systems have been exploited.
In recent years, diverse delivery systems have been developed for
immunotherapeutic drugs, both for local, systemic delivery and
sustained release in vivo (36–38). Among these materials, diverse
polymeric systems have been exploited both as excellent carriers for
therapeutic immunogenic agents and favorable adjuvants. These
polymeric systems obtain various advantages including superior
biocompatibility and biodegradability, effective activity for immune
stimulation, tunable size, designable structure, and large loading
capacity for immune-inducing factors (39–43). Moreover,
Frontiers in Immunology | www.frontiersin.org 2
advanced polymeric systems with different functions can be utilized
to carry immune pharmaceuticals to targeting organs by different
routes of administration such as subcutaneously, intranasally, and
intravenously (44–47). To elaborate, these pharmaceutical drugs are
delivered through polymeric systems in various forms such as
polymer–drug conjugates or drug-loaded micelles (48, 49). These
efficient delivery systems are therapeutically promising due to several
reasons. Most polymer backbones consist of diverse functional
groups, enabling the easy conjugation of pharmaceutical drugs to
polymer systems through specific ligands. Moreover, the fabricable
nano size system can allow the polymeric system to stay in the blood
circulation and induce passive tumor targeting. Due to these
advantages, the polymeric systems are considered a promising
strategy to efficiently apply for diverse immunotherapies (Figure 1).

In this review, we focus on representing immunotherapeutic
strategies including immune checkpoint inhibitors, CAR-T cells,
and oncolytic viruses, and their combined application with
polymeric systems. First, we would like to introduce the recent
development of immune checkpoint inhibitor strategies and then
discuss relevant polymeric systems applied with each ICI type.
Second, we describe adoptive cell transfer immunotherapy and
its representative which is a CAR-T cell. We analyze the current
manufacturing methods of the CAR-T cell and its limitations.
We then demonstrate how application of polymeric systems can
reduce these limitations and innovate CAR-T cell to a new
clinical efficacy. Finally, we will present the ongoing possibility
of the oncolytic viruses in immunotherapy. We intensify on
adenoviruses which are the most extensively studied virus type.
We begin by describing basic oncolytic adenovirus biology and
analyze their advantages as well as their limitations. We then
introduce some typical modifications with polymeric systems
that can be used to promote better anti-tumor inhibition.
2 DIFFERENT IMMUNOTHERAPIES AND
POLYMERIC SYSTEMS APPLYING FOR
THESE STRATEGIES

2.1 Immunological Checkpoint Inhibitors
2.1.1 Monotherapy of ICI
Immunological checkpoint inhibitors currently have been
dramatically investigated and the most reported inhibitors are
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and
programmed death receptors 1/programmed death receptor-
ligand 1 blockade (PD-1/PD-L1). The body’s immune system
uses the immune checkpoints to control the corporeal immune
balance and maintain self-tolerance (63). In normal conditions,
the activated T cells express PD-1 to recognize abnormal or
cancerous cells and then eliminate them to protect the body from
their development (64, 65). However, the tumor cells might up-
regulate the expression of PD-L1 or PD-L2 that bind to PD-1 to
evade recognition and attack of immune cells (66, 67). Therefore,
anticancer immunotherapy can be achieved by using blocking
inhibitors of PD-1 or its ligand. Another immune checkpoint is
CTLA-4, which diminishes the T-cell activity and assists the
February 2022 | Volume 13 | Article 826876
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maintenance of self-tolerance (68). The anti-CTLA-4 antibody
has been used to block the CTLA-4 to induce T cell activation,
which inhibits tumor growth.

Nonetheless, many challenges remain with these checkpoint
blockade strategies that limit their application for complete
cancer treatment. As mentioned above, the administration of
immunological checkpoint inhibitors can cause severe harm to
different normal organs (69, 70). Moreover, only a small portion
Frontiers in Immunology | www.frontiersin.org 3
of patients show positive effectiveness of checkpoint inhibitor
treatments, this phenomenon is still under study (71, 72). In
addition, the extracellular matrix and microenvironment of
different tumors suppress the immune recognition and
activation (73). With the new development of polymers and
biomaterials science, these challenges can be overcome by
utilizing various polymers to obtain targeting tumor
delivery (Table 1).
FIGURE 1 | Summary of polymeric systems for cancer immunotherapy. ICI: (A) Scheme of antibody conjugated PEG-PLGA polymeric nanoparticles recreated
referencing from (50); (B) scheme of NLG919(IODI)/IR780 coloaded micelles recreated referencing from (51); (C) scheme of polymeric micelles containing ICI
antibodies recreated referencing from (52); (D) scheme of PEG sheddable, anti-PD-1 antibody (aPD-1)-conjugated, and PTX-loaded micelle recreated referencing
from (53); OV: (E) Scheme of cationic PEI-Ad complex created referencing from (54); (F) scheme of PPSA-Ad complex reused referencing from our group (55); (G)
scheme of PEG conjugated-Ad created referencing from (56); (H) scheme of amphiphilic dendrimer binding Ad recreated referencing from (57); (I) scheme of Ad/
chitosan-PEG-FA nanocomplex reused referencing from our group (58); CAR-T cells: (J) Scheme of targeted mRNA-carrying polymeric nanoparticle recreated
referencing from (59); (K) scheme of targeted pDNA-carrying supramolecular self-assemble nanoparticles recreated referencing from (60); (L) scheme of artificial
antigen presenting cell recreated referencing from (61); (M) scheme of semi-stiff synthetic dendritic cells recreated referencing from (62).
February 2022 | Volume 13 | Article 826876
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TABLE 1 | Summary of recent research on different polymeric systems for immunological checkpoint inhibitors.
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2.1.2 Combination ICI Therapy With
Polymer Systems
One of the typical strategies in ICI is applying siRNA gene
transfection to express the protein knockout of the PD-1/PD-L1
immunosuppressive pathway. This strategy has performed
promising results for cancer treatment (84). Specifically, even
though adoptive T cell immunotherapy performs promising
results in epithelial ovarian cancer (EOC) treatment, the EOC
cell-expressed PD-L1 can interact with PD-1 from T cells and
induce undesired immunosuppression resulting in low therapeutic
effect (85). To overcome this problem, Teo et al. have designed a
folic acid (FA) functionalized PEI polymer complexed with PD-L1
siRNA. The research showed the polyplex, which consisted of FA/
polymer/siRNA, has successfully blocked the PD-1 and PD-L1
pathways and repelled the immunosuppression of T cells, leading
to promote the recognition of T cells toward EOC cells (74). It is
important that the FA not only lower the cytotoxicity of the PEI
but also effectively enhance specificity of uptake into EOC
tumor cells.

On the other hand, transforming growth factor-b (TGF-b)
mediated tumor microenvironment also plays an important role
in immune suppression besides the PD-1/PD-L1 pathway (86, 87).
Unfortunately, the TGF-b signaling is necessary for many cellular
processes so utilizing TGF-bR1 inhibitors can cause severe side
effects such as hemorrhagic, degenerative, and inflammatory lesions
in heart valves (88). To overcome this problem, diverse polymeric
nonviral vectors have been generated to encapsulate TGF-bR1
inhibitors and target them to the tumor site. In 2017, Schmid
et al. introduced a CD8+ T cell-specific nanoparticle system based
on PLGA-PEG polymer conjugated with anti-CD8a F(ab’)2
fragments to encapsulate TGF-bR1 inhibitor SD-208 (50). The
nanoparticles system successfully reduced the cytotoxicity of TGF-
bR1 inhibitor SD-208 to normal cells and recover the immune
function of T cells. Moreover, the PD-1-PLGA-PEG nanoparticle
co-delivery of Toll-like receptor (TLR7/8) agonist (R848) showed
recruited a significantly high number of T-lymphocytes at the
tumors. In addition, a nanoparticle system containing poly
(ethylene glycol)-block-poly(D,L-lactide) (PEG5k–PLA11k) and
the cationic lipidN,N-bis(2-hydroxyethyl)-N-methyl-N-(2-
cholesteryoxycarbonyl-aminoethyl) ammonium bromide (BHEM-
Chol) has been used to deliver immunosuppressive factor siRNA to
a tumor (75). The siRNA encapsulated in the copolymer-based
nanoparticles not only was protected from enzymatic degradation
but also enhanced the cell internalization compared with negatively
charged bare siRNAs. The system exhibited a favorable modulation
implement in tumor invasive CTL. The loaded CTL-associated
molecule-4-siRNA nanoparticles (NPsiCTLA-4) effectively
stimulate T cells’ activation and hinder tumor growth in
melanoma mice.

