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Driving and steering collision
avoidance system of autonomous
vehicle with model predictive control
based on non-convex optimization

Yuho Song and Kunsoo Huh

Abstract
A planar motion control system is proposed for autonomous vehicles not only to follow the lanes, but also to avoid col-
lisions by braking, accelerating, and steering. The supervisor is designed first to determine the desired speed and the risk
of the maneuvering due to road boundaries and obstacles. In order to allow lane changes on multi-lane roads, the model
predictive controller is formulated based on the probabilistic non-convex optimization. The micro-genetic algorithm is
applied to calculate the target speed and target steering angle in real time. A software-in-the-loop unit is constructed
with the Rapid Control Prototyping device in the vehicle communication environment. The performance of the pro-
posed system is verified for various collision avoidance scenarios and the simulation results demonstrate the safe and
effective driving performance of autonomous vehicles with no collision on multi-lane road.
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Introduction

Autonomous vehicles have been proposed as a solution
to problems related to car-to-car accidents due to
increased traffic volume.1 According to recent surveys,
car-to-car crashes are the most frequent type of traffic
accidents, requiring active safety technology and self-
driving technology.2 There is a growing demand for an
autonomous vehicle system that covers the complicated
situations such as lane change and collision avoidance.
Even if many studies on path planning and control for
Collision Avoidance (CA) have been conducted,3–15

these technologies are still in the development stage
such as the complicated supervisor design including the
risk assessment and CA controller design. Risk assess-
ment is a method of determining the risk level of the
object quantitatively. Collision avoidance is an

operation that is initiated after the imminent collision
is detected from the risk assessment.

The risk level assessment of the surrounding objects
is very critical for the successful collision avoidance. In
many risk assessment studies, the Artificial Potential
Field (APF) method has been often utilized.3,9,12–14,16

APF is based on an energy field to express physical
force or risk probability for obstacle avoidance in
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robotics since 1980.16–19 Recently, the APF concept is
applied for optimal path planning and control in the
automotive field.7,9,12,13,15 For instance, Ji et al.12 pro-
posed a trajectory planning in the optimal gradient
direction of the potential field. This method can calcu-
late the route quickly, but, there is a possibility that the
calculated path does not consider the dynamic charac-
teristics of the vehicles. Rasekhipour et al.13 defines two
kinds of the obstacle APF: crossable and non-crossable
object APF based on the amplitude of the APF.
Because they utilized the linear programming solver for
approximating the nonlinear objective function, the dis-
tortion of the risk assessment is inherent. In addition,
geometry-based risk functions have been suggested for
the CA problem.6,7,20,21 Werling and Liccardo6 formu-
lated the risk assessment by taking into account the
minimum distance to the object. The advantage of this
method is that it quickly determines collision-free man-
euvering by predicting the future risk with the vehicle
model. Rosolia et al.20 defined the collision risk with
oval which covers entire vehicle. Since the collision risk
is differentiable, the oval collision risk is suitable to lin-
ear programming solver. Li et al.21 decomposed the
vehicle shape by circles which cover the vehicle entirely
and checked the distance between the circles on the ego
vehicle and the circles on the obstacle vehicle. The
advantage of these methods is that the collision risk can
be easily checked by simple approximation. But, these
methods assume simple vehicle shape such that the
shape of risk can be different from the actual vehicle.

Among the various CA controllers, model predictive
control is the most actively utilized.6,7,13,15 Its ability to
handle the actuator capacity and the output constraint
is crucial despite the burden of computation time. In
particular, unlike the conventional control techniques,
it is possible to design specific and descriptive scenarios
using MPC conditions. Rasekhipour et al.13 suggested
Sequential Quadratic Programming (SQP) based MPC
to calculate steering angles and target speeds consider-
ing the APF risk model. However, in order to imple-
ment QP MPC control, the objective function needs to
be a convex function and the constraint should satisfy
the convex set.22 In actual road conditions, however,
situations may exist that cannot be easily described
by convex optimization. For example, as shown in
Figure 1, path A has wider free space than path B and
the ego-vehicle (blue) can avoid collision more safely
by taking path A if the next lane is empty. However,
path B would be the CA result of convex optimization
because the ego-vehicle is driven on the second lane
before the CA action and path B is relatively closer. In
addition, convex optimization can consider the action
near the local minimum and the determined action can-
not be changed to another optimal action. Thus, in the

QP-based optimal controller, it may be difficult to use
the non-convex functions as the risk function.

