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The human genome contains many retroviral elements 
called human endogenous retroviruses (HERVs), resulting 
from the integration of retroviruses throughout evolution. 
HERVs once were considered inactive junk because they 
are not replication-competent, primarily localized in the 
heterochromatin, and silenced by methylation. But HERVs 
are now clearly shown to actively regulate gene expression 
in various physiological and pathological conditions such 
as developmental processes, immune regulation, cancers, 
autoimmune diseases, and neurological disorders. Recent 
studies report that HERVs are activated in patients suffering 
from coronavirus disease 2019 (COVID-19), the current 
pandemic caused by SARS-CoV-2 (severe acute respiratory 
syndrome coronavirus 2) infection. In this review, we describe 
internal and external factors that influence HERV activities. 
We also present evidence showing the gene regulatory activity 
of HERV LTRs (long terminal repeats) in model organisms 
such as mice, rats, zebrafish, and invertebrate models of 
worms and flies. Finally, we discuss several molecular and 
cellular pathways involving various transcription factors and 
receptors, through which HERVs affect downstream cellular 
and physiological events such as epigenetic modifications, 
calcium influx, protein phosphorylation, and cytokine release. 
Understanding how HERVs participate in various physiological 
and pathological processes will help develop a strategy to 
generate effective therapeutic approaches targeting HERVs.

Keywords: cancer, COVID-19, human endogenous retrovirus, 

neurological disease, syncytin-1, toll-like receptor

INTRODUCTION

Endogenous retroviruses (ERVs) are found in the genomes 

of all vertebrates and are therefore considered remnants 

of ancestral infections (Dewannieux and Heidmann, 2013; 

Hayward et al., 2015). Since many different species can 

share endogenous retroviral sequences, exogenous retrovirus 

might have infected common ancestors and gotten fixed in 

the genome before species diverged or been later spread via 

a cross-species transmission (Hayward et al., 2013) (Supple-

mentary Fig. S1). Human endogenous retroviruses (HERVs) 

were first discovered more than 40 years ago by screening 

human tissue with non-stringent blot hybridization probes 

derived from murine leukemia virus (MuLV), revealing the 

presence and cloning of the first endogenous retroviral 

sequences present in human DNA (Escalera-Zamudio and 

Greenwood, 2016; Martin et al., 1981). HERVs and their 

derivative sequences comprise at least 8% of the human 

genome (Mager and Medstrand, 2005). While a majority of 

these sequences are mostly defective, several phylogenetically 

distinct HERVs are still transcriptionally active and competent 

to produce some retroviral proteins (Bannert and Kurth, 



862  Mol. Cells 2021; 44(12): 861-878

Human Endogenous Retroviruses as Gene Expression Regulators
Serpen Durnaoglu et al.

2004; Chan et al., 2019; Ovejero et al., 2020; Zhang et al., 

2019b). Many studies provide evidence that HERVs influence 

a variety of physiological properties, including pluripotency of 

stem cells, cell proliferation, and cell survival. Faulty regulation 

of HERV activities can lead to human illness, including various 

cancers and neurological disorders. For example, increased 

expression of HERV envelope protein (ENV) contributes 

to the onset of amyotrophic lateral sclerosis (ALS), autistic 

spectrum disorder (ASD), and fibromyalgia (FM), as well as 

leukemia, germline tumors, and pancreas cancer (Frank et al., 

2005; Gao et al., 2021; Kristensen and Christensen, 2021; 

Wang et al., 2014). HERVs can be involved in oncogenesis 

in various ways, such as insertional mutagenesis or chromo-

somal instability due to their retrotransposition ability (Burns, 

2017). The loss of CpG methylation in cancers appears to 

influence retrotransposon elements, particularly HERVs, in a 

preferential manner (Kassiotis, 2014). CpG hypomethylation 

also affects HERV expression in autoimmune diseases (Nak-

kuntod et al., 2013; Okada et al., 2002; Wang et al., 2019). 

Moreover, the long terminal repeats (LTRs) of HERVs affect 

gene expression by interacting with a variety of endogenous 

transcription factors, influencing biological processes such as 

early embryogenesis (Fuentes et al., 2018) or innate immunity 

(Chuong et al., 2016). Elevated transcription driven by HERV 

LTRs can disrupt neuronal differentiation, which indicates that 

HERV activation may play a critical role in brain development 

(Padmanabhan Nair et al., 2021). LTR-overlapping transcripts 

specific in certain cancers raises the possibility that the highly 

predictable transcripts can provide disease prognosis and in-

formation of cancer-specific antigenicity (Attig et al., 2019). 

Recently, the infectious disease COVID-19 has been reported 

to modulate the expression of some HERV genes, and HERV 

promoter activities are retained in some non-human animal 

models (Balestrieri et al., 2021; Casau et al., 1999; Durnaoglu 

et al., 2020; Garcia-Montojo and Nath, 2021; Levet et al., 

2017; Pi et al., 2004; Tanaka et al., 2003; Tovo et al., 2021). 

In this review, we summarize various modes of HERV activa-

tion and their interacting molecular components and regu-

latory signaling networks. We also address their functional 

roles in human physiology and the pathogenesis of the relat-

ed diseases. Research utilizing various animal models study-

ing HERV activation provides insights regarding perspective 

roles of HERVs. Finally, we also discuss a potential therapeutic 

HERV-DNA vaccine against novel diseases such as COVID-19.

HERVs IN DISEASES

HERVs involve in the pathology of various diseases, including 

cancers (Burns, 2017; Fischer et al., 2016; Gao et al., 2021; 

Kassiotis, 2014; Mullins and Linnebacher, 2012; Yu et al., 

2013), autoimmune diseases (Anand et al., 2017; Balada 

et al., 2009; Brodziak et al., 2012; Nelson, 1995; Tugnet et 

al., 2013) and neurological diseases (Antony et al., 2011; 

Giménez-Orenga and Oltra, 2021; Gröger et al., 2021). The 

important topics have been extensively reviewed elsewhere 

(Garcia-Montojo et al., 2018; Hohn et al., 2013). Many stud-

ies report that transcripts and products of HERVs are detected 

in various cancers; breast cancers, ovarian cancers (Wang-Jo-

hanning et al., 2007), lymphoma (Contreras-Galindo et al., 

2008), melanoma (Serafino et al., 2009), germline tumors 

(Herbst et al., 1996), leukemia (Depil et al., 2002), prostate 

cancer (Goering et al., 2011), and colon cancer (Dolci et al., 

2020). HERVs are also involved in the development of au-

toimmune diseases such as multiple sclerosis (MS) (Garson 

et al., 1998; Komurian-Pradel et al., 1999; Rasmussen et 

al., 1995), rheumatoid arthritis (RA) (Freimanis et al., 2010; 

Mameli et al., 2017; Nakagawa et al., 1997), systemic lupus 

erythematosus (SLE) (Blomberg et al., 1994), as well as neu-

rological diseases such as ALS (Li et al., 2015; Mayer et al., 

2018), ASD (Balestrieri et al., 2012; 2019), attention deficit 

hyperactivity disorder (ADHD) (Anand et al., 2017; Cipriani 

et al., 2018; D'Agati et al., 2016), FM (Ovejero et al., 2020; 

Rodriguez-Pintó et al., 2014), schizophrenia (Huang et al., 

2011; Karlsson et al., 2004; Perron et al., 2008; 2012), and 

bipolar disorder (BD) (Fries et al., 2019; Giménez-Orenga and 

Oltra, 2021; Goldsmith et al., 2016; Perron et al., 2012). This 

is likely to a continuing and growing list of diseases in which 

HERVs are involved in the pathology.

REGULATORY FACTORS FOR HERVs

HERV LTRs harbor sequences acting as a promoter, and they 

can alter the expression of nearby cellular genes (Dunn et al., 

2003; Lamprecht et al., 2010; Lee et al., 2020a; Mullins and 

Linnebacher, 2012). Also, cellular activities can be changed 

by RNAs or proteins that are produced from transcription and 

translation of HERV sequences (Denne et al., 2007). There-

fore, it is critical to control HERV activities throughout human 

life adequately. There are external, internal, and epigenetic 

factors that can directly or indirectly interfere with the regula-

tory processes mediated by HERVs (Fischer et al., 2016).

External factors: UV, smoking, infections, and chemicals
UV radiation, especially UVB and UVC, stimulates transcrip-

tion of retroviral env and pol genes of HERV-K in melanoma 

(Reiche et al., 2010; Schanab et al., 2011) and keratino-

cyte cell lines (Hohenadl et al., 1999), which suggests that 

HERV-K may specifically contribute to UV radiation-related 

pathogenesis of skin cells. Smoking also affects the expres-

sion of HERVs, because the level of HERV-derived transcripts 

is higher in smokers than in non-smokers (Bergallo et al., 

2019; Gabriel et al., 2010; Wallace et al., 2014).

 Infection of parasites such as Toxoplasma gondii is also 

reported to upregulate transcription of certain HERV ele-

ments in human neuroepithelial cells (Frank et al., 2006). 

Viral infections by Epstein–Barr virus (EBV) (Sutkowski et al., 

2004), human immunodeficiency virus 1 (HIV-1) (Contre-

ras-Galindo et al., 2007), herpes simplex virus 1 (HSV-1) (Lee 

et al., 2003), coxsackievirus-B4 (CV-B4) (Dechaumes et al., 

2020), Kaposi’s sarcoma-associated herpesvirus (KSHV) (Dai 

et al., 2018), dengue virus serotype 2 (DENV-2) (Wang et 

al., 2020a), cytomegalovirus (CMV) (Bergallo et al., 2015), 

human herpesvirus 6B (HHV-6B) (Turcanova et al., 2009), 

or influenza A (Nellåker et al., 2006) have been shown to 

increase the level of transcripts from diverse classes of HERVs. 