To overcome the limitations of checkpoint blockers, the
polymeric micelles have also been a promising system.
According to their special structure which consists of polymeric
amphiphiles, micelles can carry and deliver manifold hydrophobic
drugs to the target tumor. Recently, Peng et al. introduced a
polymeric micelle system for tumor immunity post photothermal
therapy (PTT) based on amphipathic polymer MPEG-PCL to co-
deliver photosensitizer IR780 and NLG919 (an indoleamine 2,3-
T

A
B
LE

1
|
C
on

tin
ue

d

T
yp

e
o
f
im

m
u-

no
th
er
ap

y
P
o
ly
m
er

sy
st
em

s
S
ys

te
m

p
ro
p
er
ti
es

a
P
ay

lo
ad

s
A
ffe

ct
ed

im
m
un

e
ce

ll
C
an

ce
r
ce

ll
m
o
d
el

K
ey

fi
nd

in
g
s

R
ef
.

Im
m
un

ol
og

ic
al

ch
ec

kp
oi
nt

in
hi
bi
to
rs

(a
nt
i-

C
TL

A
-4
)

m
-d
ex
tr
an

ba
se
d

na
no

pa
rt
ic
le
s

D
:2

50
nm

A
nt
i-C

TL
A
-

4,
an

ti-
P
D
1

C
D
4+

Tc
el
ls
,C

D
8+

T
ce

lls
B
16

F1
0
ce

lls
Th

e
na

no
pa

rt
ic
le
s
of

a-
P
D
1
re
le
as
ed

in
a
su

st
ai
ne

d
m
an

ne
r.
Th

e
co

-d
el
iv
er
y

aC
TL

A
-4

an
d
aP

D
1
sy
st
em

re
su

lte
d
in

sy
ne

rg
is
tic

tr
ea

tm
en

t
of

m
el
an

om
a

(8
3)

Im
m
un

ol
og

ic
al

ch
ec

kp
oi
nt

in
hi
bi
to
rs

(a
nt
i-

P
D
1)

1-
M
T-
co

nj
ug

at
ed

hy
al
ur
on

ic
ac

id
(m

-H
A
)

D
:1

51
nm

Z:
-1
7.
1
±
0.
2

m
V

A
nt
i-P

D
1

C
D
4+

Tc
el
ls
,C

D
8+

T
ce

lls
,

Tr
eg

s
B
16

F1
0
ce

lls
Th

e
sy
ne

rg
is
tic

th
er
ap

y
w
ith

m
ic
ro
ne

ed
le
su

st
ai
ne

d
re
le
as
e
en

ha
nc

es
re
te
nt
io
n

of
ch

ec
kp

oi
nt

in
hi
bi
to
rs

in
th
e
tu
m
or

m
ic
ro
en

vi
ro
nm

en
t

(5
2)

Im
m
un

ol
og

ic
al

ch
ec

kp
oi
nt

in
hi
bi
to
rs

(a
nt
i-

P
D
1)

A
zi
de

-P
EG

-P
A
sp

(D
ip
/

B
z)

D
:1

28
.7

±
10

.1
nm Z:

-4
.7

±
0.
7
m
V

P
TX

,a
nt
i-

P
D
1

C
D
8+

T
ce

lls
B
16

F1
0
ce

lls
Th

e
m
ic
el
le
co

ul
d
co

nt
ro
lt
he

re
le
as
e
of

aP
D
-1

an
d
P
TX

by
re
sp

on
di
ng

to
th
e

M
M
P
-2

be
in
g
en

ric
he

d
in

tu
m
or

tis
su

e
an

d
ly
so

so
m
al
ac

id
ity

of
tu
m
or

ce
lls

(5
3)

a D
,d

ia
m
et
er
;Z

,
Ze

ta
po

te
nt
ia
l.
February 2022 | Volume 13 | Article 826876

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Le et al. Polymeric Systems for Cancer Immunotherapy: A Review
dioxygenase (IDO) inhibitor) (51). This nano system has shown
sufficient accumulation at the tumor site and shifts to lymph nodes
to promote the activation of T lymphocytes. In another research,
an immunostimulatory dual-functional nanocarrier based on a
prodrug conjugate of PEG with NLG919 was studied by Chen
et al. The system was also equipped with a Fmoc group, a drug-
interactive motif for enhancing drug loading capacity and
formulation stability. The PEG2k-Fmoc-NLG alone showed
greatly stimulated T-cell immune responses and excellent tumor
inhibition in vivo. It is noteworthy to mention that the systemic
administration of paclitaxel (PTX) loaded PEG2k-Fmoc-NLG
nano system exhibited significant tumor inhibition in both
melanoma and breast cancer mouse models (76). A redox-
responsive immunostimulatory polymeric prodrug carrier which
can controllably co-deliver chemotherapeutic DOX and immune
checkpoint inhibitor NLG was introduced by Sun et al. (77). The
system, which is called POEG-b-PSSNLG prodrug (PSSN10), was
a synthesized poly(oligo(ethylene glycol) methacrylate)-poly(N,N
′-(tbutyoxycarbonyl)cystamine) copolymer conjugated NLG919
prodrug which can self-assemble into nano-sized micelles. The
PSSN10 carrier can improve cell immune responses in the
lymphocyte-Panc02 co-culture experiments and exhibited
significant anti-tumor activity in vivo. Moreover, the DOX/
PSSN10 micelles displayed higher efficacy in the tumor growth
inhibition and longer survival rate of 4T1.2 tumor-bearing mouse
model compared with free DOX or a clinical formulation of
liposomal DOX (DOXIL). Another IDO inhibitor, indoximod,
was also co-delivered with DOX in a synthesized copolymer
POEG-b-PVBIND micelles by Wan et al. in 2019 (78). The
indoximod conjugating copolymer micelles effectively promoted
the anti-tumor immunity resulting in an extreme tumor inhibition
effect in a preclinical breast cancer model. In a different concept,
Lan et al. developed a dual functional indoximod-based carrier
PEG2K-Fmoc-1-MT also for breast cancer chemo and
immunochemotherapy (79). The polymeric micelle itself
successfully inhibited IDO effect with decreased kynurenine
(KYN) production leading to the proliferation of CD4+ and
CD8+ T cells. The DOX/PEG2kFmoc-1-MT micelles can
generate an immunogenic cell death process, subsequently
secreting many cytokines [such as interferon (IFN)-g, IL-2, and
tumor necrosis factor-alpha (TNF-a)] inducing later T cell-
mediated immunity. The 4T1 murine breast cancer model
tumor inhibition profile of DOX/PEG2kFmoc-1-MT micelles
was dramatically high with long survival time compared with
other groups. Another amphiphilic PEGpoly-1-Methyl-l-
Tryptophan (MLT) block of copolymer self-assembled
polymeric micelles was investigated by Huang et al. which
showed effectively reduced levels of KYN in activated
macrophages (80).

As mentioned above, CTL-4 can suppress the activation of T
cells and promote self-tolerance. The anti-CTLA-4 antibody can
be used for blocking the CTLA-4 and stimulating the activity of T
cells toward the tumor. CTLA-4 antibodies have been loaded in
poly(lactic-co-hydroxymethyl-glycolic acid) (PLHMGA) by
Sima et al. for cancer immunotherapy. The nanoparticle
system has been proven to block inhibitory receptors on T
Frontiers in Immunology | www.frontiersin.org 6
cells and obtained promising therapeutic efficacy than the IFA
formulation in colon carcinoma tumor model (MC-38) (81). Lei
Zhang et al. reported a study on PLGA microparticles to co-
deliver IL-2 and CTLA-4 antibodies. The surface of the PLGA
microparticles was conjugated with a H-2Kb/TRP2-Ig dimer and
anti-CD28. The polymeric macroparticles successfully co-
released IL-2 and anti-CTLA-4 inducing dual effects in
activating and promoting tumor antigen-specific T cells. The
systems exhibited enhancement in anti-tumor efficacy in a
mouse melanoma model (82).