To process the non-convex formulation without
approximation, an optimization tool is needed to find
the global optimal point for the CA problem. Among
the candidate solutions, there exist gradient-free search
methods such as genetic algorithm, particle swarm
algorithm, and pattern search algorithm.23–26 However,
many of the global optimization methods are not
proper for real-time control task of autonomous vehi-
cles, since these methods have high computational com-
plexity as mentioned in Fleming and Fonseca27 and
Wang et al.28 Because of the difficulty in archiving real-
time performance, other techniques have been investi-
gated with multicore CPU.28,29 While the above global
optimization techniques involve significant computa-
tional burden, the CA with micro-genetic algorithm (m-
GA) is suggested by Son14 to guarantee real-time per-
formance by using a small population. They designed a
collision avoidance controller using m-GA and MPC to
find the global optimum solution quickly. But, they did
not consider risk functions of various driving environ-
ment and multi-modal nature of the problem.

In this study, an autonomous driving system for nor-
mal driving and collision avoidance is proposed based on
nonconvex optimization and the MPC. At first, a supervi-
sor is described to predict the collision risk and desired
speed. The risk functions of road boundary and vehicles
are modeled using different mathematical functions. In
particular, the Gilbert-Johnson-Keerthi (GJK) algorithm30

is simplified to detect the obstacle collision with less com-
putational complexity. Also, the motion of the surround-
ing vehicles and the desired speed of the host vehicle are
predicted along the road geometry. Considering the planar
motion of the host vehicle, a non-convex optimization
problem is defined for the Gaussian objective function of
the collision risk and reference input. Finally, the optimal
problem is solved by using the modified m-GA. The pro-
posed system is verified by using co-simulation of com-
mercial software and RCP (Rapid Control Prototyping)
device. The main contribution of the proposed study is
summarized as follows:

- Multi-reference control formulation is proposed
based on the non-convex optimization such as
speed tracking, lane keeping, and collision avoid-
ance by decelerating or changing lanes for auton-
omous driving

- The GJK algorithm is simplified for less compu-
tation burden and utilized to assess the collision
risk between vehicles

- The m-GA solver is modified for real-time com-
putation and its performance is verified on CAN
network with a RCP device.
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Planar motion control system
configuration

The planar motion of the autonomous vehicle is deter-
mined by two inputs: steering angle and longitudinal
speed. It is assumed that the autonomous vehicle is
equipped with a speed control module such as Adaptive
Cruise Control (ACC). The surrounding information
such as lane markers, vehicles, and obstacles is also
assumed available through in-vehicle sensors. The lane
information is assumed to be provided in the form of a
cubic polynomial with respect to the host vehicle.31 The
practical issues such as sensor uncertainty are not con-
sidered in this formulation. In addition, the motion
data of the vehicle is assumed to be available either by
vehicle network or by estimation.

The block diagram in Figure 2 shows the structure
of the planar motion control (PMC) system. The pro-
posed PMC system is composed of supervisor and

MPC controller. The purpose of the supervisor is to
obtain the collision risk and to determine the maximum
speed for the given road environment. The input to the
supervisor is the information of the road and the sur-
rounding vehicles. The supervisor is constructed by uti-
lizing the risk models along the predicted trajectory of
the host vehicle and provides the collision risk on a
geometric basis and the desired speed of the host vehi-
cle. The MPC is constructed based on the objective
function consisting of the collision risk of the obstacles
and the maneuvering command. Non-convex optimiza-
tion problem is solved for the steering angle and the
target speed by utilizing the m-GA method.

Supervisor design

Risk modeling for the surroundings and collision
prediction

Based on the relative position of road boundaries and
obstacles, the corresponding risk can be expressed in
the form of a specific function. The risk of the road
boundary is described as a function having the maxi-
mum value near the boundary with a shape close to the
cumulative normal distribution.32 The risk of road
boundaries, Rroad is defined as a function of the lateral
displacement, y, in the vehicle-fixed coordinate:

Rroad=sgmðd �ðy�yleftÞÞ+ 1� sgmðd � ðy� yrightÞÞ ð1Þ

where yleft and yright are the lateral position of the left
and right boundaries of the road, respectively. sgm

denotes the logistic sigmoid function.33 The tuning
parameter, d, determines the steepness of the risk func-
tion and its value depends on the accuracy of the posi-
tion estimation. Figure 3 visualize the risk of the road
boundary with d = 5.