Recently, HERV-W Env is reported to be highly expressed in 

the leukocytes of COVID-19 patients infected by SARS-CoV-2 

(Balestrieri et al., 2021).
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 Chemical elements such as hydroquinone (HQ) (Conti et 

al., 2016), cupric ion (Karimi et al., 2019), and silver nanopar-

ticles (Alqahtani et al., 2016) are found to influence the 

expression of HERVs (H, K, and W) in several tumor cell lines. 

HQ is a benzene-derived metabolite that is connected with 

the risk of acute myelogenous leukemia. After treatment 

with HQ, three human retrotransposons, long interspersed 

element 1 (LINE-1, L1), alu and syncytin-1, the HERV-W 

ENV protein, display increased expression levels in mono-

cytic leukemia cell line THP-1 and hematopoietic stem cells 

(Conti et al., 2016). Upon copper sulfate (CuSO4) exposure, 

the expression of HERV-H env is decreased, whereas that of 

env genes of HERV-K and HERV-W is increased in human 

skin malignant melanoma cell line SK-MEL-37. However, the 

expression of both HERV-K and HERV-W env genes seems to 

decrease as the concentration of CuSO4 increases (Karimi et 

al., 2019). Finally, silver nanoparticles (AgNPs) increase mRNA 

and protein levels of syncytin-1 of HERV-W in both human 

T-lymphoblastic leukemia MOLT-4 and Fanconi anemia acute 

myeloid leukemia (FA-AML1) cells (Alqahtani et al., 2016).

Internal factors: morphogens, hormones, and cytokines
Retinoic acid, a vitamin A metabolite that functions as a mor-

phogen (Ono et al., 1987) during early embryogenesis, is also 

reported to transcriptionally activate retinoic acid-responsive 

human ERV-I (RRHERV-I), a type of HERV-I, in teratocarcino-

ma cells (Kannan et al., 1991). HERV-K expression is stimu-

lated by a sequential treatment of female hormones, proges-

terone after estradiol, in human breast cancer cell line T47D 

(Ono et al., 1987). On the other hand, HERV-R expression in 

human vascular endothelial cells is upregulated by treatment 

of various cytokines such as tumor necrosis factor-alpha 

(TNF-α), interleukin-1 alpha (IL-1α) and IL-1β, but downreg-

ulated by that of interferon-gamma (IFNγ) (Katsumata et al., 

1999). These observations indicate that HERV-R expression 

may be up-or down-regulated at sites of inflammation in hu-

man vessels and play a role in inflammatory vascular diseases. 

Various transcription factors and cellular signaling pathways 

are downstream of these internal factors and discussed be-

low.

Epigenetic factors: DNA methylation and histone modifi-
cation
Transcription of HERV-K and methylation level of their LTRs 

are associated with each other in the teratocarcinoma cells 

(Florl et al., 1999). DNA demethylation of HERV LTRs trig-

gers upregulation of HERV expression. A low level of DNA 

methylation in HERV-K and -W regions has been reported 

in urothelial cell carcinoma (UCC) (Menendez et al., 2004) 

and ovarian cancer (Stengel et al., 2010). HERVs harbor 

binding sequences for KRAB-containing zinc finger proteins 

(KRAB-ZFPs), and histone modifications are induced by the 

interaction of KRAB-ZFPs to those binding sites. KRAB-ZFPs 

bind to transcription factor binding site (TFBS) within HERV 

elements, recruiting the co-repressor KRAB-associated pro-

tein 1 (KAP1), which is also called TRIM28 (Giménez-Orenga 

and Oltra, 2021). In another study, it is shown that HERV-K is 

repressed by KAP1 (TRIM28) in undifferentiated human em-

bryonic stem cells (hESCs) and differentiated cell lines HeLa 

and 293T cells, adult peripheral blood mononuclear cells (PB-

MCs), and CD4+ T cells (Tie et al., 2018). HERV‐S and HERV

‐T are overexpressed in KAP1 (TRIM28) knockout HeLa cells, 

and the KAP1 (TRIM28) depletion also results in a decrease 

in H3K9me3 level at HERV-K regions, which supports KAP1 

(TRIM28)’s repression on HERVs. These results indicate that 

the KRAB-ZFP/KAP1 (TRIM28) pathway involves regulating 

HERV activation presumably via epigenetic controls. Knock-

down of KAP1 (TRIM28) in human neural progenitor cells 

(NPCs) generally upregulates various HERV gene expressions 

(Brattås et al., 2017). A gene regulatory network based on 

HERVs may participate in the control of gene expression of 

protein-coding transcripts necessary for proper development 

of nervous systems (Lee et al., 2019b; 2021b; Zhang et al., 

2019a).

 CRISPR/Cas9‐based deletion of KAP1 (TRIM28), an epi-

genetic co-repressor protein, results in upregulation of ERVs 

in mouse NPCs in vitro (Jönsson et al., 2021). However, there 

is no activation of ERVs in adult neurons, in case a vector tar-

geting KAP1 (TRIM28) is injected into the forebrain of adult 

Cas9‐GFP mice (Lee et al., 2020b). KAP1 (TRIM28) is re-

quired to silence ERVs during brain development in both hu-

mans and mice, and the results indicate that the suppression 

of ERVs by KAP1 (TRIM28) remains in the adult brain. In vivo 

depletion of KAP1 (TRIM28) in cortical NPCs during mouse 

brain development later results in upregulation of ERVs in ex-

citatory neurons in the adult brain. In addition, activated mi-

croglia are found in the cortex where excitatory neurons lack 

KAP1 (TRIM28). Expression of ERV in neurons is linked to the 

activation of microglia, which demonstrates that activation 

of ERV in neurons results in an inflammatory response in the 

nervous system.

 TIP60 is a histone acetyltransferase and functions as a hap-

loinsufficient tumor suppressor (Gorrini et al., 2007). Tumors 

from colorectal and breast cancer patients show a decrease 

in the expression of TIP60, suggesting a link between down-

regulation of TIP60 and tumor progression (Gorrini et al., 

2007; Mattera et al., 2009). TIP60 positively regulates the 

expression of histone methyltransferases (HMTs), SETDB1, 

and SUV39H1, loss of TIP60 results in a global decrease in 

H3K9me3 level (Rajagopalan et al., 2018). TIP60 silences 

HERV-L, HERV-K, HERV-1, and HERV-W, dependent on bro-

modomain-containing protein 4 (BRD4), an epigenetic read-

er recognizing histone proteins (Zhou et al., 2020), through 

regulation of histone H3K9me3 in colorectal cancer cells. 

HERVs are repressed in colorectal cells overexpressing TIP60. 

In addition, the nonobese diabetic/severe combined immu-

nodeficient (NOD-SCID) mouse model, which is injected with 

colorectal cancer cells overexpressing TIP60, exhibits a reduc-

tion in tumor growth. ChIP assay reports TIP60 occupancy at 

LTR regions of HERVs (Rajagopalan et al., 2018).

HERVs IN TRANSGENIC ANIMAL MODELS

HERVs can regulate the expression of host cellular genes 

through their cis-regulatory elements predominantly local-

ized in their LTRs. These features play a critical role in the 

commencement and progression of diseases in several ways 

involving genetic instability, hypomethylation, transactivation, 
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and RNA interference (Yu et al., 2013). Thus, it is crucial to 

understand how LTRs participate in gene expression process-

es. Utilizing animal models provides research platforms to test 

LTR activities and their interacting factors in various contexts, 

thereby helping understand the potential roles of LTR in hu-

man physiological and pathological conditions (Fig. 1).

Caenorhabditis elegans
C. elegans is a free-living, non-parasitic, and transparent 

nematode about 1 mm in length. C. elegans is the first 

multi-cellular organism and animal to have its whole genome 

sequenced, and its genome contains approximately 20,000 

genes and shares high genetic homology of 60% to 80% 

with humans (C. elegans Sequencing Consortium, 1998). 

C. elegans is a versatile model with a powerful genetics due 

to many advantages such as easy lab maintenance, a large 

brood size with approximately 300 offspring within a re-

productive cycle of only three days and the short lifespan of 

three weeks in a typical culture condition, and practically no 

ethical concerns (Meneely et al., 2019). Therefore, C. elegans 

has been widely used to study various questions asking prin-

ciples in biological sciences and human diseases (Chung et 

al., 2020; Kim et al., 2019; Lee et al., 2021a; Levine and Lee, 

2020).

 Promoter activity of HERV-K LTR that is assessed by ex-

pressing GFP is reported in free-living soil worms C. elegans 

(Durnaoglu et al., 2020). Expression of GFP is mainly ob-

served in vulval muscle, and LTR activation is dependent on 

che-1, a sensory neuron driver, and lin-15b, a negative regu-

lator of RNAi and germline gene expression. CHE-1 is a C2H2 

zinc-finger transcription factor and has various homologs 

detected in human, murine, and fly genomes. The GLASS 

transcription factor required for photoreceptor cell differenti-

ation in Drosophila melanogaster and human ZNF500 shares 

the highest homology with the CHE-1 domain (Etchberger et 

al., 2007; Moses et al., 1989; Uchida et al., 2003).