Similar to CTL-4, diverse PD-1/PDL-1 inhibitors have been
used for combinatorial therapy in recent clinical trials (89).
Different kinds of polymers have been exploited with PD-1/PD-
L1 blockade for cancer immunotherapy presently. Especially,
utilizing the synergistic effect of diverse types of delivery systems
can exploit the maximized potential of immune therapeutics. For
example, Chao et al. reported a hyaluronic acid (a biocompatible
natural polymer) microneedle integrated with pH-sensitive
dextran nanoparticles (NPs) that can encapsulate and release
PD-1 antibodies in a controlled manner to melanoma tissue.
The report showed that this self-degradable microneedle
encapsulated PD-1 antibody system generated a higher robust
immune response compared to free anti-PD-1 antibody at the
same dose in a B16F10 melanoma model (83). Another study
conducted by Ye et al. has also produced immunotherapeutic
nanoparticles from hyaluronic acid but modified with 1-methyl-
DL-tryptophan (1MT) to deliver anti-PD-1 antibody. The
particles combined with microneedle successfully sustain release
and increased the accumulation of anti-PD-1 antibodies in the
TME. The system indicated the improvement in tumor growth
inhibition and lowered the immunosuppression in a B16F10
melanoma model (52). In addition, the specific tumor targeting
nanoparticles can possibly enhance the performance of antitumor
immunity. For example, a pH and matrix metalloproteinase dual-
sensitive micellar nanocarrier which can spatiotemporally control
the release of anti-PD-1 and PTX in solid tumors has been
developed by Su et al. (53). The report interestingly indicated
that the PTX-induced immunogenic cell death (ICD) can activate
the antitumor immunity along with the blocking of the PD-1/PD-
L1 axis from anti-PD-1. Together, they hinder the immune escape
of tumor cells due to PTX-induced PD-L1 up-regulation. Of note,
the pH-sensitive polyethylene glycol (PEG) shell could be
sheddable at the tumor acidity site resulting in release of anti-
PD-1 and PTX. In general, polymer-based material can be utilized
as a superlative and effective delivery system to sustain
biocompatible antibodies and other immunological checkpoint
inhibitors in cancer immunotherapy (Figure 2).
2.2 Chimeric Antigen Receptor-T Cells
2.2.1 Monotherapy of CAR-T Cells
The term “adoptive cell transfer” (ACT) involves a group of cell-
based anticancer immunotherapies and is very attractive for its
smart and patient-tailored strategies (90, 91). ACT contains
different steps to induce immune-mediated clearance of cancer.
First, the circulating or tumor-infiltrating lymphocytes are
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collected from the patient. Then the cells are elected, activated ex
vivo, genetically modified to express a cancer-targeting receptor,
and multiplied to a therapeutic quantity. Finally, the cells are
reinjected into the treated patient to recognize and eliminate
cancer cells.

CAR-T cell is the most representative of ACT recently and
has obtained optimistic clinical success. This therapy utilizes
CAR to engineer autologous T cells for achieving immune
activation without major histocompatibility complex (MHC)-
restriction. The CAR is mainly composed of an extracellular
antibody-derived antigen binding domain for cancer targeting
and a one or more linked intracellular signaling domain. The
extracellular binding domains are commonly constructed from
single-chain variable fragments (scFvs) derived from tumor
antigen-reactive antibodies (92). The intracellular signaling
domain comprises CD3z chain domain and co-stimulatory
domains, such as CD28 and/or 4-1BB to provide costimulatory
signals for promoting CAR-T cell expansion, persistence, and
function (93).

However, the manufacturing of CAR-T cell is time-consuming,
expensive, and technically complex compared to other small
therapeutic drugs. There are multiple aspects that need to be
carefully controlled to archive a secure, therapeutically safe and
effective CAR-T cell therapy, such as balanced CD4/CD8 ratio, the
viability of differentiated CD3+CAR+ cells, and in vitro
cytotoxicity and cytokine release against cells expressing the
target antigen, which makes it costly and limits its widespread
use (94). For instance, the list cost of Kymriah is US$475,000 and
of Yescarta is US$373,000 which is higher than the current
common cancer therapies’ cost (95). The manufacturing time to
archive enough therapeutic cell numbers is from 3 to 4 weeks at
Frontiers in Immunology | www.frontiersin.org 7
least depending on different methods (96–98). It is noteworthy
that the consistency of cell products plays a significant role in the
tumor clearance effect of the patient. An optimum manufacturing
of engineered T-cell process is required for reducing the cost and
escalating clinical translation of CAR-T cell therapy.

Notably, utilizing engineered polymers can improve and
streamline CAR-T cell manufacturing process. Diverse kinds of
polymers have been synthesized and modified to apply in many
medical engineering processes including cell culture (99), tissue
engineering (100), separation (101), and drug and gene delivery
(102). Similarly, many polymeric systems have been used to
optimize streamlined CAR-T cell manufacturing process, mainly
focusing on activation and genetic modification of the CAR-
T cell.

2.2.2 Polymeric Systems Utilized in CAR-T Cell
Activation
The ex vivo CAR T-cell activation consists of three central
signaling steps, which are T cell receptor (TCR) stimulation,
CD28 co-stimulation, and cytokine signaling. Usually the T cell
receptor (TCR) stimulation and CD28 co-stimulation utilize
independent anti-CD3 and anti-CD28 monoclonal antibodies
(mAbs) adhered to solid materials for receptor clustering. On the
other hand, the cytokine signaling commonly uses soluble
cytokines dissolved in the culture medium. Therefore, an
activation platform should match the above requirements and
these following criteria. The platform first needs to be “friendly”
and can promote T cells to multiply to around 1 to 5 × 108 CAR+
T cells for one patient (103), and maintain the stably therapeutic
state in vivo. It is favorable that the platform can keep the balance
number of CD4+ and CD8+ T cells in expansion (104). One
FIGURE 2 | Schematic of different polymeric systems designed for ICI therapy.
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more crucial point is the activation materials should be
convenient to process and easily separate from T cells.

In this part, we discuss different polymeric T cells activation
systems and their properties for adequately activating and
expanding T cells.

2.2.2.1 Nanoscale Activation Polymers and Particles
A commercial reagent to activate and expand human T cells via
CD3 and CD28 was developed by Miltenyi Biotech which called
it TransAct. According to the Miltenyi Biotech specification,
TransAct has a nano core-shell structure where the core is iron
oxide crystal and the shell is biodegradable polysaccharide
matrix conjugated to humanized CD3 and CD28 agonists (105,
106). The size of TransAct is around 100 nm and can be filtered
sterilized, the excess reagent can be cleared by centrifugation
with the following conventional supernatant replacement or
simply by a medium wash. Many studies have investigated and
compared the effectiveness in expansion, differentiation, CAR
transduction, and functions of activated T cells by TransAct and
the results suggest that TransAct can be used for clinical-scale T-
cell activation (107, 108).