Figure 1. Planar control problem that convex optimization does not solve well.

Figure 2. Planar motion control system architecture.
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In addition, predicting the behavior of the surround-
ing vehicles along the road is also crucial to the colli-
sion detection. The typical motion prediction model is
the Constant Velocity (CV) model and there have been
several studies predicting the future position of the sur-
rounding vehicles with this model.8 Another motion
prediction model is Constant Turn-Rate and
Acceleration (CTRA) model34 which is suitable in a
curved road. However, CV model may not be suitable
to describe the vehicle motion on the curved road. In
addition, as shown in Figure 4, the CTRA model can
not be utilized in the lane change motion prediction, in
particular, for a long prediction horizon. Thus, either
of these models is not suitable for predicting lane-
change as well as lane centering motions.

In order to predict the future position of the sur-
rounding vehicles better and to describe the correlation
between the vehicles and the road, the APF method is
used with adjusting the vehicles motion to the descend-
ing direction of the slope of the risk function.3,9,12

While the repulsive potential from the road boundary is
considered in the road boundary risk (1), the attractive
potential to the center of the lane needs to be consid-
ered. In order to include the lane change motion of the
surrounding vehicles, the bounded attractive potential
field is utilized instead of the unbounded one. Then, if
the momentum caused by the lateral speed becomes
large enough to escape the attractive force of the cur-
rent lane, the surrounding vehicle is predicted to move
to the adjacent lane. The attractive potential to the ith

lane, Ulane, i, can be expressed as follows:

Ulane, i =� exp(� 0:5(y� ylane, i)
2) ð2Þ

where ylane, i denotes the lateral position of the center of
the i th lane. Surrounding vehicles are considered as
particles with 1/50,000 scale, artificial lateral dynamics
(ALD) are defined.3

mob€y+ bob _y=� ∂

∂y

Xnlane

i= 1

Ulane, i +Rroad

 !
ð3Þ

where mob and bob are the scaled mass of the vehicle and
the damping coefficient of the ALD, respectively. The
optimization toolbox is utilized based on the experi-
mental data and the determined values are listed in the
Appendix.

The purpose of this method is predicting the lane
where surrounding vehicles would travel, rather than
predicting the accurate future position of the surround-
ing vehicles. That is, it gives us the criterion that pre-
vents the host vehicle being steered toward adjacent
lanes where the surrounding vehicles are expected. For
instance, the result of predicting cut-in vehicle trajec-
tory is depicted in Figure 5.

In order to judge collision on the predicted trajec-
tories of the host vehicle, the collision between vehicles
is interpreted in two-dimentional space and, the vehicle
shape is described as a rectangle. Based on these
assumptions, the collision between vehicles is simplified
as the collision between two rectangles. There exist
algorithms that can detect the collision between poly-
gons.30,35–37 Among the algorithms, GJK algorithm
has low computational cost for real-time application.30

In this study, the GJK algorithm is utilized to represent
the collision risk as a rectangular shape. In addition,
the GJK algorithm is simplified for even less computa-
tional complexity. Conventionally, the collision risk
has been typically described as circular or oval shape
based on artificial potential field, but its shape includes
unnecessary risk region and it can cause conservative
warning and evasive maneuvering.

GJK algorithm detects collision based on the
Minkowski Difference (MD) which is defined as a set
of the difference between the position vectors of one

Figure 4. Limitation of CTRA model in the lane change motion
prediction.

Figure 3. Risk of 2-lane road boundary where yleft = 5:25 and
yright = � 1:75.
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polygon and the others. In case of a point-symmetric
polygon, like a rectangle, it is also the same problem of
whether the MD contains the origin of the surrounding
vehicle as shown in Figure 6. Here, the Minkowski dif-
ference, SMinkowski, is defined as follows:

SMinkowski = Shost � Sob ð4Þ

where Shost and Sob is the sets of the vectors on the host
vehicle and surrounding vehicle respectively. � denotes
the MD operator.