Drosophila melanogaster
The fruit fly, D. melanogaster, has been used as a genetic 

model organism for over a century to study various biological 

processes such as inheritance, embryonic development, and 

aging (Jennings, 2011). Drosophila can be easily cultured in 

a laboratory condition, have a short life cycle of around ten 

days at 25°C, a large number of laid eggs, approximately 

100 eggs per day, and a relatively short lifespan of 2 to 3 

months. The genome of Drosophila contains about 13,600 

genes, 60% homologous to the human genome (Adams et 

al., 2000). Drosophila develop most major organs found in 

Fig. 1. Animal models used in HERV studies. HERV expression is required for normal development and its abnormal activation can 

result in several cancers and neurological diseases. Transgenic animals are generated by microinjection of DNA fragments or plasmids 

harboring HERV LTR, env, and rec genes into the pronuclei of fertilized eggs of vertebrate models of zebrafish, rats, and mice, or into 

the gonad of the worm C. elegans. Regulatory elements of HERV LTRs act as promoters/enhancers in many animal models and can 

affect the expression of the nearby gene or reporter. Some model animals expressing HERV env and rec genes show the shared features 

with human diseases such as cancers, ALS, and type-1 diabetes. Transgenic fruit flies expressing human TDP-43 (hTDP-43), which 

forms pathological aggregates in various neurodegenerative diseases such as ALS, FTD, and AD, activates Drosophila ERV gypsy, that is 

structurally related to HERV-K, and their neurons degenerate. Genetically modified pigs suppressing porcine endogenous retroviruses 

(PERVs), which are still infectious, different from HERVs, are developed to overcome a potential risk of cross-species transmission of 

PERVs in xenotransplantation. Tumor xenograft animal models also show that HERV elements increase cancer cell proliferation and tumor 

growth. Animal models can be used to analyze the role of HERV function in vivo and help better understand how they are involved in the 

disease process. Figure was created with BioRender.com.
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humans, including heart, hematopoietic system, and com-

partmented nervous system, thus serving as a useful simple 

model for studying circulation and behavior (Lee and Kim, 

2021; Rimal et al., 2020; Vlisidou and Wood, 2015).

 TAR DNA-binding protein 43 (TDP-43) is abnormally ex-

pressed in many ALS patients (Chen-Plotkin et al., 2010), 

and it has been reported to directly bind to HERV-K LTR (Li et 

al., 2015). There are five binding sites for TDP-43 in HERV-K 

LTRs. CHIP assay revealed that TDP-43 binds to HERV-K LTR, 

indicating that it may have a role as a regulator of HERV-K 

expression and involve in neurodegeneration. Fruit flies 

Drosophila expressing human TDP-43 (hTDP-43) induce 

retrotransposable element (RTE) expression in neurons and 

glia (Krug et al., 2017). hTDP-43 expression in glia causes 

regulatory control loss in the specific RTE, the ERV gypsy. The 

fly glia expressing hTDP-43 degenerate, and those transgenic 

flies show severely impaired locomotion. The toxicity of glial 

hTDP-43 is rescued by either RNAi against gypsy or phar-

macologically inhibiting RTE reverse transcriptase activity by 

tenofovir disoproxil fumarate (TDF), zidovudine (AZT), and 

stavudine (d4T). Altogether, the studies suggest that RTE 

activity may contribute to neurodegeneration in TDP-43-me-

diated diseases.

Zebrafish
The zebrafish Danio rerio is a freshwater fish easily cultured 

in regular fish tanks. A single female zebrafish lays up to 200 

eggs per week (Gutiérrez-Lovera et al., 2017). The zebrafish 

genome contains about 26,000 protein-coding genes and 

shows approximately 70% of homology with the human ge-

nome, including 82% of orthologous human disease-related 

genes (Howe et al., 2013). The transparent model organism 

is particularly useful in studies directly observing ongoing 

events inside the live vertebrate animal body, providing de-

tailed information in organ and neural development (Choe et 

al., 2020; Jung et al., 2019; 2020b; Lee et al., 2020c; Oh and 

Park, 2019).

 Transgenic zebrafish is generated to test whether ERV-9 

(also known as HERV-W) LTR drives GFP expression (Pi et al., 

2004). LTR activated GFP expression in transgenic zebrafish 

shows a maternal effect. In the study, fluorescence level in 

embryos decreased 48 hours after post-fertilization, which 

indicates ERV-9 LTR enhancer was active during oogenesis 

but not active during spermatogenesis or early embryogene-

sis. In situ hybridizations also confirmed that ERV-9 LTR was 

involved in the primordial oocytes but not in spermatozoa. 

ERV-9 LTR was similarly active in human oocytes and stem/

progenitor cells but not active in spermatozoa and differenti-

ated somatic cells. These results indicate that ERV-9 LTR may 

play a role in synthesizing maternal mRNAs required for early 

embryogenesis.

 A zebrafish reporter line of zebrafish endogenous retrovi-

rus (ZFERV) is recently described (Hamilton et al., 2021). ltr5, 

the promotor of zferv1a, is used to drive GFP expression, and 

ZFERV is activated in the thymus and brain. Interestingly, the 

expression of zferv1a is specific to T-cells, suggesting a po-

tential role for ZFERV in lymphocyte development, immunity, 

and neurological diseases. ZFERV knockout is also generated 

by deleting LTRs of ZFERV with CRISPR/Cas9 (Yang et al., 

2018). ZFERV-deficient zebrafish embryos exhibit spinal ab-

normality in early embryonic development, and expression 

of both Delta D and Notch1 is significantly lower in zebrafish 

with abnormal spines than normal fish. The results suggest 

that ZFERV may involve in vertebral development by regulat-

ing Notch1/Delta D signaling pathway.

Murine models
Murine models such as mice and rats are widely studied 

mammalian models due to their small size and fast reproduc-

tion cycle of three weeks (Walsh et al., 2017). Murine ESCs 

are available and easily subjected for genetic manipulation; 

thus various humanized murine models are generated to 

study human diseases and health (Saito et al., 2019). Trans-

genic animals overexpressing HERV ENVs have been studied 

in multiple contexts to examine the activities of HERVs. Also, 

studies using murine models show that maternal effect 

factors affect activities of endogenous murine retroviral ele-

ments, influencing early development.

HERV genes and LTRs in murine models

HERV-R env gene expression is reported in salivary glands of 

transgenic rats in which the transgenes carry the complete 

provirus genome of ERV3 (Tanaka, 2000; Tanaka et al., 

2003). The transgenic rats carrying HERV-R under the control 

of their own promoter also express HERV-R transcripts in the 

placenta, where HERV-R is highly expressed in humans. Also, 

immunohistochemistry results show the specific expression of 

ENV glycoprotein in acinar cells of the Harderian glands, but 

not in duct epithelial cells indicating the protein expression of 

HERV-R is under the control of host cell regulation. Still, the 

transgenic rats do not show any significant pathology.

 Transgenic mice expressing the lacZ gene under the control 

of HERV-K LTRE3, which is active in cancer developments, are 

generated (Casau et al., 1999). The highest expression levels 

are mainly restricted to the undifferentiated spermatocytes 

of adult testes. HERV-K LTRE3 also drives the expression of 

reporters in testicular teratocarcinoma cell lines but not in 

other cell lines of transformed kidney cell line, breast carcino-

mas, an osteosarcoma, and lung and colon adenocarcinomas 

(Bae et al., 2020; Kim et al., 2020). The results indicate that 

HERV-K LTRE3 is specifically compatible with the transcrip-

tional machinery of testes cells.

 Many germ cell tumor (GCT) patients are young men, 

and HERV-K rec gene, a variant of the env gene, is highly ex-

pressed in GCTs (Galli et al., 2005). Transgenic mice express-

ing HERV-K rec gene show disturbed germ cell development 

and are prone to developing testicular carcinoma (Lee et al., 

2019c). Transgenic mice expressing the HERV-K env gene in 

their neurons develop motor dysfunction, exhibiting selec-

tive loss of volume of the motor cortex, decreased synaptic 

activity in pyramidal neurons, dendritic spine abnormalities, 

and nucleolar dysfunction (Li et al., 2015). TDP-43’s binding 

to the LTRs regulates the expression of HERV-K, which is 

presumably responsible for the increased expression level of 

HERV-K env in the postmortem brain tissue of some ALS pa-

tients.

 HERV-W env has been detected in the serum, PBMCs, and 

pancreata of type-1 diabetes (T1D) patients. Also, there is a 
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correlation between HERV-W env expression and infiltration 

of macrophages in the exocrine pancreas. Transgenic mice 

expressing HERV-W env decrease insulin level, displaying 

hyperglycemia and immune cell infiltration in the pancreas. 

The results suggest that HERV-W env may contribute to T1D 

pathogenesis (Levet et al., 2017).

Maternal effect factors

stella is a gene coding a protein containing an SAP-like 

domain and a splicing factor motif-like structure, showing 

maternal effect (Payer et al., 2003). stella is required for 

early embryonic development and found to affect mater-

nal-to-zygotic transition (MZT) (Huang et al., 2017). stella M/

Z KO 2-cell embryos have reduced activation of the LTR-ER-

VL family, specifically mouse endogenous retrovirus type-L 

(MuERV-L) elements which encode a canonical retroviral gag 

and pol, flanked by 5’ and 3’ LTR. MuERV-L knock-down in 

embryos by micro-injecting MuERV-L siRNA into the cyto-

plasm of zygotes hinders developmental progression. stella 

may involve in the regulation of transposable elements in 

2-cell embryos and the activation of MuERV-L. The study 

suggests that there is a possibility that mammalian maternal 

effect factors may participate in early developments by regu-

lating retroviral elements.