In 2013, Mandal et al. synthesized a semiflexible synthetic
dendritic cell for T cell activation (62). The semi-stiff poly
(isocyano peptide) has been coupled with BCN-functionalized
streptavidin (Sav) and then conjugated with biotinylated aCD3
antibodies to produce aCD3– “synthetic dendritic cells” (sDCs).
The flexibility of this system allows the effector molecules on it
which can effectively bind to the receptors of the targeted T cell.
With the size around 150−200 nm, the aCD3–sDCs showed
higher efficacy in expanding T cells compared to spherical
aCD3–PLGA particles (1.8 mm diameter) or free aCD3
antibodies with the same antibody amount. The group then
continuously developed this semiflexible synthetic mimic
dendritic cells system with co-carrying anti-CD3 antibodies
(aCD3) for triggering the T cell receptor and anti-CD28
antibodies (aCD28) as a costimulatory signal (109). The
bifunctional aCD3/aCD28-sDC significantly stimulated T cell
activation at a considerably lower antibody concentration than
free soluble antibodies. Interestingly, the highest level of
polyclonal T cell activation was only achieved when the sDCs
carry both aCD3 and aCD28 antibodies on the same polymer.
Utilizing different polymers aCD3-sDC and aCD28-sDC did
not improve any T cell activation compared with aCD3-sDC
alone. These results suggested that polymer flexibility and
multiple signals equipped on one polymer are crucial for
mimicking the endogenous receptor clustering needed for
optimal T-cell activation.

2.2.2.2 Microscale Artificial Antigen-Presenting Cells
On the other hand, different from nanoscale platforms, the
microscale activation platforms imitate the original scale of
endogenous antigen presenting cells and their immunological
synapses with T cells. One of the first synthetic aAPCs design was
based on latex (polystyrene) beads in the 1990s (110, 111). They
have been used for exploring elemental features of T cell biology
(112–114), and also as translational platforms for adoptive
immunotherapy (115–118). These latex platforms are
Frontiers in Immunology | www.frontiersin.org 8
generated by chemically functionalized polystyrene surfaces
with soluble proteins, or by binding avidin coated particles
with biotin-labeled T cell activating proteins. Furthermore,
MHC presented on the solid microparticle platforms by
glutaraldehyde can induce stronger activation signal for T cells
than the MHC presented on a cell membrane (119).
Interestingly, hybrid lipid-latex particles, which utilize both the
potential advantages of a solid particle and a flexible membrane,
can be incorporated by coating polystyrene microsphere with
plasma membrane vesicles (120–122). The studies suggested that
this type of platform might effectively improve the efficacy of
tumor immunotherapy with antigen. However, the main
application of these polystyrene-based microparticle systems
was for expansion of T cells in vitro because of its
biodegradation and biocompatibil ity problems. The
intravenous administration of larger 3-5 mm solid particles can
accommodate in small capillary beds and cause capillary
infarction (123, 124). Because of these issues, more advanced
microparticle systems which are removable or biodegradable
after the culturing period need to be developed.

In recent years, many biodegradable polymer-based
microspheres have been utilized as vehicles for drug delivery
(125, 126). The variety of these systems is varied in sizes in the
range of hundreds of nanometers to 10 mm and can be generated
from various polymers, such as poly(glycolic acid) (PGA), poly
(lactic acid) (PLA), or their copolymer, poly(lactic-co-glycolic
acid). After administration to the body, the biodegradable
polymer particles are degraded to nontoxic substances and
release the encapsulated drugs in several hours or weeks,
depending on their design. Based on their favorable
biocompatibility and biodegradability, the biodegradable
polymer particles are an attractive candidate for aAPCs
platforms that can deliver in vivo (127, 128). Notably, they can
be formulated to release cytokine signals as they degrade and
integrate these signals into designed aAPC (129, 130)

An ellipsoidal PLGA microparticle system was generated by
Sunshine et al. as an aAPCs with 4.3 mm average diameter.
Different aspect ratios have been investigated in T cells
expansion efficacy (61). Compared with a spherical shape,
ellipsoidal aAPCs dramatically improved T cell proliferation
both in vitro and in vivo, especially at higher aspect ratios. The
same tendency was observed with nanoscale aAPCs (131). On
the aspect of surface topography, Fadel et al. developed an aAPC
platform based on carbon nanotube−polymer composite (CNP)
with the average size around 20−40 mm (132). The surface of the
CNP possessed many defects that induced high surface area for
attaching the stimuli for T cells. IL-2, a cytokine for T-cell cluster
initiation and persistence after antigen priming, was
encapsulated in biotinylated PLGA nanoparticles together with
magnetite. These CNP aAPCs facilitated T cell expansion,
differentiation, and the number of obtained T cells was
proportionated to a level that would require at least 1000-fold
less soluble IL-2 under conventional culture conditions. In
addition, the magnetite in the PLGA nanoparticles allowed
magnetic removal of CNP aAPCs, which contained the utmost
physically and chemically stable carbon nanotubes.
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2.2.3 Polymeric Systems Utilized in CAR-T Cell
Genetic Modification
Compared to viral transduction and nucleofection with
expensive cost and safety issues, polymer-based nonviral gene
delivery systems have recently become a potential candidate for
CAR T-cell genetic modification. Cationic polymers which can
electrostatically interact with negatively charged DNA and RNA
to form polyplexes are the most favorable polymers for this
purpose. Moreover, the positive charge of polyplex facilitates
cellular uptake by the ionic interaction with negatively charged
proteoglycans on the cell surface (133). Especially, if the cationic
polymers contain amine groups, the amine groups will be
protonated in the pH range of 5.0 to 6.8 and induce the
proton sponge effect resulting in endosomal escape (134).
Numerous polymers have been exploited such as poly(b-amino
ester) (PBAE) (135), poly(2-dimethyl)aminoethyl methacrylate)
(pDMAEMA) (136), polyamidoamine (PAMAM) (137), and
branched polyethylenimine (bPEI) (138).

In this part, we report different polymer architectures for
nonviral gene delivery to T cells, arranging them by ex vivo and
in situ application. We also review main key barriers that require
further improvement to achieve more efficient transfection with
these systems.

2.2.3.1 Ex Vivo Gene Delivery With Polymeric System
In 2018, Pun’s group investigated the transfection efficiencies of
different synthesized polymers and their concomitant toxicity to
T cells (139). They compared the transfection efficiency and
cytotoxicity of branched polyethylenimine (bPEI), VIPER (virus-
inspired polymer for endosomal release), linear pDMAEMA290,
linear-branched (comb), and cyclic-branched (sunflower)
polymers with varying pHEMA core sizes and pDMAEMA
branch lengths in the Jurkat human T cell line. VIPER is an
-block copolymer that consists of a hydrophilic cationic block for
nucleic acid loading and colloidal stability, and a pH sensitive
membrane lytic block for endosomal release in acidic pH (e.g.,
pH < 6.4) which was developed by their group (140, 141).
Between the distinct polymer structures of pHEMA and
pDMAEMA, sunflower and comb polymers obtained the most
effective greatest transfection of Jurkat cells (25−50%) with low
toxicity compared to bPEI, VIPER, or linear pDMAEMA290.
The change in brand length of comb and sunflower polymer did
not affect much in performance, however, reducing the core size
of the comb polymer significantly lowers the transfection and cell
viability. The best formula for the comb polymer was with core
size of degree of polymerization 25 and branch length of degree
of polymerization 16, this helped transfection efficiencies in
primary T cells achieve an average 20% with mRNA and 10%
with plasmid DNA (pDNA) and with cell viability persistently
above 75%.

Many studies suggested that a decrease in branching of
polymer can have a negative effect on transfection and
viability. Christopher and Anja et al. developed multi-arm star-
shaped pDMAEMA polycations for DNA transection and the
result showed that the 5-arm star-shape exhibited lower
cytotoxic than 3-arm counterparts with the similar transfection
(142). Their research group continuously generated higher-
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branched star polycations, 20-arm pDMAEMA conjugated on
a silsesquioxane initiator core and 120-arm self-assembled
nanoparticles comprised of amphiphilic polybutadiene-block-
pDMAEMA block copolymers showed 10 to 15% transfection
efficiency of pDNA in primary T cells with more than 80%
viability (143, 144). These data suggested that high polycation
branching can be suitable for enhancing T-cell transfection.
Notably, currently Yu et al. synthesized supramolecular self-
assembled nanoparticles from adamantane-grafted PEG,
adamantane-grafted PAMAM dendrimers, and cyclodextrin-
grafted low-molecular-weight branched PEI which achieved
more efficient pDNA transfection in Jurkat T cells than high-
molecular-weight branched PEI (60).