In order to detect the collision with the original GJK,30

it is necessary to check whether the simplex defined by the
vertices of the MD contains the origin. But, this process is
computationally burdensome, and thus, in this study, MD
is replaced with Sm which is a rectangular area enclosing
the MD as shown in Figure 6 and is defined below :

Sm = x, yj xj jł am + 0:5lhost, yj jł bm + 0:5whostf g ð5Þ

where lhost and whost are overall length and width of the
host vehicle, respectively. x and y are the vehicle fixed
coordinate. The original GJK algorithm is simplified to
detect the collisions between rectangles and the center
of Sm is located at the vehicle center as illustrated in
Figure 6. Also, am and bm are defined as follows:

am =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lob

2 +wob
2

p
2

cos cd + Dcj jð Þj j,
bm =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lob

2 +wob
2

p
2

sin cd + Dcj jð Þj j
ð6Þ

where lob and wob are length and width of the Sob respec-
tively. cd denotes the angle between the diagonal line
and the heading of the surrounding vehicle. Dc denotes
the heading difference between the host vehicle and sur-
rounding vehicles.

Then, collision can be expected using the following
condition

if xob, yobð Þ 2 Sm, collision or Rcol = 1

else, no collision or Rcol = 0

�
ð7Þ

Even if the simplified GJK algorithm shows less
computation burden than the existing collision check
algorithms, it takes longer time to check the collision
risk of all the detected objects. Thus, the proposed sys-
tem is designed to activate the collision detection algo-
rithm only in necessary situations such as imminent
collision. The activation threshold is set such that the
object is expected to approach within 10m radius of
the host vehicle in the prediction horizon of 1 s.

Desired speed determination

Since the longitudinal dynamics affect the lateral
motion of the vehicle, determining the maximum longi-
tudinal velocity affects the performance of the PMC
system. Firstly, the vehicle should follow the set speed
well. Secondly, the vehicles desired speed should be
adjusted depending on the curvature in cornering. For
example, in order to maintain the turning radius with a
constant speed, the lateral force equivalent to the centri-
fugal force is required. Therefore, the desired longitudi-
nal speed at the curved road is related to the maximum
lateral acceleration, ay, max, as follows:

ay

�� ��ł ay, max

Assuming that the vehicle follows a path with a little
side slip, the lateral acceleration can be approximated
as follows:

ay ’
d2y

dx2

dx

dt

� �2

,

and the limit of the longitudinal speed is determined.38

Figure 5. Trajectory prediction of the surrounding vehicle in cut-in scenario.

Figure 6. Collision detection using reduced GJK algorithm.
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dx

dt
ł

ffiffiffiffiffiffiffiffiffiffiffiffi
ay,max

d2y

dx2

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kay,max
p ð8Þ

where k is the road curvature.
Then, the desired speed is determined from the fol-

lowing equation where the desired speed at the curve is
set to only 80% of the above speed limit for safe
driving.

Vx, des =min Vx, set, 0:8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kay,max
p� �

ð9Þ

where Vx, set and Vx, des are set speed along the road and
the desired speed from the supervisor, respectively.

Non-convex model predictive controller
design

In this section, a model predictive controller is formu-
lated based on the m-GA. The method of selecting the
test points is described to obtain the real-time perfor-
mance in the control input domain for steering angle
and target speed.

Planar vehicle dynamics

For the simplicity of the MPC design, the following lat-
eral dynamic model is utilized.39

m €y+ _x _c
� �

=Fyf +Fyr

Iz
€c= lf Fyf � lrFyr

ð10Þ

where m is the mass of the vehicle, Iz is the inertial
moment of the vehicle in the z-axis direction, and lf

and lr are the distance from the center of gravity to the
front and rear axles, respectively. Fyf and Fyr are lateral
tire forces ate the front and rear wheels, respectively. c

is the yawing angle of the host vehicle.
As described by Jazar,39 the lateral force can be

approximated by a linear function of the wheel slip
angle which can be expressed based on the geometric
relationships at front and rear

Fyf =� Cf af =Cf df � Cf
_y+ lf _c

_x

Fyr =� Crar =Cr
_y�lr _c

_x

ð11Þ

where df is the steering angle of the front wheel, and Cf

and Cr are the cornering stiffness of the front and rear
wheels. af and ar are slip angles at front and rear
wheels, respectively.

For the longitudinal motion, commercial speed con-
trollers such as ACC (Adaptive Cruise Controller) are
assumed in this study and the longitudinal speed con-
trol system is approximated by the first-order delay
model.

t€x+ _x=Vx, targ ð12Þ

where t is the time constant and Vx, targ is the target
speed of the longitudinal speed control system.