Hybrid model of humans and mice

Multiple sclerosis-associated retrovirus (MSRV) is a 

HERV-W-related retroelement and found in cell cultures 

isolated from patients with MS, the human inflammatory de-

myelinating disease (Antony et al., 2011). In order to address 

the pathogenicity of MSRV retroviral particles, a hybrid model 

of humans and mice is used (Firouzi et al., 2003). SCID model 

mice grafted with primary human lymphocytes obtained from 

healthy blood donors are humanized SCID (hu-SCID) mice. 

hu-SCID intraperitoneally injected with MSRV virions exhibit 

neurological symptoms such as partial or generalized paraly-

sis and eventually die bleeding in the brain. Pro-inflammatory 

T cell cytokines such as TNF-α and IFNγ are overexpressed 

in severely ill animals. Thus, MSRV particles have potent im-

mune-pathogenic properties mediated by T cells.

 Experimental autoimmune encephalomyelitis (EAE) is the 

most commonly used experimental model for MS, and it has 

been shown that MSRV-ENV protein, a HERV-W ENV-derived 

protein, can induce EAE in C57/BL6 mice when administered 

in emulsion together with myelin oligodendrocyte glycopro-

tein (MOG) peptides (Perron et al., 2013). The clinical and 

histopathological features of MSRV-ENV-induced disease are 

indistinguishable from standard EAE, supporting the HERV-W 

ENV protein pathogenicity in vivo.

Tumor xenograft models

Several tumor xenograft studies testing oncogenic properties 

of HERVs have been reported. Syncytin-1, an envelope pro-

tein encoded by the HERV W env gene, is highly expressed in 

human hepatocellular carcinoma (HCC) (Zhou et al., 2021). 

Tumor xenograft assay reveals that NIH3T3 cells overex-

pressing syncytin-1 induce tumor formation in nude mice. 

Phosphorylation of MEK1/2 and ERK1/2 and expression of 

syncytin-1 are upregulated in HCC, which indicates MEK/ERK 

pathway is likely to be crucial in syncytin-1-promoted hepa-

tocarcinogenesis. Syncytin-1-transfected human uroepithelial 

cells (SV-HUC-1) also develop into UCC in xenograft nude 

mice, too (Yu et al., 2013).

 Expression of HERV-K ENV protein is higher in various can-

cers, including colorectal cancer than in normal tissues (Jo et 

al., 2016). A tumor is not formed, or even if formed, its size 

is significantly reduced in nude mice injected with human 

DLD-1 colorectal cancer cells in which HERV-K env is knocked 

out using the CRISPR-Cas9 system (Ko et al., 2021a). In an-

other study, shRNA targeting HERV-K env RNA (shRNAenv) 

is transfected into pancreatic cancer (PC) cells to suppress 

the expression of HERV-K env and then grafted into mice, 

which eventually show the reduced size of tumors when 

compared with controls (Li et al., 2017). The results indicate 

that HERV-K ENV protein participates in cell proliferation and 

tumor growth.

 Acute lymphocytic leukemia cells, Raji cells, overexpressing 

Np9 are used for tumor xenograft in NOD-SCID mice and 

found to promote the growth of the xenograft leukemia cells 

(Chen et al., 2013). Kaposi’s sarcoma-associated herpesvirus 

(KSHV) infection can trans-activate HERV-K, particularly the 

encoded oncogenic Np9 expression worsens Kaposi’s sarco-

ma pathogenesis and KSHV-induced tumorigenesis in en-

dothelial cells (Dai et al., 2018). Kaposi’s sarcoma xenograft 

model, mice injected with cells, in which Np9 is stably knock-

down by shRNA, significantly suppresses the tumorigenesis 

of Kaposi’s sarcoma in vivo.

Porcine models
Pigs share many characteristics with humans such as anat-

omy, physiology, and metabolism, making it useful for an 

alternative organ donor for xenotransplantation (Gutierrez 

et al., 2015). PERVs are, in contrast to HERVs, still active to 

produce virion particles, which are infectious (Denner, 2016). 

Thus, there is a potential risk of cross-species transmission of 

porcine endogenous retroviruses (PERV), which can infect 

the recipient's cells. Anti-PERV shRNAs method is shown to 

be highly effective to knock-down the expression of pol and 

gag genes of PERVs in pigs (Ramsoondar et al., 2009).

TRANSCRIPTION FACTORS BINDING HERV LTRs

The association between LTR sequence and cell line-specific 

expression suggests that certain sequence-specific elements, 

such as TFBSs, play a pivotal role in determining differential 

promoter activity. Identification of TFBSs and of their actual 

interactors is essential to assess the promoter activity of HERV 

LTRs, which drives gene expression in various situations, in-

cluding human diseases (Montesion et al., 2018) (Table 1).

 Double Homeobox 4 (DUX4) is a transcription factor, and 

its misexpression in skeletal muscle results in facioscapulohu-

meral muscular dystrophy (FSHD), an inherited muscle dis-

ease. DUX4 binds to the LTRs of HERV-L in rhabdomyosarco-

ma (RD) cells (Mitsuhashi et al., 2021), while it binds to those 

of HERV-K in myoblast cell lines (Young et al., 2013). DUX4 

induces several HERV fusion transcripts and might significant-

ly contribute to the pathology of FSHD.

 SLE is an autoimmune disease and the most common type 



Mol. Cells 2021; 44(12): 861-878  867

Human Endogenous Retroviruses as Gene Expression Regulators
Serpen Durnaoglu et al.

Ta
b

le
 1

. 
Tr

a
n

sc
ri

p
ti

o
n

 f
a
ct

o
rs

, 
w

h
ic

h
 h

a
ve

 b
e
e
n

 e
xp

e
ri

m
e
n

ta
lly

 s
h

o
w

n
 t

o
 in

fl
u

e
n

ce
 H

E
R

V
 L

T
R

 a
ct

iv
it

y

Ty
p

e
 o

f 
H

E
R

V
Tr

a
n

sc
ri

p
ti

o
n

 

fa
ct

o
r

Ty
p

e
 o

f 
tr

a
n

sc
ri

p
ti

o
n

 f
a
ct

o
r

D
is

e
a
se

/p
h

ys
io

lo
g

y
Ty

p
e
 o

f 
m

o
d

e
l

C
o

n
fi

rm
a
ti

o
n

m
e
th

o
d

R
e
fe

re
n

ce

H
E

R
V

-L
, 

H
E

R
V

-K
D

U
X

4
H

o
m

e
o

b
o

x
FS

H
D

H
u

m
a
n

 m
yo

b
la

st
 c

e
ll 

lin
e
s,

 R
D

 

ce
lls

C
h

IP
-s

e
q

, 
R

N
A

-s
e
q

M
it

su
h

a
sh

i e
t 

a
l.
, 

2
0

2
1

; 

Y
o

u
n

g
 e

t 
a
l.
 2

0
1

3

H
E

R
V

-E
N

FA
T
1

, 
E

R
- α

N
FA

T
 T

F,
 z

f-
N

R
 A

1
-t

yp
e

S
LE

C
D

4
+

 T
 c

e
lls

C
h

IP
W

a
n

g
 e

t 
a
l.
, 

2
0

1
9

H
E

R
V

-K
, 

H
E

R
V

-1
H

IF
b

H
LH

K
id

n
e
y 

ca
n

ce
r

R
e
n

a
l c

e
ll 

ca
rc

in
o

m
a
 c

e
lls

C
h

IP
-s

e
q

S
ie

b
e
n

th
a
ll 

e
t 

a
l.
, 

2
0

1
9

H
E

R
V

-K
O

C
T
4

, 
P

R
P

O
U

 f
a
m

ily
, 

zf
-N

R
 C

3
-t

yp
e

B
re

a
st

 c
a
n

ce
r

B
re

a
st

 c
a
n

ce
r 

ce
lls

E
M

S
A

, 
C

o
-I

P
N

g
u

ye
n

 e
t 

a
l.
, 

2
0

1
9

H
E

R
V

-K
H

O
X

-P
B

X
, 

R
FX

3

P
B

X
 h

o
m

e
o

b
o

x 
fa

m
ily

, 

R
FX

-t
yp

e
 w

in
g

e
d

-h
e
lix

N
e
o

p
la

si
a

B
re

a
st

 c
a
n

ce
r 

ce
lls

Lu
ci

fe
ra

se
 a

ss
a
y

M
o

n
te

si
o

n
 e

t 
a
l.
, 

2
0

1
8

H
E

R
V

-H
N

A
N

O
G

, 

O
C

T
4

, 
S
O

X
2

H
o

m
e
o

b
o

x 
T
F,

 P
O

U
 f

a
m

ily
, 
S
O

X
 

fa
m

ily

P
lu

ri
p

o
te

n
cy

H
u

m
a
n

 e
m

b
ry

o
n

ic
 s

te
m

 c
e
lls

C
h

IP
-s

e
q

S
a
n

to
n

i e
t 

a
l.
, 

2
0

1
2

H
E

R
V

-W
c-

M
yb

, 
H

O
X

A
5

b
H

T
H

, 
H

O
X

 f
a
m

ily
B

la
d

d
e
r 

ca
n

ce
r

U
ro

th
e
lia

l c
e
ll 

ca
rc

in
o

m
a

C
h

IP
, 

E
M

S
A

Y
u

 e
t 

a
l.
, 

2
0

1
3

H
E

R
V

-E
H

IF
-2
α

b
H

LH
K

id
n

e
y 

ca
n

ce
r

(p
ri

m
a
ry

) 
cc

R
C

C
 t

u
m

o
r 

a
n

d
 

cc
R

C
C

 c
e
ll 

lin
e
s

C
h

IP
C

h
e
rk

a
so

va
 e

t 
a
l.
, 

2
0

1
1

H
E

R
V

-9
N

F-
Y

H
e
te

ro
tr

im
e
ri

c 
T
F 

co
m

p
o

se
d

 o
f 

th
e
 N

F-
Y
A

, 
N

F-
Y

B
, 

a
n

d
 N

F-
Y

C
 

su
b

u
n

it
s

S
ti

m
u

la
ti

o
n

 o
f 

th
e
 t

ra
n

sc
ri

p
ti

o
n

 o
f 

th
e
 

d
o

w
n

st
re

a
m

 g
e
n

e
 lo

cu
s

E
ry

th
ro

id
 p

ro
g

e
n

it
o

r 
ce

lls
 a

n
d

 

e
m

b
ry

o
n

ic
 t

e
ra

to
ca

rc
in

o
m

a
 

(p
ri

m
o

rd
ia

l o
o

cy
te

s)