Importantly, equipping cationic polymers with T-cell
targeting ligands to facilitate cell surface binding and
internalization could significantly enhance transfection. For
example, Moffett et al. fabricated biodegradable poly(b-amino
ester) (PBAE)-mRNA polyplex with poly(glutamic acid) (PGA)-
modified antibodies (anti-CD3 or CD8) to form particular cell
targeting mRNA nanocarriers (59). The nanocarriers
successfully internalized into primary T cells within 2 h and
effectively transfected more than 80% T cells with mRNA.
Especially the lyophilized nanocarriers also showed the same
result without any serve interference on T cell viability
and expansion.

2.2.3.2 In Situ Gene Delivery With Polymeric System
It is worth mentioning that for covering the expensive and
laborious ex vivo CAR-T cell generation, in situ polymer-based
gene delivery strategies have been developed. In 2017, Matthias
T. Stephan’s research group utilized the polyglutamic acid
(PGA)-conjugated antibody decorated poly(b-amino ester)
(PBAE)-DNA polyplexes to target the T cell and genetically
modify host T cells with leukemia-specific CAR genes in vivo
(145). The nanocarrier has the core-shell structure, where the
core was plasmid DNA complexed with PBAE polymers grafted
peptides containing microtubule-associated sequences (MTAS)
and nuclear localization signals (NLS) to facilitate nuclear
plasmid import of their genetic cargo via the microtubule
transport machinery under resting T-cell conditions. They
used two plasmids, one with the leukemia-specific 194-1BBz
CAR and one for coding the hyperactive iPB7 transposase for
stable CAR integration. The shell of the nanocarrier was poly
(glutamic acid) (PGA)-modified anti-CD3e f(ab′)2 for T cell
targeting. The nanocarriers were systemically delivered into mice
and the result indicated 34% (± 5.1%) of the circulating T
lymphocytes bound CD3-targeted nanoparticles after 4 h,
whereas the signals from off-target cells were 5.9 ± 2.8% after 4
h. To investigate the in-situ reprogramming circulating T cells
ability of the nanocarrier system, five sequential doses of 3 × 1011

nanoparticles were intravenously injected into mice bearing B-
cell acute lymphoblastic leukemia. Interestingly, only the injected
nanoparticles co-encapsulated 194-1BBz and iPB7 transgenes
groups showed rapidly and efficiently programmed peripheral T
cells to recognize leukemia cells. After that, these T cells robustly
replicated and differentiated to effector phenotypes while keeping
a high-level expression of the CAR transgene over 24 d, then
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achieved a CD44high CD62L+ memory phenotype. Remarkably,
the tumor-inhibition profile of in situ nanocarrier-programmed
CAR-T cells was commensurate with high-dose adoptively
transferred CAR-T cells.

In summary, the engineering and manufacturing of CAR-T
remain a challenge for the widespread adoption of this
technology. To overcome these challenges, we have introduced
two main strategies using polymer systems to engineer T cells
into CAR-T cells. As T cells need to be expanded for the
engineering to CAR-T cells, novel biodegradable polymeric
systems that act as synthetic dendritic cells can be utilized.
Further, the use of branched cationic polymers and advanced
polymeric nanocarriers can improve the genetic transfection of
CAR genes into T cells (Figure 3).

2.3 Oncolytic Virus
2.3.1 Monotherapy of Oncolytic Virus
Oncolytic virotherapy is the most auspicious access for tumor
immunotherapy. The vital advantage of oncolytic virotherapy is
based on the ability of replication-competent viruses that can
proliferate selectively at tumor cells (146). Among many different
viruses, adenoviruses can be represented as an example for
illustrating oncolytic viruses as a whole. In 2005, the State
Food and Drug Administration of China approved Oncorine, a
replicative, oncolytic recombinant ad5 (rAd5-H101) for treating
refractory nasopharyngeal cancer. This was considered the first
approved oncolytic virotherapy for clinical use in the world (147,
Frontiers in Immunology | www.frontiersin.org 10
148). Many types of cancer cells lose the p53 gene which causes
drug resistance and lower survival rates in cancer patients (149).
The p53 gene inactivation cell can halt the activation of apoptotic
pathway. The Oncorine is a human serotype 5 adenovirus which
is deleted by the E1B 55K gene. The elimination of the E1B 55K
gene prohibits viral proliferation in normal cells, tolerating only
multiples in the p53-lacking host cells. Therefore, the rAd5-H101
selectively proliferates in tumor cells and causes cancer cell lysis.
The newly generated viruses release and infect surrounding
cancer cells which leads to a chain-reaction of ultimate cancer
cell destruction (150). The Oncolytic Adenovirus (oAd) recently
become one of the most interesting generic immunotherapies for
cancer in numerous phases of clinical trials (151, 152). The
adenovirus (Ad) possesses several advantages that are beneficial
for generic immunotherapy, such as the transduction ability of
dividing and non-dividing cells with high efficacy, high loading
capacity, easy modification of Ad genome, high production of
viral progenies, and subsequent spreading of progenies to
adjacent cancer cells (153–156).

It is noteworthy that the virus propagation inducing cell lysis
is an extremely immunogenic process (157). This aspect is
crucially relevant considering that the cancer cells usually
disguise themselves from the host immune systems. The cell
lysis releases multiple immunogenic molecules, such as abundant
tumor-associated antigens for presenting to dendritic cells. The
released virus genomes induce immunological danger signals
through pathogen-associated molecular pattern (PAMP) and
FIGURE 3 | Schematic of different polymeric systems designed for CAR-T cell therapy.
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damage-associated molecular pattern (DAMP) receptors. These
simultaneous actions stimulate the adaptive immune system,
including helper CD4+ T cells and cytotoxic CD8+ T cells,
toward the tumor resulting in disabling the tumor
immunosuppression (158). Moreover, the T cell immunity
toward the replicated adenovirus can enhance the overall
antitumor process (159). The adenovirus infection can also
indirectly activate the nature killing cells response for further
immunogenic tumor inhibition (160). Indeed, many reports have
investigated and confirmed the ability to inhibit the growth of
different tumors of locally administered oAds, both in preclinical
and clinical cases (161–166). The Oncorine is representative of
oAds that have been used for clinical cancer treatment. However,
the oAds still face certain challenges that narrow the therapeutic
effectiveness for clinical trials.

One of the major hurdles for oAds’ efficacy is the pre-existing
humoral immunity of the host body. Nowadays the human
adenovirus serotype 5 (Ad5) is the most popularly used for
adenoviral virotherapy and many reports showed that high
percentages of the general population possess anti-Ad5
neutralizing antibodies (Nabs) which can easily terminate the
bioactivity of Ad5. On the other hand, another utmost limitation
of utilizing oAds for cancer therapy is the internalization of oAds
dramatically depends on appropriate receptors, such as the
Coxsackievirus and adenovirus receptor (CAR) on the surface of
targeted cells. The CAR is a protein that belongs to a type I
membrane receptor for subgroup C adenoviruses. CAR protein is
expressed in many human tissues, including brain, heart, and some
endothelial and epithelial cells (167–169). The efficiency of
adenoviral transgene expression and CAR expression have been
corresponded in numerous studies, suggesting that adenoviral
binding and entry into target cells play an important role in
achieving successful adenoviral gene expression (170, 171).
Unfortunately, several cancer cell lines and clinical cancer tumors
have been frequently observed in the loss of CAR expression,
preventing attempts to achieve adequate oncolytic adenovirus
virotherapy for cancer patients (172–175). It is impossible for
oAds to obtain satisfactory remedial efficacy without
overwhelming this CAR-dependent internalization. To overcome
this, most currently ongoing clinical trials of oAds have been
genetically modified to equip the beneficial fiber region. This
adjusted fiber region can improve cellular internalization of the
adenovirus and is independent of CAR expression level in
heterogenic clinical tumor or tumor-specific internalization (176–
178). However, processing genetic engineering for optimization of
fiber-modified virus is risky and contains various disadvantages
such as excessive cost, time, and labor-consuming. Inappropriate
genetic editing can cause viral replicability loss, viral inactivity, and
inadequate gene sequence expression (163).