In order to represent the dynamic characteristics
described in the differential equations (10)–(12) into the
global coordinate (X , Y ) fixed on the initial position of
the host vehicle, the coordinate transformation is
needed.

_X = cosc _x� sinc _y

_Y = sinc _x+ cosc _y

By defining the state variables as follows:

j = X Y c _x _y _c
	 
T ð13Þ

Equations (10)–(13) can be expressed into a non-linear
state equation with steering angle and target speed as
input.

_j =

cosc _x� sinc _y
sinc _x+ cosc _y

_c
� _x=t +Vx, targ=t

� Cf +Cr

m
_y= _x� lf Cf�lrCr

m
_c= _x� _x _c+

Cf

m
df

� lf Cf�lrCr

Iz
_y= _x� lf

2Cf + lr
2Cr

Iz

_c= _x+
lf Cf

Iz
df

2
66666664

3
77777775
ð14Þ

z = X Y½ �T ð15Þ

where z denotes the output vector. The state vector (13)
is discretized for MPC formulation.

jk + 1 = jk + T _jk ð16Þ

where T denotes the sampling time of the controller.

Non-convex MPC formulation and modification
of m-GA for real-time performance

In this section, a non-convex optimization-based MPC
algorithm is designed with a prediction horizon. Firstly,
multiple control objectives are defined using a probabil-
istic function such as lane centering, desired speed
tracking, and collision avoidance. Secondly, the formu-
lation for collision avoidance task is proposed consider-
ing the real-time performance.

The optimization problem is formulated similar to
the conventional MPC,40 but is converted to the gaus-
sian function formulation.

h�= arg max
Xn

i= 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p Qj j�1

q exp � 1

2
hi

T Qhi

� �

s:t: Ah ł b

ð17Þ

where h is vector of the decision variables and Q is the
weight matrix which is inverse of the co-variance
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matrix. A and b are linear matrix representation of the
inequality constraints.

In normal driving case, following the lane center and
the desired speed are very important. For the lane cen-
tering, the tracking reward of the host vehicle position
is described with respect to the center of its own lane:

P(Ylane, ijXk , Yk)=N(Ylane, i,Q
�1
lane) ð18Þ

where N represents the probability density function of
the normal distribution and Qlane is the inverse of the
variance of the lateral position of the vehicle. Yk denotes
the predicted lateral position of the host vehicle at the
kth step of the prediction horizon and Ylane, i is the lat-
eral position of the ith lane.

For multi-lanes, the positional probability can be
expressed as follows:

Planes kð Þ=
Xnlane

i= 1

P(Ylane, ijXk , Yk) ð19Þ

where nlane is the number of lanes. The above equation
represents a reward function for tracking lanes and
structurally identical to the attractive potential in equa-
tion (3).

For the following of the desired speed, its probability
is also considered as follows.

P(Vx, desj _xk);N(Vx, des,Q
�1
Vx
) ð20Þ

By combining the lane following probability (19)
and the desired speed following probability (20), MPC
object function for normal driving is formulated.

Pref kð Þ=Planes kð ÞPVx
kð Þ ð21Þ

For normal driving case, the target steering angle
and speed are determined for the prediction horizon,
Np.

df
� Vx, targ

�½ �T = arg min
df ,Vx, targ

XNp

k = 1

�Pref kð Þ ð22Þ

where the superscript * represents the optimal or sub-
optimal value. This formulation allows the vehicle to
change the lane as it travels with following the target
speed.

For Collision Avoidance (CA), the control system
should consider not only the collision risk, but also the
lane keeping and driving at the desired speed. If various
driving situations are considered, joint probability for
every situation needs to be included and its computa-
tion demand can be very extensive. Instead, the follow-
ing cost function is proposed in this study with less
computational load.

Cost kð Þ=WRRroad kð Þ+WcolRcol kð Þ �Wref Pref kð Þ ð23Þ

Rroad and Rcol are described in equations (1) and (7).
WR, Wcol, and Wref are weights for the collision risk,
road boundary risk, and reference tracking probability,
respectively.

Thus, for collision avoidance case, the target steering
angle and the speed are determined as follows for the
prediction horizon. Because the CA is much more
important than the reference tracking, Rcol is set to 1 at
the subsequent steps if the collision is detected (see
Figure 7).

df
� Vx, targ

�½ �T = arg min
df ,Vx, targ

XNp

k = 1

Cost kð Þ ð24Þ

The prediction horizon can be varied depending on
the speed. The maximum Np is set to 30 considering the
real-time performance. This selection means that the
searching distance at vehicle speed of 16.7m/s is 25m
with the 50ms time step. The searching distance
becomes smaller than 25m when the speed is smaller
than 16.7m/s and is greater than 25m when the speed
is greater than 16.7m/s.