C
h

IP
, 

E
M

S
A

Y
u

 e
t 

a
l.
, 

2
0

0
5

H
E

R
V

-L
H

N
F-

1
H

o
m

e
o

b
o

x
A

ct
iv

a
ti

o
n

 o
f 

a
n

 L
T
R

 p
ro

m
o

te
r

C
o

lo
re

ct
a
l c

a
n

ce
r 

ce
ll 

lin
e
s

E
M

S
A

D
u

n
n

 e
t 

a
l.
, 

2
0

0
3

H
E

R
V

-W
O

C
T
-1

, 
C

/E
B

P
P

O
U

 f
a
m

ily
, 

le
u

ci
n

 z
ip

p
e
r 

(b
Z
ip

)
Tr

a
n

sc
ri

p
ti

o
n

a
l r

e
g

u
la

ti
o

n
 o

f 
H

E
R

V
-W

 L
T
R

H
e
La

 c
e
lls

Lu
ci

fe
ra

se
 a

ss
a
y

Le
e
 e

t 
a
l.
, 

2
0

0
3

H
E

R
V

-K
S
M

A
R

C
B

1
, 

c-
M

yc

S
W

I/
S
N

F 
p

ro
te

in
 c

o
m

p
le

xe
s,

 

b
H

LH
-L

Z

A
ty

p
ic

a
l t

e
ra

to
id

 r
h

a
b

d
o

id
 t

u
m

o
r 

(A
T
/R

T
)

A
T
/R

T
 c

e
ll 

lin
e
s

C
h

IP
D

o
u

ce
t-

O
’H

a
re

 e
t 

a
l.
, 

2
0

2
1

H
E

R
V

-K
Y

Y
1

C
2

H
2

-t
yp

e
 Z

in
c-

Fi
n

g
e
r

A
n

 a
ct

iv
a
to

r 
o

f 
H

E
R

V
-K

 e
xp

re
ss

io
n

H
u

m
a
n

 t
e
ra

to
ca

rc
in

o
m

a
, 

 

H
e
p

a
to

ca
rc

in
o

m
a
, 

ce
rv

ic
a
l  

ca
rc

in
o

m
a
 (

H
e
La

) 
ce

lls

E
M

S
A

, 
 

su
p

e
rs

h
if

t 
a
ss

a
y

K
n

ö
ss

l e
t 

a
l.
, 

1
9

9
9

H
E

R
V

-K
M

IT
F-

M
b

H
LH

-L
Z

S
ki

n
 c

a
n

ce
r

M
e
la

n
o

m
a

Lu
ci

fe
ra

se
 a

ss
a
y

K
a
to

h
 e

t 
a
l.
, 

2
0

1
1

H
E

R
V

-K
S
p

1
, 

S
p

3
C

2
H

2
-t

yp
e
 Z

in
c-

Fi
n

g
e
r

A
ct

iv
a
ti

o
n

 o
f 

a
n

 L
T
R

H
u

m
a
n

 m
e
la

n
o

m
a
 a

n
d

  

te
ra

to
ca

rc
in

o
m

a
 c

e
lls

C
h

I,
 E

M
S
A

Fu
ch

s 
e
t 

a
l.
, 

2
0

1
1

H
E

R
V

T
R

IM
2

8
Tr

ip
a
rt

it
e
 m

o
ti

f 
fa

m
ily

B
ra

in
 d

e
ve

lo
p

m
e
n

t
H

u
m

a
n

 n
e
u

ra
l p

ro
g

e
n

it
o

r 
ce

lls
C

h
IP

B
ra

tt
ås

 e
t 

a
l.
, 

2
0

1
7

H
E

R
V

-K
T
D

P
-4

3
R

N
A

/D
N

A
 b

in
d

in
g

 p
ro

te
in

A
LS

H
u

m
a
n

 n
e
u

ro
n

a
l c

e
lls

C
h

IP
Li

 e
t 

a
l.
, 

2
0

1
5

H
E

R
V

-K
P

R
zf

-N
R

 C
3

-t
yp

e
B

re
a
st

 c
a
n

ce
r

H
u

m
a
n

 b
re

a
st

 c
a
n

ce
r 

ce
ll 

lin
e

N
o

rt
h

e
rn

  

h
yb

ri
d

iz
a
ti

o
n

O
n

o
 e

t 
a
l.
, 

1
9

8
7

H
E

R
V

-K
A

R
zf

-N
R

 C
4

-t
yp

e
C

e
ll 

p
ro

lif
e
ra

ti
o

n
, 

in
h

ib
it

io
n

 o
f 

a
p

o
p

to
si

s 

a
n

d
 t

o
 t

u
m

o
r 

in
d

u
ct

io
n

P
ro

st
a
te

 c
a
n

ce
r 

ce
ll 

lin
e

Lu
ci

fe
ra

se
 a

ss
a
y

H
a
n

ke
 e

t 
a
l.
, 

2
0

1
3

H
E

R
V

-L
, 

H
E

R
V

-K
, 

H
E

R
V

-1

T
IP

6
0

, 
B

R
D

4
C

2
H

C
 M

Y
S
T
-t

yp
e
, 
 

B
E
T
 f

a
m

ily
 o

f 
b

ro
m

o
d

o
m

a
in

s

C
o

lo
re

ct
a
l c

a
n

ce
r

C
o

lo
re

ct
a
l c

a
n

ce
r 

ce
lls

C
h

IP
R

a
ja

g
o

p
a
la

n
 e

t 
a
l.
, 

2
0

1
8

H
E

R
V

-K
N

F-
κB

, 
IR

F1
R

e
l h

o
m

o
lo

g
y,

 b
H

T
H

A
LS

H
u

m
a
n

 a
st

ro
cy

te
s 

a
n

d
 n

e
u

ro
n

s
C

h
IP

M
a
n

g
h

e
ra

 e
t 

a
l.
, 

2
0

1
6

H
E

R
V

s 
(H

E
R

V
-1

)
U

n
kn

o
w

n
U

n
kn

o
w

n
B

ra
in

 t
u

m
o

r
G

lio
b

la
st

o
m

a
 m

u
lt

if
o

rm
e
 

(G
B

M
)

R
N

A
-s

e
q

Y
u

a
n

 e
t 

a
l.
, 

2
0

2
1

D
U

X
4

, 
d

o
u

b
le

 h
o

m
e
o

b
o

x 
4

; 
N

FA
T
1

, 
n

u
cl

e
a
r 

fa
ct

o
r 

o
f 

a
ct

iv
a
te

d
 T

 c
e
lls

 1
; 

E
R

- α
, 

e
st

ro
g

e
n

 r
e
ce

p
to

r-
α;

 H
IF

, 
h

yp
o

xi
a
-i

n
d

u
ci

b
le

 f
a
ct

o
r;

 O
C

T
4

, 
o

ct
a
m

e
r-

b
in

d
in

g
 t

ra
n

sc
ri

p
ti

o
n

 f
a
ct

o
r 

4
;P

R
, 

p
ro

g
e
st

e
ro

n
e
 r

e
-

ce
p

to
r;

 A
R

, 
a
n

d
ro

g
e
n

 r
e
ce

p
to

r;
 H

O
X

, 
h

o
m

e
o

b
o

x;
 P

B
X

, 
p

re
-B

 c
e
ll 

le
u

ke
m

ia
 t

ra
n

sc
ri

p
ti

o
n

 f
a
ct

o
r;

 R
FX

3
, 

re
g

u
la

to
ry

 f
a
ct

o
r 

X
3

; 
N

A
N

O
G

, 
h

o
m

e
o

b
o

x 
p

ro
te

in
 N

A
N

O
G

; 
S
O

X
2

, 
S
R

Y
-b

o
x 

tr
a
n

sc
ri

p
ti

o
n

 f
a
ct

o
r 

2
; 

N
F-

Y
, 

n
u

cl
e
a
r 

fa
ct

o
r 

Y
; 