To overcome these severe limitations of both local and
systemic administration of oAd, many advanced polymer-
based delivery techniques have been developed in recent years.
The polymer-based delivery techniques can enhance the
bioavailability while at the same time provide the necessary
(Figure 4) protection of oAd. The delivery and tumoral
targeting profile of encapsulated oAd can be adapted to the
Frontiers in Immunology | www.frontiersin.org 11
specific medical goals by choosing a proper encapsulation
polymer (179, 180). By covering the outer surface of oAd, the
polymer-based delivery systems can avoid adverse problems
caused by the viral capsid. Furthermore, the applied materials
can sufficiently equip the oAd with beneficial properties and
override the natively disadvantageous attributes of viral vectors,
which efficiently contribute to improving the tumor-specific
accumulation of oAd (58, 181–183) (Table 2).

2.3.2 Combination Oncolytic Adenovirus Therapy
With Polymer Systems
2.3.2.1 Overcoming CAR-Dependent oAd Uptake by
Cationic Polymers
The Ad surface interestingly possesses negative charge (188, 189).
Therefore, the anionic surface of Ad can electrostatically interact
with the cationic polymer to form an Ad/polymer complex. Because
of the cationic charge of the polymer, the complex surface is
positive, therefore, the complex can enhance the cellular uptake
and transgene expression of Ad. Various kinds of polymers have
been used for complexing with Ad, most of them based on the
positively charged amine groups in the backbone of the polymers. It
is noteworthy that the secondary and tertiary amines additionally
have high buffering capacity, which compellingly promotes the
escape from endosomes into the cytosol of the virus due to the
proton sponge effect (190, 191). The polymer structure can be
beneficially designed and easily controlled to obtain the advanced
bio-function for improving oAd tumor-inhibition efficacy. The
method to generate oAd/polymer complex is also straightforward
and effortless compared to genetic editing or chemical modification
of the virus structure. The oAd/polymer complex can be formed in
an aqueous buffer without any additional steps or chemicals.
Notably, the original bioactivity of the oAd does not change and
is preserved in the complex. On the other hand, the remaining
limitations of this method are that the cationic oAd/polymer
complex not only can specifically internalize to the cancer cells
but also uptake to the body’s healthy cells, subsequently increasing
cytotoxicity toward the body. Moreover, the electrostatic interaction
of the complex can easily be dissociated in the bloodstream through
intravenous injection via associating the cationic polymer with the
negatively charged serum protein. The association with some
specific serum protein can also trigger the interaction with
macrophages and monocytes (192, 193).

2.3.2.1.1 Engineered Poly(Ethyleneimine) for oAd. In the history
of developing transfection reagents, beside the polylysine, the poly
(ethyleneimine) (PEI) was the second polymeric transfection agent
discovered (194–196). The repeating unit of PEI consists of the amine
group and two carbon aliphatic spacers. Depending on whether the
PEI is linear, branched, or dendrimer form, the structure of PEI can
contain primary, secondary, or tertiary amino groups. The PEI (25
kDa) is considered as a standard model for transfection reagent
because of its high transgene expression (197, 198). Though the PEI
performs high cytotoxicity by twomechanisms, the cationic charge of
PEI can possibly disrupt the cell membrane and lead to necrotic cell
death or disrupt the mitochondrial membrane after cytosol inter-
nalization leading to apoptosis. Many attempts have been made to
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reduce the PEI cytotoxicity, including modified with non-toxic pol-
ymers such as polyethylene glycol (PEG) or other biopolymers, or
cholesterol (199–203). Among these attempts, various bioreducible
PEIs have been studied for applying cancer therapy (204–206). The
bioreducible PEI contains the disulfide moiety in the copolymer
blocks, which will degrade via a reductive environment in the cyto-
plasm and release the therapeutic materials. The degraded fragments
can be clearly excreted by the host body’s excretory system producing
low systemic cytotoxicity. In 2015, a new low molecular weight PEI
multi cross-linked to bioreducible disulfide cystamine core (rPEI) had
been generated by Choi et al. and complexed with Ad (54). The Ad/
rPEI complex showed remarkably higher transduction efficiency
compared to naked Ad in both CAR-positive and -negative cancer
cells, which suggests that the complex can independently transduce to
CAR expression cancer cells. Moreover, the GFP intensity of GFP-
expressing Ad in the 16kDa rPEI complex was manifold higher than
Ad/25 kDa PEI in all A549 (7.7-fold), HT1080 (2.9-fold), and MCF7
cells (2.0-fold), which exhibited the remarkable transduction effi-
ciency of the Ad/rPEI. The oncolytic Ad expressing short hairpin
RNA against c-Met mRNA complexed with rPEI, demonstrated
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more efficient cancer cell killing effect, suppression of Met and VEGF
level, and viral production than naked Ad. In recent times, Lee et al.
developed a bile acid-conjugated 1.8 kDa PEI (DA3). The VEGF
inhibitory gene (KOX) expressing-oncolytic Ad was complexed with
DA3 (KOX/DA3) and showed a higher transduction efficiency than
naked oAd in both CAR-positive and -negative cancer cells (184).
Interestingly, the internalization mechanism of the Ad/DA3 complex
and naked Ad were investigated and the results indicated that the
mechanism of cellular uptake of the Ad/DA3 complex differed from
that of naked Ad. The Ad/DA3 complex appeared to be transduced
via clathrin-, caveolae-, and macropinocytosis-mediated endocytosis,
whereas the naked Ad appeared to internalize cells mainly by
clathrin-mediated endocytosis. The KOX/DA3 exhibited an
improved antitumor efficacy compared with naked KOX. The data
suggest the DA3 can facilitate the amplification and active replication
of KOX.

2.3.2.1.2 Biodegradable/Reducible Polymers Coated oAd. In
2013, a biodegradable methoxy poly(ethylene glycol)-b-poly{N-
[N-(2-aminoethyl)-2-aminoethyl]- L-glutamate (PNLG) poly-
A

B

FIGURE 4 | Schematic of oAd immunotherapy with polymeric system. (A) The naked oAd is disabled by pre-existing Ad-specific neutralizing antibodies.
(B) Oncolysis by polymer/oAd system stimulates the immune system response against tumor cells, enhancing the therapeutic response.
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mer was generated and used to coat oncolytic Ad (Ad-DB7-
U6shIL8) (oAd/PNLG) by our group (185). The GFP-expressing
Ad complexed PNLG showed improvement in transgene
expression in both positive and negative CAR-expressing cells
than naked Ad and Ad/bPEI in vitro. In addition, the oAd/PNLG
showed better cancer cell killing efficacy in vitro than naked Ad,
Ad/PEI. The biodistribution result demonstrated higher tumor
accumulation when systemically administered oAd/PNLG
compared with naked Ad and Ad/PEI. The oAd/PNLG showed
1229-fold higher tumor-to-liver ratio than the naked oAd. It is
noteworthy that the oAd/PNLG also showed significantly lower
innate and adaptive immune responses than the naked Ad.
Another cationic polymer was introduced by our group in 2014
especially containing arginine moieties that enable promotion of
cellular internalization in both low and high CAR-expressing
cells (55). The polymer, mPEG-PEI-g-Arg-S-S-Arg-gPEI-mPEG
(PPSA), contains multiple arginine functional moieties for
increasing transgene expression and introduced a bioreducible
disulfide bond to lower cytotoxicity. The oncolytic Ad
(DWP418) was complexed with PPSA (DWP418/PPSA) and
intratumorally injected into CAR negative MCF7 xenograft mice.
The result revealed that the DWP418/PPSA provided more
effective anti-tumor responses compared with naked DWP418.
Moreover, the results also indicated the DWP418/PPSA-treated
mice produced less innate immune response and oAd-special-
ized neutralizing antibodies than the only DWP418-treated
group but produced more viral replication and viral cancer cell
lysis in tumor tissues. The optimistic results demonstrate the
advantages of utilizing the bioreducible and biodegradable pol-
ymer masked oAd in cancer treatment.
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2.3.2.2 Tumor Targeting by Oncolytic Ad/Polymer
Onthe other hand, the complexes of oAdwith cationic polymer still
face diverse obstacles for clinical translation, such as the cationic
oAd/polymer complex not only non-specifically internalizing the
cancer cells but also uptaking the normal tissues, subsequently
causing cytotoxicity. The electrostatic interaction of the complex
can also easily be dissociated in the bloodstream through
intravenous injection via associating the cationic polymer with
the negatively charged serum protein (207–209).