The non-convex optimization problems of equations
(22) and (24) are solved by utilizing the m-GA method26

and its configuration is shown in Figure 8. In order to
generate the genetic pool for the selection of control
input candidates, we need to define the upper and lower
bounds of steering angle, df , and target speed, Vx, targ.
The range of the steering angle is selected by consider-
ing the stability of the vehicle, that is, the limit of the
slip angle at the front wheel.

af

�� ��ł af

�� ��
max

where jaf jmax represent the maximum slip angle allow-
able in the stable lateral motion. Then, the range of the
steering angle can be described using the definition of
the lateral tire slip.39

df , min ł df ł df , max ð25Þ

Figure 7. Collision risk rule for vehicle crashes.
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where
df , min =� jaf jmax+

_y+ lf _c
_x

df , max = jaf jmax+
_y+ lf _c

_x

df ,min and df ,max denote lower bound and upper

bound of the steering angle respectively.
Similarly, the limit of the target speed (Vx, targ,min,

Vx, targ,max) is set considering the maximum longitudinal
acceleration, ax,max:

Vx, targ, min ł Vx, targ ł Vx, targ,max ð26Þ

where
Vx, targ,min =Vx, prior � ax, maxt

Vx, targ,max =Vx, prior + ax, maxt

Vx, prior denotes the target speed at the previous con-
trol time step.

The initial population (POPini) consists of four parts
in the search space defined by the steering angle limit
(25) and the target speed limit (26) and selects zero
points as an initial fittest. From the divided search
space, the experiment points are selected as follows to
search evenly while reducing computational complexity.
In this study, the initial population is selected uniformly
on the control input 4 3 4 grid space without duplica-
tion and the Latin hypercube sampling method41 is uti-
lized to obtain a more even population than random
sampling and to reduce computation time.

Step 1: Divide the search space of the target speed
and the steering angle into three parts separately,
and create a 3 3 3 grid map.
Step 2: Number the index of each point of the grid
map sequentially (i= 1, 2, 3, 4 and j= 1, 2, 3, 4)
Step 3: Select the index of sample point as
i= 1, 2, 3, 4 and j= randperm(4)

where randperm is an operator that computes the per-
mutation of natural numbers from 1 to 4. The ith indi-
vidual of the experiment points selected above is
defined as follows:

POPini(i)= df , min Vx, targ, min½ �+
i

3
df , max df , minð Þ

� �
j(i)

3
Vx, targ, max� Vx, targ, minð Þ

ð27Þ

This approach selects the initial population effi-
ciently and reduces the iterations of the solver. For
each population, the tracking probability (21) or the
cost function (23) are calculated along the trajectory of
the vehicle and the fittest individual is defined with the
smallest cost among the population. In this case, the
steering angle of an individual is increased or decreased
step by step as the horizon proceeds by considering the
slew rate of the steering angle.

df k + 1ð Þ= df , prior + _df , maxkT , if j df (k)jł df , pop

df , pop else

�
ð28Þ

where k denotes the prediction point at kT seconds
ahead and _df , max is the maximum slew rate of the steer-
ing angle. df , prior is the desired steering angle at every
control time step. df , pop denotes the steering value of
the selected child from a population.

Next, two pairs of parents are chosen in the popula-
tion through the tournament selection and their over-
lap is allowed. A pair of parent generates two children
using the single-point crossover and a new population

Figure 8. Configuration of m-GA.
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of five entities is formed including four children and
the fittest individual. In this study, five populations are
selected best by considering the trade-off between com-
putational volume and optimization quality. After it
converges sufficiently to the local minimum through
seven iterations, four entities are newly selected using
the equation (27) with the fittest individual. This pro-
cess is repeated until the convergence criterion is met
and the fittest individual is determined as the optimal
control input for df and Vx, targ.

Results

To verify the performance of the proposed PMC (Planar
Motion Control) system, a number of simulations have
been conducted on several scenarios. A cooperative simula-
tion tool has been constructed using software-in-the-loop
system: rapid control prototyping unit and high-fidelity
vehicle dynamics software. The vehicle model and PMC
system parameters are listed in table in the Appendix. The
road geometry parameters and traffic information are
acquired at every 50ms. The dynamic states of the host
vehicle are transmitted through CAN bus at every 10ms.
The control time step is set to 50ms.