S
M

A
R

C
B

1
, 

S
W

I/
S
N

F 
R

e
la

te
d

, 
M

a
tr

ix
 A

ss
o

ci
a
te

d
, 

A
ct

in
 D

e
p

e
n

d
e
n

t 
R

e
g

u
la

to
r 

o
f 

C
h

ro
m

a
ti

n
, 

su
b

fa
m

ily
 B

, 
M

e
m

b
e
r1

; 
M

IT
F-

M
, 

m
ic

ro
p

h
th

a
lm

ia
-a

ss
o

ci
a
te

d
 t

ra
n

sc
ri

p
ti

o
n

 f
a
ct

o
r;

 

T
R

IM
2

8
, 

Tr
ip

a
rt

it
e
 M

o
ti

f 
C

o
n

ta
in

in
g

 2
8

; 
T
D

P
-4

3
, 

TA
R

 D
N

A
-b

in
d

in
g

 p
ro

te
in

 4
3

; 
B

R
D

4
, 

B
ro

m
o

d
o

m
a
in

-c
o

n
ta

in
in

g
 p

ro
te

in
 4

; 
IR

F1
, 

In
te

rf
e
ro

n
 R

e
g

u
la

to
ry

 F
a
ct

o
r 

1
; 

zf
-N

R
, 

zi
n

c 
fi

n
g

e
r-

n
u

cl
e
a
r 

re
ce

p
to

r;
 

b
H

LH
, 

b
a
si

c-
h

e
lix

-l
o

o
p

-h
e
lix

; 
b

H
T
H

, 
b

a
si

c 
h

e
lix

–t
u

rn
–h

e
lix

; 
b

H
LH

-L
Z
, 

b
a
si

c 
h

e
lix

-l
o

o
p

-h
e
lix

 l
e
u

ci
n

e
-z

ip
p

e
r;

 F
S
H

D
, 

fa
ci

o
sc

a
p

u
lo

h
u

m
e
ra

l 
m

u
sc

u
la

r 
d

ys
tr

o
p

h
y;

 A
LS

, 
a
m

yo
tr

o
p

h
ic

 l
a
te

ra
l 
sc

le
ro

si
s;

 S
LE

, 
sy

s -

te
m

ic
 lu

p
u

s 
e
ry

th
e
m

a
to

su
s;

 R
D

, 
rh

a
b

d
o

m
yo

sa
rc

o
m

a
; 

E
M

S
A

, 
e
le

ct
ro

p
h

o
re

ti
c 

m
o

b
ili

ty
 s

h
if

t 
a
ss

a
y.



868  Mol. Cells 2021; 44(12): 861-878

Human Endogenous Retroviruses as Gene Expression Regulators
Serpen Durnaoglu et al.

of lupus, and it is reported that high level of HERV-E clone 

4-1 mRNAs are detected in CD4+ T cells from SLE patients 

(Wang et al., 2019). Both nuclear factors of activated T cells 

1 (NFAT1) and estrogen receptor-α (ER-α) bind to HERV-E 

clone 4-1 5’LTRs where DNAs are hypomethylated. Therefore, 

HERV-E in CD4+ T cells can be activated by abnormal inflam-

matory responses in SLE.

 Hypoxia-inducible transcription factor-2α (HIF-2α) binds 

to HIF response elements (HRE) localized in proviral LTRs of 

HERV-E in the clear cell histological subtype of renal cell carci-

noma (ccRCC) and activates HERV-E expression (Cherkasova 

et al., 2011). The expression of a novel transcript derived 

from HERV-E provirus named CT-RCC HERV-E is restricted 

to ccRCC, which is characterized by inactivation of the von 

Hippel–Lindau (VHL) tumor-suppressor gene. Transfection 

of a ccRCC tumor line with a plasmid expressing functional 

VHL significantly reduces the expression of CT-RCC HERV-E 

transcripts. The results suggest that inactivation of tumor 

suppressor VHL may be associated with HERV-E expression in 

ccRCC.

 HIFs, HIF-1α, HIF-2α, and HIF-1β, are all reported to bind 

to the LTRs of class I HERVs and HERV-K families, and HIF-

bound LTRs show a promoter-like activity driving expression 

of POU5F1 (OCT4), a stem cell transcription factor, in RCCs 

(Moon et al., 2020; Siebenthall et al., 2019). POU5F1 is con-

sistently upregulated in tumor cells in Cancer Genome Atlas 

(TCGA) cohorts. Progesterone receptor (PR) and OCT4 bind 

progesterone-response element (PRE) and an octamer motif, 

respectively, in a long terminal repeat LTR5HS of HERV-K, 

activating transcription downstream of the LTR5HS in human 

breast cancer cells T47D, in which the activation of HERV-

Ks by female hormones have been reported (Nguyen et al., 

2019; Ono et al., 1987).

 A specific mutation in HERV-W LTRs is significantly associ-

ated with the pathology of UCC and with syncytin-1 overex-

pression. c-Myb binds to 3′-LTRs of HERV-W, which depends 

on 142T > C mutation (Yu et al., 2013). The mutant 3′-LTR 

acts as an enhancer for syncytin-1 gene expression, stimu-

lated by c-Myb in UCC. The results indicate that the HERV-W 

3′-LTRs can be a regulatory element affecting syncytin-1 gene 

expression, participating in tumor development. On the other 

hand, HOXA5 is shown to bind normal HERV-W 3′-LTR, also 

regulating syncytin-1 gene expression.

 In colorectal cancer cells, hepatocyte nuclear factor 1 (HNF-

1) binds to the LTR of HERV-L, which acts as an alternative 

promoter for the human β1,3-galactosyltransferase 5 gene 

(Dunn et al., 2003). It is found that the HERV-L LTR is a dom-

inant promoter in the colon and has a significant impact on 

the gene expression of β3Gal-T5.

 HERV-K expression is upregulated in neural tissues from 

ALS patients. Independent and synergistic upregulation of 

HERV-K by interferon regulatory factor 1 (IRF1), NF-κB iso-

forms p50 and p65 are observed in ALS patients’ astrocytes 

and neurons (Manghera et al., 2016). Treatment with cyto-

kines TNF-α and LIGHT (the lymphotoxin-like inducible pro-

tein that competes with glycoprotein D for herpes virus entry 

on T cells) increase the levels of HERV-K transcript and protein 

through the direct interaction between both interferon regu-

latory factor 1 (IRF1) and NF-κB and the interferon-stimulated 

response elements (ISREs) located in the HERV-K LTRs. Cy-

tokine-mediated IRF1 and NF-κB binding to the HERV-K LTR 

is in a cell-type-dependent manner. TNF-α increases HERV-K 

protein levels in neurons, whereas LIGHT induces HERV-K in 

astrocytes.

 Several transcriptional initiator (Inr) sites in the HERV-K 

LTRs are detected by rapid amplification of complementary 

DNA ends (5' RACE) (Katoh et al., 2011). The most potent 

Inr is associated with a TATA box and three binding motifs 

of microphthalmia-associated transcription factor (MITF). 

Both chromosomal HERV-K and the cloned LTRs are strongly 

activated in HEK293, which are transfected with MITF-M, a 

melanocyte/melanoma-specific isoform of MITF. In malignant 

melanoma lines, HERV-K transcription is enhanced when 

compared with normal melanocytes.

 Gel shift assay shows that binding complexes, which are 

formed on the enhancer sequence by protein extracts of 

HERV-K-expressing teratocarcinoma cell lines GH and Tera2 

form, are different from those of HeLa and HepG2 cells, 

both of which do not express HERV-K (Knössl et al., 1999). 

Combined results obtained from competition gel shift assay, 

DNase I footprinting, and supershift experiments indicate 

that the binding site of these complexes is a 20-bp sequence 

within HERV-K enhancer, and the transcription factor YY1 

was one component of the HERV-K enhancer-bound com-

plex.

 Transcription factors Sp1 and Sp3 also interact with 

HERV-K LTRs (Fuchs et al., 2011). Both mutating specific GC 

boxes, which are binding sites for Sp proteins, and knocking 

down Sp1 and Sp3 with small interfering RNA (siRNA) signifi-

cantly interfere with the promoter activity of HERV-K LTRs in 

human melanoma and teratocarcinoma cells.

 Gliomas originated from astrocytes, oligodendrocytes, and 

ependymal cells attributes more than 70% of all brain tu-

mors (Ohgaki and Kleihues, 2005). Glioblastoma multiforme 

(GBM) arises from the uncontrolled proliferation of astro-

cytes and is one of the most aggressive types of malignant 

brain tumors (Buckner et al., 2007; Kim et al., 2021; Ostrom 

et al., 2015). The analyses of the various genome and tran-

scriptome data sets generated from GBM tissues and normal 

brain tissues identify some differentially expressed repetitive 

elements (Jung et al., 2020a; Yuan et al., 2021). Forty-eight 

of those repetitive elements are LTR elements, of which 46 

are derived from HERV elements. Forty-three out of the 46 

differentially expressed HERV elements are upregulated, and 

34 significantly changed HERV elements belong to the class I 

superfamily. The LTR elements from HERVs are potential bio-

markers for immunotherapy to treat GBM. Expression levels 

of these elements could be monitored as biomarkers to treat 

GBM.

 The Rec protein of HERV-K interacts with human small 

glutamine-rich tetratricopeptide repeat (TPR)-containing pro-

tein (hSGT) which is a cellular androgen receptor (AR) inhib-

itor (Hanke et al., 2013). This interaction was confirmed by 

co-immunoprecipitation, pull-down assays, and colocalization 

experiments. Rec interference with hSGT induces AR activity. 