2.3.2.2.1 PEGylation of Oncolytic Ad. Polyethylene glycol (PEG)
is a biocompatible, synthetic, hydrophilic polyether, composed of
CH2CH2O repeat units. Abundant therapeutic drugs are frustrated
by short half-lives in vivo. The PEG is considered the first material
that successfully improves both physiochemical, pharmacody-
namic, and pharmacokinetic properties of biological drugs such as
proteins, peptides, enzymes, synthetic drugs, etc. and has been
approved by the FDA in 1990 (210–212). By interacting with PEG,
the therapeutic agents can increase water solubility, and reduce
renal clearance and immunogenicity. In 1999, the first research on
conjugating Ad with PEGwas recorded (212). The PEGylation did
not show any damaging effect on the bioactivity of Ad. Also it was
shown that it can enhance serum stability, blood circulation, and
tumor-specific accumulation. The PEGylation has been proved to
improve remarkably the Ad to avoid antibody neutralization and
also unfavorable immune response in vitro and in vivo (213, 214).

In 2009, Doronin et al. investigated the effect of PEGylation
on oncolytic Ad by using 5-kDa and 20-kDa PEG (56).
Interestingly, the therapeutic efficacy of PEGylated oncolytic
Ad improves with increasing molecular weight of the PEG.
TABLE 2 | Summary of recent research on different polymeric systems for oAd.

Methods Polymer systems System propertiesa) Oncolytic
adenoviruses

Cancer
cellmodel

Efficacy Ref.

Physical
interaction

Multidegradable bioreducible core-
cross-linked polyethylenimine (rPEI)

D: 192.8nm
Z: 24.3mV

RdB/shMet MCF7,
A549,
HT1080

Improved transduction efficacy and achieved CAR-
independent cell internalization.

(54)

Physical
interaction

Bile acid-conjugated poly
(ethyleneimine) (DA3)

D: 324 ± 3.08
nmZ:10.13 ± 0.21mV

RdB-KOX HT1080 Hindered tumor angiogenesis and enhanced anti-
tumor efficacy

(184)

Physical
interaction

Methoxy poly(ethylene glycol)-b-poly
{N-[N-(2-aminoethyl)-2-aminoethyl]-
L-glutamate} (PNLG)

D: 130-140 nm
Z:~19 mV

Ad-DB7-
U6shIL8

HT1080,
A549

Highly enhanced tumor accumulation and anti-tumor
efficacy, preserved bioactivity of Ad at 37°C

(185)

Physical
interaction

mPEG-PEI-g-Arg-S-S-Arg-g-PEI-
mPEG(PPSA)

D:~200 nmZ:19.6 ±
0.9 mV

DWP418 MCF7 Increased transduction efficacy and obtained CAR-
independent cell internalization, improved anti-tumor
efficacy

(55)

Chemical
interaction

Polyethylene glycol (PEG) D:122.8-138.5nm
Z:19.6 ± 0.9 mV

Ad-GL Hep3B,
LNCaP

20-kDa PEGylation of oAd reduced transduction of
the liver and toxicity, improved anti-tumor efficacy

(56)

Physical
interaction

Poly(amidoamine) dendrimer
(PAMAM)

No data Ad5-CMV/NIS HCC Lowered hepatic accumulation, significantly delayed
tumor growth and extended survival

(186)

Physical
interaction

Amphiphilic polyphenylene dendrimer
(PPD)

D:~200nm
Z:~-40 mV

Ad5 CHO-K1 Increased internalization into CAR-negative cells and
introduced new concepts and a possibility for binding
cancer cell targeting groups

(57)

Physical
interaction

poly(CBA-DAH)-PEG-RGD D: 267.6 ± 54.8 nm DDB7-
U6shIL8

HT1080,
MCF7

Increased both transduction and achieved CAR-
independent, only need integrins for targeting cancer
cell transduction

(182,
187)

Physical
interaction

Chitosan–PEG–folic acid D:~140 nm
Z: 2.1 mV

Hmt KB Targeted and increased tumor accumulation at folic
acid receptor overexpress cancer cell model, increase
the anti-tumor efficacy

(58,
181)
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The 20kDa PEG conjugated oAd dramatically reduced liver
accumulation and hepatotoxicity by systemic administration.
Compared with naked and 5-kDa PEGylated oAd, the 20-kDa
PEGylated oAd showed reduction hepatocyte transduction by
19- or 90-fold, respectively, in hepatocarcinoma xenograft tumor
models. Moreover, the 20-kDa PEGylated oAd administered
mice possessed average survival rate double to only the naked
oAd group. The effectiveness of higher molecular weight
PEGylated oAd can be explained by PEGylated oAd that has a
higher molecular weight and larger hydrodynamic radius than
the naked oAd and cleared from the body at a much slower rate
by kidney or Kupffer cells in the liver, subsequently increasing
the half-life and passive tumor targeting through EPR effect.
These positive advantages promise that high molecular weight
PEGylation can benefit the therapeutic and survival efficacy of
oncolytic adenovirus.

2.3.2.2.2 Dendrimer-Coated Ad. Dendrimers are highly
ordered, symmetric, branched polymeric molecules. Many
reports have shown that dendrimers potentially transfer genes
into cells without damaging or deactivating the DNA (215–217).
Poly(amidoamine), or PAMAM, is the most popular dendrimer,
which used ethylene diamine or ammonium as a core molecule.
In 2013, amine-terminated generation 5 PAMAM dendrimer
was used to coat sodium iodide symporter (NIS) expressing
oncolytic Ad (Ad5-CMV/NIS) (186). This research conducted by
Gruanwald et al. showed the complex increased the transduction
efficacy in CAR-negative cells and preserved the activity of Ad
against neutralizing Abs. Moreover, the 123I scintigraphy of mice
from biodistribution results demonstrated systemically admin-
istered PAMAM-complexed Ad5-CMV/NIS significantly
diminished transgene expression and induced lower liver toxicity
than naked Ad5-CMV/NIS. Further, the in vivo antitumor study
indicated the PAMAM-complexed Ad5-CMV/NIS possessed
higher tumor inhibition efficacy and survival rate than the naked
Ad. Through the research, the PAMAM complex displayed
improvement in tumor targeting and reducing liver accumula-
tion of oAd, therefore suggesting potential application of
oncolytic virotherapy by systemic administration. Interestingly,
in 2020 Wagner et al. reported an amphiphilic polyphenylene
dendrimer (dendron) to complex with adenovirus which con-
tains a propargyl-modified triethylene glycol linker at the core
(57). This linker of the dendron provides for the complex system
high aqueous solubility and the possibility to introduce chemical
modifications on the viral surface without directly covalently
modifying the virus particles. The research showed that the
dendrons link to the surface of the adenovirus through their
polar and nonpolar surface groups. The report indicated the
masking dendrons can promote the internalization of the Ad/
dendron complexes into CAR-negative CHO-K1 cells. Even
though the research did not proceed any further in vivo experi-
ments, it did introduce a new concept and a possibility for
binding cancer cell targeting groups, subsequently expanding the
therapeutic potential of oAd.

2.3.2.2.3 Oncolytic Ad Complexed CD-PEG-cRGD. Even
though utilizing cationic polymer masking oAd can improve the
Frontiers in Immunology | www.frontiersin.org 14
therapeutic efficacy, there are still several limitations for the
clinical setting. Some nano complexes have low diffusion and the
positive charge of the complex can induce normal cell internal-
ization or interact with RES, leading to low tumoral accumula-
tion (207).