In the first scenario, the host vehicle accelerates
from 0 to 20m/s on a straight roadway with two
lanes. A surrounding vehicle is traveling at 27.8m/s
from 150m behind. This scenario is one of the common
rear-end collision situation on the highway when the
driver of the rear vehicle does not pay attention or fall
asleep. The simulation results are shown in Figure 9.
Trajectories of the vehicles are indicated by dotted
line and markers are numbered to represent the

simultaneous position of the host vehicle and the vehi-
cle rushing from rear. Also, vehicle edge is described as
a rectangular. Vx is the measured speed of the ego-
vehicle and Vx, des is the desired speed from the supervi-
sor. Vx, targ is the target speed from the MPC controller
and becomes the command to the ACC controller of
the vehicle. Rear-end collision is expected when inter-
vehicle space is reduced to about 50m, which is the
maximum relative distance to detect collision with the
MPC prediction horizon. Because there exist limits for
longitudinal acceleration, it has not enough time for
the host vehicle to avoid the collision by accelerating.
Therefore, the host vehicle avoids the rear-end collision
by the automated lane change. The collision avoidance
performance is also verified by the cost value result.

In the second scenario, two cases of the cut-in are
considered. The scenario 2-1 is a situation where CA
(Collision Avoidance) is possible by steering alone, and
the scenario 2-2 is a case where not only steering, but
also deceleration should be engaged. Also, to verify the
robustness against the local minima problem, the sec-
ond obstacle lies with the offset of 0.5m to the left side
of the center line of the lane. In both scenarios, the host
vehicle accelerates from 0 to 20m/s on a straight road-
way with two lanes. In scenario 2-1, the obstacle vehicle
1, 30m ahead in the adjacent lane, is accelerated from 0
to 10m/s and performs cut-in into the ego lane. Then,
the host vehicle confronts a stationary vehicle (obstacle
vehicle 2) at 150m ahead. Simulation results of scenario
2-1 are shown in Figure 10. Since a distance to avoid
the vehicle 1 by steering is sufficient, the cost decreases
fast during CA maneuver. The proposed controller
demonstrates that the host vehicle avoids the collision

(a)

(b) (c)

Figure 9. Scenario 1. (a) Trajectories of the host vehicle (red) and obstacle vehicle (blue) coming from behind (b) Steering angle
(c) Vx : real speed, Vx, des: desired speed, Vx, targ : target speed.
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by a lane change to the left lane instead of steering to
the narrow space on the right side of the vehicle 2. In
scenario 2-2, all conditions are same except that the
obstacle vehicle 1 starts accelerating from 15m ahead
of the host vehicle and the results of Scenario 2-2 are
shown in Figure 11. At 7 s, the obstacle vehicle 1 sud-
denly changes the lane and rushes to the host vehicle,
so that the collision can not be avoided by the steering
alone. Therefore, the host vehicle is steered and deceler-
ated to avoid collision with vehicle 1. After that, the
vehicle starts to accelerate again and reaches the target
speed. Then, the host vehicle is steered to the left lane
and avoid clash with the obstacle vehicle 2.

In the third scenario, the host vehicle accelerates
from 0 to 20m/s on a curved roadway with two lanes.

The obstacle vehicle is located at 30m ahead of the adja-
cent lane and performs cut-in motion with 10m/s speed. The
control performance is illustrated in Figure 12. The host vehi-
cle avoids collision with the cut-in vehicle by changing lane to
the right and the host vehicle accelerates to the desired speed.
Because there is a stationary vehicle at 150m ahead, the host
vehicle changes lane back to the left lane.More over, the host
vehicle slows down to follow the curved road for lateral stabi-
lity. In the curved roadway, unlike straight one, since the
PMC system determines steering effort considering the road
geometry, the host vehicle avoids collision with less steering
effort in some road sections.

In the fourth scenario, the host vehicle drives
through the handling course with various curvature as
illustrated in Figure 13. The initial position and speed

(a)

(b) (c)

Figure 10. Scenario 2-1. (a) Trajectories of the host vehicle (red), obstacle vehicle 1 (blue) and 2 (green) (b) Steering angle
(c) Vx : real speed, Vx, des: desired speed, Vx, targ : target speed.