Rec also acts as a transactivator by enhancing AR-mediated 

activation of the HERV-K LTR promoter. Rec-driven hyper-

activation of the AR leads to increased cell proliferation and 
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inhibition of apoptosis and eventually to tumor induction or 

promotion.

 An atypical teratoid rhabdoid tumor (AT/RT) is an embryo-

nal central nervous system (CNS) cancer often characterized 

by loss of SMARCB1 (SWI/SNF Related, Matrix Associated, 

Actin Dependent Regulator of Chromatin, subfamily B, Mem-

ber 1). SMARCB1 is a tumor suppressor gene and essential 

during development. AT/RTs contain undifferentiated cancer 

cells (Nemes and Frühwald, 2018). The repression of HERV-K 

env retains stem cell features and enhances neuronal dif-

ferentiation (Wang et al., 2020a). In AT/RT cell lines, loss of 

SMARCB1 in neural stem cells (NSCs) results in upregulation 

of HERV-K env, but restoration of SMARCB1 leads to down-

regulation of HERV-K env (Doucet-O'Hare et al., 2021). In 

the absence of SMARCB1, c-Myc binds to HERV-K LTR and 

increases HERV-K expression. However, SMARCB1 interferes 

with c-Myc, binds to HERV-K LTR, and represses HERV-K 

expression, when overexpressed. HERV-K activation in the 

development of undifferentiated tumors in AT/RT suggests it 

may play a critical role in human embryonic and neurodevel-

opment. 

MOLECULAR AND CELLULAR EVENTS CONTROLLED 
BY HERV ELEMENTS

HERV elements actively control multiple molecular and cellu-

lar events in different cells including neurons, glia, cancer and 

stem cells in various physiological and pathological conditions 

(Table 2).

Toll-like receptor (TLR) signaling: TLR-3 and TLR-4
Elevated levels of TLR-3 and IL-6 are detected in syncy-

tin-1-overexpressing human microglia cell line CHME-5 

and astrocyte cell line U251 (Wang et al., 2018). The syncy-

Table 2. Roles of HERV elements in signaling pathways

HERV 

elements
Signaling pathways Effects Reference

MSRV-Env TLR4 pathway - Acts as agonist of human TLR-4 

- Impairs human OPC maturation to myelinating oligodendrocytes

Madeira et al., 

2016

-  Induces TLR4-dependent pro-inflammatory stimulation of immune 

cells

-  Induces over-expression of ICAM-1 and stimulates inflammatory 

factors in BBB in vitro model

Duperray et al., 

2015

MSRV-Env-SU CD14 and TLR-4 pathway - Triggers maturation process in human dendritic cells

-  Induces human monocytes to produce major proinflammatory cy-

tokines through CD14 and TLR4

Rolland et al., 

2006

HERV-W-env TLR4/MyD88 pathway -  Upregulates the expressions of inflammatory cytokines through 

TLR4/MyD88 pathway in glial cells

Wang et al., 2021

BDNF signaling -  Increases the expression of BDNF, NTRK2, and DRD3 that contribute 

to the pathogenesis of the schizophrenia

Huang et al., 2011

TRPC3 channel - Induces Ca2+ influx through TRP3 channel and regulates DISC1 Chen et al., 2019

SK3 channel - Induces SK3 dependent on CRE/CREB in human neuroblastoma cells Li et al., 2013

Syncytin-1 MEK/ERK pathway -  Promotes cell proliferation, metastasis, and tumorigenicity in hu-

man hepatocellular carcinoma (HCC)

Zhou et al., 2021

TLR3 pathway -  Activates TLR-3 signaling and induces the production of CRP in mi-

croglia and astrocytes

Wang et al., 2018

TGF-β signaling - Proliferation and cell–cell fusions Strick et al., 2007

HERV-K env Ras signaling - Promotes tumorigenesis in breast cancer (BC) Zhou et al., 2016

ROS-NUPR1 pathway - Tumor proliferation, invasion, migration in colorectal cancer Ko et al., 2021a

mTOR pathway -  Interacts with CD98HC, triggers mTOR and regulates of stem cell 

function/neuronal differentiation

Wang et al., 

2020b 

ERK1/2 pathway - Induces epithelial to mesenchymal transition (EMT) Lemaître et al., 

2017

HERV-K LTR NTRK3 signaling pathway - Induces NTRK3 expression and impairs cortical neuron development Padmanabhan 

Nair et al., 2021

HERV-K gag 

and env

MEK–ERK and p16INK4A–

CDK4 pathways

-  Potential regulator of BRAF–MEK–ERK and p16INK4A–CDK4-RB 

during melanoma pathogenesis

Li et al., 2010

HERV-K Np9 β-catenin, ERK, Akt and 

Notch1 signaling

-  Activates β-catenin, ERK, Akt and Notch1 signaling pathways and 

regulates the growth of human leukemia stem/progenitor cells

Chen et al., 2013

MSRV-Env, multiple sclerosis associated retrovirus envelope protein, member of the W family of HERV (HERV-W); MSRV-Env-SU, the 

surface unit of the MSRV envelope protein; OPC, oligodendrocyte precursors cells; PBMC, peripheral blood mononuclear cells; BBB, 

blood–brain barrier; ICAM-1, intercellular adhesion molecule 1; BDNF, brain-derived neurotrophic factor; DISC1, disrupted-in-schizophre-

nia 1; CREB, cAMP response element-binding protein; CRE, cAMP response element; CD98HC, a heterodimeric amino acid transporter; 

NTRK3, neurotrophic tyrosine receptor kinase 3.



870  Mol. Cells 2021; 44(12): 861-878

Human Endogenous Retroviruses as Gene Expression Regulators
Serpen Durnaoglu et al.

tin-1-induced mRNA levels of C-reactive protein (CRP) are 

decreased in both cell lines that are knocked down of TLR-

3. The reduced gene expression of TLR-3 also decreases 

the phosphorylation of IRF3 that is a downstream signaling 

molecule of TLR-3. These results suggest that syncytin-1 par-

ticipates in inflammatory regulation in glial cells via the TLR3 

signaling pathway.

 ENV protein of MSRV that is the MS-related HERV-W acts 

as a potent agonist to TLR-4, a pattern recognition receptor 

of innate immunity, and induces inflammation, increasing the 

release of interleukin-6 (IL-6) and TNF-α cytokines from hu-

man peripheral blood mononuclear cells (hPBMC) (Ahmed et 

al., 2020; Madeira et al., 2016). These effects of MSRV-ENV 

are inhibited by GNbAC1, a humanized monoclonal antibody 

targeting MSRV-ENV, which may be helpful in the treatment 

of MS. The pro-inflammatory property of MSRV-ENV is also 

demonstrated in murine models. Intravenously injected 

MSRV-ENV induces a strong release of IL-6 and TNF-α, and 

administration and GNbAC1 block it. In addition, MSRV-ENV 

suppresses differentiation of human oligodendrocyte precur-

sor cells (hOPC) through TLR-4, and impairs demyelination 

that is a hallmark of MS. MSRV-ENV also exerts its pro-in-

flammatory activity on the blood-brain barrier (BBB) (Dup-

erray et al., 2015). MSRV-ENV induces overexpression of 

ICAM-1, a significant mediator adhesion between activated 

immune cells and endothelial cells, and production of the 

pro-inflammatory cytokines IL-6 and IL-8 in HCMEC/D3 brain 

endothelial cell line, on which TLR-4 is expressed (Rolland et 

al., 2006). MSRV-ENV activates human monocytes, inducing 

the secretion of IL-6, TNF-α, and IL-1β from monocytes, and 

those activities are dependent on TLR-4 and CD14 receptors. 

These receptors are also involved in MSRV-ENV-mediated ac-

tivation of dendritic cells (DC) and promote the development 

of Th1-like responses.

 Syncytin-1, the HERV-W ENV protein ERVWE1, is also found 

highly expressed in the serums of schizophrenic patients (Per-

ron et al., 2008). Neuroinflammation contributes to neuro-

psychiatric disorders such as schizophrenia, and HERV-W ENV 

is involved in producing the inflammation-related cytokines. 

In human glioma cell lines U251 and A172, overexpression 

of HERV-W ENV lead to an increase in mRNA levels of TNF-α 

and IL-10 and the mRNA levels of TLR-4, which mediates 

the production of pro-inflammatory cytokines (Romao et al., 

2012). Myeloid differentiation primary response 88 (MyD88) 

is downstream of TLR-4, and overexpressed HERV-W ENV 

also increases the mRNA levels of MyD88 (Kuzmich et al., 

2017). Knock-down of TLR-4 decreases the release of TNF-α 

and IL-10 induced by HERV-W ENV, suggesting that HERV-W 

involvement in neuroinflammation depends on TLR4/MyD88 

signaling pathway in glial cells (Wang et al., 2021). Together 

with syncytin-1, CRP, an acute inflammatory marker, is also 

detected at high levels in the serum of schizophrenia patients 

(Misiak et al., 2018). mRNA and protein levels of CRP increase 

in CHME-5 and U251 cells overexpressing syncytin-1 (Wang et 

al., 2018). Moreover, syncytin-1 promotes the activity of CRP 

promoters, playing a regulatory role in CRP expression.