Our group has developed an Arg-Glye-Asp (RGD) peptide
domain con juga ted po ly (cy s tamineb i sac ry l amine -
diaminohexane) [poly(CBA-DAH)] (CD) for modifying oAd
to target the tumor side (187). The new biodegradable polymer
CD possesses the disulfide bonds which allow the polymer to be
smoothly cleaved into harmless fragments when reaching the
reductive environment of the cytoplasm. The cyclic RGD, on the
other hand, can specifically target avb3 and avb5 integrins which
were overexpressed in abundant types of tumor cells (218, 219).
The oAd/cRGD-conjugated CD complex increased both
transduction and cancer cell killing effect with high specificity
in a dose-dependent manner in vitro. The competition assay,
which used anti-CAR and anti-integrin antibodies, demonstrated
that the oAd/cRGD-conjugated CD complex achieved CAR-
independence and only needed integrins for targeting cancer
cell transduction, contracted to naked Ad which needs both of
CAR and integrins to infect. Furthermore, the oAd/cRGD-
conjugated CD complex also showed dramatically induced
apoptosis and necrosis besides reduced VEGF and IL-8
secreting in cancer cells compared to naked oAd. The in vivo
antitumor efficacy of the oncolytic Ad/CD-PEG-cRGD complex
was further reported in a lung orthotopic tumor model in 2014
(182). The oAd was successfully covered by the bioreducible CD-
PEG-cRGD polymer help to avoid anti-viral immune responses
resulting in decreased hepatotoxicity. More importantly, the
length of PEG moiety showed a large impact on the
therapeutic effect of the system. The CD-PEG2000-cRGD,
which has 2000 Da PEG length, coated with oAd obtained a
better tumor growth inhibition than the CD-PEG500-cRGD
coated oncolytic Ad, illustrating that PEG with longer length
could improve the pharmacokinetic and tumoral accumulation
of the complex. These reports have indicated the cRGD and CD-
PEG-cRGD potentially enhanced the transduction and tumoral
accumulation of the oAd according to the interaction between
tumor homing peptides and integrins.

2.3.2.2.4 Folate Receptor Overexpressed Cancer Therapy With
Oncolytic Ad/Chitosan PEG-FA. In recent years, folic acid (FA)
has been wildly investigated as an active targeting moiety for
cancer therapy according to a large number of cancer cells
overexpress folate receptors on their surface (220–222). To uti-
lize the tumoral targeting property of FA, our group has devel-
oped an oAd/chitosan-PEG-FA complex by the advanced
electrospinning technique (58, 181). After the electrospinning
process, the chitosan-PEG-FA coating on the Ad was confirmed
by the size and the z-potential of the complex as well as the
biological activity of the Ad was preserved. Furthermore, the
oAd/chitosan–PEG–FA obtained the blood retention time 48.9-
fold higher than the naked oAd and the liver uptake was also
378-fold reduced. This suggested the PEG moiety can lower the
non-specific liver uptake dramatically. It is noteworthy that the
oAd/chitosan–PEG–FA significantly increased the tumor-to-
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liver ratio by 1.08 × 105-fold compared to naked oAd. This
strongly exhibited the excellence in tumor selectivity of oAd/
chitosan–PEG–FA complex in vivo. The antitumor efficacy result
confirmed the oncolytic Ad/chitosan–PEG possessed more novel
therapeutic effect than the oncolytic Ad/chitosan–PEG.

2.3.2.3 Combined With Immune Cell Therapy by
Polymeric Hydrogel
Another interesting utilization of a polymeric system is hydrogel.
The hydrogel is the polymer matrix which contains a high amount
of water or biological fluid. Therefore, the hydrogel can be utilized
to deliver several types of therapeutic agents, including cells or
viruses. One researcher of our group in 2017 applied gelatin-
hydroxyphenyl propionic acid (GHPA)-based hydrogel to co-
deliver oAd and dendritic cells (DCs) for combined
immunotherapy (223). The DCs can present TAA to cytotoxic
T cells to induce tumor-specific immunity while the oAd can co-
express interleukin (IL)-12 and granulocyte-macrophage colony-
stimulating factor (GM-CSF) to elicit synergistic tumor growth
inhibition. The hydrogel system successfully protected the
biological activity and released both oAd and DCs in a
controlled manner, leading to a long retention time of both
therapeutics in the tumor site. Moreover, the expression level of
IL-12, GM-CSF, and interferon-g (IFN-g) in the tumor treated
with oAd- and DC-loaded gel (oAd + DC/gel) was dramatically
higher than oAd or DC only, or the dual injection without gel
(oAd + DC). As a result, the number of both activated endogenous
and exogenous DCs, the number of DCsmigrated to lymph nodes,
and the tumor infiltration of CD4+ and CD8+ T cells are
remarkably high in the (oAd + DC/gel) samples. Further, the
tumor inhibition profile of the (oAd +DC/gel) group indicated the
best antitumor performant which demonstrated the novelty of this
method. By utilizing gelatin-based hydrogel, the research showed
the potential of co-delivery oAd and DCs to the tumor tissue not
only can preserve but also induce synergistic immune response
with a single dose for a relatively long time.

In summary, systemic delivery of oAd has shown limited
therapeutic efficacy due to hepatotoxicity, immunogenicity, and
CAR-dependent transduction of Ad. Therefore, surface
modification of oAd with polymeric systems provides a novel
delivery strategy which can reduce immunogenicity, nonspecific
liver sequestration and hepatotoxicity, and enhance transduction
efficacy. Furthermore, it prolongs blood retention time and
enhances overall intratumoral accumulation of Ad, ultimately
leading to potent therapeutic efficacy.
3 CONCLUSION AND PERSPECTIVES

Cancer immunotherapies using ICI, CAR-T, and OV are very
new and promising treatment strategies to eradicate tumors and
inhibit tumor metastasis by activating the immune system. These
strategies can be considered as a game-changer for modern
cancer treatment in the next coming time. Despite abundant
advancements and excellent clinical outcomes, many challenges
are remaining and need to be overcome, relating to low
Frontiers in Immunology | www.frontiersin.org 15
antitumor efficiency, costly processes, and side effects (224,
225). In this review, we have summarized divergent polymeric
systems for improving the overall therapeutic efficacy of
mentioned cancer immunotherapies. Through utilization of
appropriate polymeric systems, the above-mentioned
disadvantages of immunotherapies can be resolved and can
further enhance therapeutic efficacy, biocompatibility, and high
specificity. Polymeric systems provide a novel delivery method
with numerous benefits such as low toxicity, excellent
biodegradability, and flexible surface and size modification for
the conjugation of immune ligands and the loading of
immunotherapeutic agents. It is notable that polymeric systems
can protect and preserve the bioactivity of bioactive agents,
insulating them from the unfavorable immune reaction or
stimulate the favorable one in the body condition.

Regardless of these polymeric systems-mediated delivery of
immunotherapy methods, there are still hurdles that remain
before the application to patients in the clinic, such as low
treatment efficacy, resistance to cancer immunotherapies, patient
safety issues, and expensive treatment costs. Therefore, further
research must be conducted to improve current delivery
strategies. Delivery systems must yield a more effective and
reliable approach for the delivery of immunotherapy agents. New
methods to proliferate and engineer immune cell therapies ex vivo
should also be developed with lower-cost manufacturing methods.
For these purposes, it is expected that in the future, polymeric
systems will be more extensively and ingeniously fabricated for
cancer immunotherapies, hence enhancing their efficacy, and
lowering immune-related side effects. Moreover, for the
development of the clinical translation of nanomedicine, extra
investigation on whole-body biocompatibility and the effects of
various polymer systems on different organs is necessary.
Furthermore, the next generation of polymer nanotechnology-
based immunotherapy should supremely possess multiple
functions, including targeting capability, smart responsiveness,
and convenient applicability. Especially the personalized immune
treatment with the assistant of polymer nanoparticles will be a
critical and promising research trend in the future.
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