(a)

(b) (c)

Figure 11. Scenario 2-2. (a) Trajectories of the host vehicle (red), obstacle vehicle 1 (blue) and 2 (green) (b) Steering angle
(c) Vx : real speed, Vx, des: desired speed, Vx, targ : target speed.

10 Advances in Mechanical Engineering



(a)

(b) (c)

Figure 12. Scenario 3. (a) Trajectories of the host vehicle (red), obstacle vehicle 1 (blue) and 2 (green) (b) Steering angle (c) Vx :
real speed, Vx, des: desired speed, Vx, targ : target speed.

Figure 13. The location and speed of the vehicle in scenario 4: Indexing the vehicles on the test road (initial X position, initial Y
position, longitudinal speed).
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of the vehicles are also represented in Figure 13.
During driving along the road, the host vehicle con-
fronts multiple obstacle vehicles and need to follow the
curved road with no collision. The obstacle vehicles
travel with slow speed or are stopped on the roadway.
The host vehicle should overtake the slow vehicles if
necessary and avoid the stopped ones. This scenario
mainly considers overtaking slow vehicles on the local
road with light traffic. Since there are some winding
road sections, the target speed as well as the desired
speed are adjusted for the host vehicle to decelerate
properly and to maintain its position inside the road-
way as shown in Figure 14. Also, the host vehicle
changes lanes with an effective steering maneuver to
overtake the slow vehicle, to avoid collision and to fol-
low the curved road geometry.

Conclusion

In this paper, an autonomous vehicle motion control
system is proposed of non-convex optimization based
model predictive control (MPC) system for collision
avoidance and lane following. In the MPC design, a
nonlinear model of vehicle maneuvering is used for
optimization without the gradient. For this, the MPC
is designed to allow the lane change freely through the
probabilistic formulation of multi-reference tracking.
The risk penalty of collision is directly applied to the
cost function such that the host vehicle can avoid the
surrounding vehicles by steering and acceleration.

The performance of the proposed system is evalu-
ated in a vehicle communication environment with the
software-in-the-loop system. Computation time of one

(a) (b)

(c) (d)

Figure 14. Scenario 4 results. (a): Trajectories of the vehicles in scenario 4 at 25–40 s: the host vehicle (red square), obstacle
vehicle 4 (blue triangle), 5 (green pentagram), 6 (magenta inverted triangle), and 7 (indigo circle). (b): Trajectories of the vehicles in
scenario 4 at 50–65 s: the host vehicle(red square), obstacle vehicle 8 (blue triangle), and 9 (green pentagram). (c): Steering angle (d)
Vx : Real speed, Vx, des: desired speed, Vx, targ : target speed.
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control step is measured around 15ms in average, but
sometimes 30ms in the worst case. The presented PMC
system is capable of both lateral and longitudinal con-
trol, and, in particular, the longitudinal control is
actively engaged for collision avoidance and overtak-
ing. The simulation results demonstrate that the pro-
posed system avoids collision by braking, accelerating,
or steering for various curved roads with obstacle
vehicles.
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Appendix

Parameters of the vehicle & controller

Symbol Description (unit) Value

lob, x Overall length of ob. vehicle (m) 5
lob, y Track of ob. vehicle (m) 2
nroad Number of the lanes 2
d Road boundary shape parameter 8
mob Scaled vehicle mass (kg) 0.0371
bob Damping coefficient of the ALD (kg/s) 0.2
cob Minimum risk for mode separation 0.2
m Vehicle mass (kg) 1564
Iz Yaw moment (kg m2) 2230
lf C.G. to front wheels (m) 1.268
lr C.G. to rear wheels (m) 1.62
Cf Front cornering coefficient (N/rad) 151,950
Cr Rear cornering coefficient (N/rad) 130,118
t Time constant of longitudinal dynamics (s) 0.5
T Sampling time (m � s) 50
af , max Maximum front wheel slip angle (deg) 7
ax, max Maximum longitudinal acceleration (m/sec2) 7
Ngen Number of evolution/generation 7
Nmax Maximum iterations 10
Qlane Weight for lane tracking 0.2
QVx, targ

Weight for speed tracking 0.005
Wcol Weight for collision risk 10,000
WR Weight for road boundary risk 5
Wref Weight for reference tracking 0.2
_df , max Slew rate limit of steering (deg/s) 17.2
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