Syncytin-1 changes cellular signaling in neurons and glia
Overexpression of syncytin-1 upregulates brain-derived 

neurotrophic factor (BDNF), neurotrophic tyrosine kinase 

receptor type 2 (NTRK2), and dopamine receptor D3, and 

phosphorylation of cAMP (cyclic adenosine monophosphate) 

response element-binding (CREB) protein in human glioma 

cells (Huang et al., 2011). Syncytin-1 interacts with BDNF 

promoter, enhancing transcription. In human neuroblastoma 

cells, syncytin-1 activates the promoter of small conduc-

tance Ca2+-activated K+ channel protein 3 (SK3), depending 

on both CREB and cAMP response element (CRE) (Li et al., 

2013). In neuroblastoma cells, syncytin-1 overexpression in-

duces Ca2+ influx through transient receptor potential cation 

channel subfamily C member 3 (TRPC3) channels by directly 

regulating its expression or by downregulating the gene dis-

rupted-in-schizophrenia 1 (DISC1) (Chen et al., 2019; Dhakal 

and Lee, 2019). These conditions contribute to the patho-

genesis of schizophrenia; thus, HERV-W may also involve in 

the development of psychotic disorders.

HERV coding proteins affect signaling pathways in can-
cers
Syncytin-1 promotes cell proliferation, metastasis, and tumor-

igenicity in HCC by activating MEK/ERK pathway. It is shown 

that syncytin-1 upregulates MEK/ERK downstream proteins 

such as c-Myc, c-Fos, c-Jun, CCND1, and CDK4 in HCC (Zhou 

et al., 2021). HERV-K ENV induces epithelial to mesenchy-

mal transition (EMT), which promotes cell motility in human 

breast epithelial cells, activating the ERK1/2 pathway (Lee et 

al., 2019a; Lemaître et al., 2017). The downstream events 

include increased expression of various transcription factors 

such as EGR1, ZCCHC12, ETV4, and ETV5, which are tightly 

related to oncogenesis. HERV-K ENV is also reported to in-

crease Ras-induced ERK activation in human breast cancer 

cells and promote tumorigenesis (Wang et al., 2020c; Zhou 

et al., 2016). These findings lead to a therapeutic approach 

using anti-HERV-K ENV, which is potential for immunother-

apy of breast cancer. A chimeric antigen receptor (CAR) spe-

cific for HERV-K ENV protein (K-CAR) has an anti-metastatic 

activity, inhibiting cell proliferation in vitro and tumorigenesis 

in vivo (Zhou et al., 2015). A recent study shows that CRIS-

PR-Cas9 mediated knock-down of the HERV-K ENV gene 

in DLD-1 colorectal cancer showed reduced proliferation, 

invasion, migration, and tumor colonization by activating the 

ROS-NUPR1 pathway (Ko et al., 2021b).

 Syncytin-1 expression is significantly increased in endome-

trial carcinomas (EnCa) (Strick et al., 2007). Treatment with 

steroid hormone estrogen induces syncytin-1 expression in 

primary EnCa cells and increases cell proliferation. DNA bind-

ing assays reveal that ER binds explicitly to the syncytin-1 ERE, 

an estrogen response element located in the LTR of HERV-W. 

Therefore, steroid hormones directly regulate syncytin-1 gene 

expression. In addition, syncytin-1 is also upregulated in EnCa 

cells treated with the SP isomer of cAMP (SP-cAMP), and 

those EnCa cells undergo proliferation and cell-cell fusion, 

which are blocked by silencing of syncytin-1 gene expression. 

The addition of purified TGF-β1 or TGF-β3 proteins to SP-

cAMP treated EnCa cells inhibits cell-cell fusion while the 

high level of syncytin-1 is unchanged. The result indicates 

that TGF-β treatment can revoke syncytin-1-mediated cell-cell 

fusions, which may provide a therapeutic option in endome-
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trial cancers.

 Both HERV-K GAG and ENV are highly expressed in mela-

noma cells, in which phosphorylation of ERK is also increased. 

In contrast, p16INK4a suppresses tumors by inhibiting cy-

clin-dependent kinases CDK4 and CDK6 (Quelle et al., 1995) 

and is detected in mostly nevus cells rather than melanoma 

cells (Li et al., 2010). These studies show a positive correlation 

between the levels of HERV-K GAG and ENV proteins with 

activation of MEK/ERK pathway and loss of p16INK4A-CDK4 

activities in melanoma cells.

 Overexpression of HERV-K type 1-encoded Np9 induces 

the growth of leukemia cells, whereas knock-down of Np9 

expression inhibits the growth of myeloid and lymphoblastic 

leukemia cells (Chen et al., 2013). These results indicate that 

Np9 is essential for the survival and growth of myeloid and 

lymphoblastic leukemia cells. Overexpression of Np9 is also 

reported to increase the protein levels of β-catenin, ERK, Akt, 

and Notch1 signaling molecules, whereas silencing of Np9 

causes a significant decrease of expression levels of c-Myc, 

pERK1, phospho-Akt (pAkt), and cleaved Notch1 in leukemia 

cells.

ENVs in stem cells
HERV-K ENV is reported to be expressed in the cell mem-

brane of pluripotent stem cells and interact with a heterodi-

meric amino acid transporter CD98HC (Wang et al., 2020b). 

The interaction leads to triggering mammalian targets of 

rapamycin (mTOR) and lysophosphatidylcholine acyltrans-

ferase (LPCAT1) pathways that regulate stem cell function. 

Down-regulation of HERV-K ENV was shown to promote 

neuronal differentiation of stem cells.

 LTR promoter of HERV-K is activated in hESCs by the CRIS-

PR activation (CRISPRa) method (Padmanabhan Nair et al., 

2021). HERV-K activated hESCs are differentiated into cor-

tical neurons. Those cortical neurons display a drastic reduc-

tion in microtubule-associated protein 2 (MAP2) expression, 

which is a neuron-specific cytoskeletal protein and a marker 

for neuronal cells (Dinsmore and Solomon, 1991). These 

cortical neurons exhibit shorter axons with fewer branches. 

Activated HERV-K LTR also robustly upregulates neurotrophic 

tyrosine receptor kinase 3 (NTRK3), critical in cortical neuron 

development (Bartkowska et al., 2007). The knock-down of 

NTRK3 in HERV-K LTR-activated cortical neurons reverts the 

observed phenotypes, suggesting that HERV-K activation 

impairs NTRK3-dependent cortical neuron development, 

which ultimately results in abnormal brain development (Pad-

manabhan Nair et al., 2021).

HERVs in COVID-19
Recently, several studies report that HERVs are activated in 

COVID-19 infection. IFN-1, IFN-2, TRIM28, SETDB1, and viral 

genes of HERV-H, -K, and -W families are upregulated in 

peripheral blood from children between 4-8 years suffering 

from COVID-19 with mild symptoms, whereas downregulat-

ed in severe cases (Tovo et al., 2021). The correlative expres-

sion of these genes according to the severity of COVID-19 

suggests that there are distinct phases of the disease, for 

which the differentially regulated genes may serve as prog-

nostic markers. The syncytin-1 protein level is high in blood 

samples from adult COVID-19 patients (Balestrieri et al., 

2021; Garcia-Montojo and Nath, 2021). The expression of 

syncytin-1 is also correlated with the markers of T-cell dif-

ferentiation such as IL-6, IL-10, IL-17, IL-17RA, MCP1, and 

CXCR1. Syncytin-1-positive lymphocytes and inflammatory 

markers are correlated with the severity of pneumonia in 

COVID-19 patients.

 A recombinant baculovirus expressing the envelope of 

HERV-W (AcHERV) is constructed as a DNA vaccine system 

against Middle East respiratory syndrome coronavirus (MERS-

CoV) and the severe acute respiratory syndrome coronavi-

rus-2 (SARS-CoV2), responsible for COVID-19 (Cho et al., 

2021; Shah and Woo, 2021). Baculoviruses possess a nuclear 

transport signal which enables an efficient gene expression of 

inserted full-length S, S1 subunit, or RBD antigens of MERS-

CoV or SARS-CoV2 with multiple boosting. The AcHERV-

COVID19-S vaccine induces serum IgG, neutralizing antibody, 

and antigen-specific IFN-γ secretion, indicating high cellular 

immunity. AcHERV-MERS-S1 also prompts high levels of 

IgG, neutralizing antibody, and T-cell immune responses. 

AcHERV-DNA vaccines provide increased protection against 

MERS-CoV and SARS-CoV2 in animal models, supporting the 

feasibility of AcHERV-MERS or AcHERV-COVID19 vaccines in 

preventing pandemic spreads of viral infections.

CONCLUSION

HERVs are ancient sequences of exogenous retroviruses in-

tegrated into the human genome and are considered viral 

“fossils”. Although most HERVs have accumulated mutations 

and lost their coding capability, they still retain some activities 

in terms of HERV-mediated regulation of host gene expres-

sion. Many studies have revealed that abnormal activation 

and expression of HERV genes can lead to severe illnesses like 

cancers, autoimmune diseases, and neurological diseases. 

Various endogenous transcription factors regulating cell pro-

liferation and differentiation bind to specific motifs in HERV 

LTRs, which act as a promoter or an enhancer. Downstream 

events include activation of various signaling pathways such 

as TLR-4 and MEK/ERK. While a number of stimulators are 

known to activate HERV genes inadequately, the recent re-

port shows that expression patterns of HERV genes fluctuate 

in the progress of COVID-19. The more profound insight into 

the mechanisms explaining the roles HERV activities in vari-

ous biological contexts will help develop clinical applications 

targeting HERVs and set up diagnostic and prognostic bio-

markers for related diseases, even unprecedented pandemic 

illness of COVID-19.

Note: Supplementary information is available on the Mole-

cules and Cells website (www.molcells.org).
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