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A B S T R A C T   

On a porous layered inclined plate, magneto-free-convection flow of a rate type fluid is investi-
gated. The problem is modeled as natural convection for oscillating and general movements of an 
inclined plate moving in a magnetized medium with a slanted external magnetic field that is 
either stationary or moving in tandem with the plate. The plate is subjected to a symmetric 
temperature field with double-sided thermal operation. Constant concentration, first order 
chemical reaction, and thermal conductivity as a general feature of time are used in heat transfer 
measurement. On the velocity of the fluid, the impact of varying plate angles with the vertical as 
well as the slanted angle of the magnetic field with the plate are studied. The motion of the plate 
and temperature distribution in specific situations was discussed. We can retrieve many results by 
changing the values of the functions and parameters in our general solutions, including the 
related results for the viscous fluid from the literature as a limiting case. As a result, the matter of 
identical models is no longer an issue. Furthermore, graphical software is used to do parametric 
analysis on fluid dynamics.   

Where K, mol, m, s, kg, S, W and J stands for Kelvin, mole, metre, seconds, kilogram, siemens, watts and joule, respectively 

1. Introduction 

Magneto-hydrodynamics (MHD) of electrically conducting fluids have applications in engineering, chemical engineering, and 
geophysical environments [1,2]. As turbulent stream could be stabilized to the extent that it could be forced to return to a laminar flow 
using magnetic field and this stabilization could be achieved by coplanar or transverse magnetic fields. 

In 1954, Stuart [3] investigated the influence of coplanar and transverse magnetic fields and observed that, if the main fluid’s flow 
direction is parallel to the magnetic lines of force, no interaction takes place unless some deviation or instability arises. In this scenario, 
a restraining force is induced that is proportional in magnitude but opposite in direction to the velocity component perpendicular to 
the lines of force. Moreover, it has the tendency to damp out the initial instability. Whereas, when the magnetic field is perpendicular 
to the flow direction, a change is brought about in the velocity distribution. This may make the fluid flow more stable or unstable to 
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transition to turbulence so it has a very favorable effect on transition and considerable increase in laminar run could be achieved at the 
higher values of the magnetic parameter [3–5]. 

A self-sustained flow driven by the presence of a temperature gradient is known as natural or free convection flow and it is one of 
the important modes of mass and heat transfer in many technological and geophysical phenomena. A comprehension of the laminar- 
turbulent transition in such flows will help to control and forecast the heat transfer rate [6]. 

At present, several researchers have focused their attention on the application of magnetic fields in the dynamical systems. 
Moreover, free convection flow models under the influence of magnetic field have been in high demand in energy generators spe-
cifically in MHD generators, polymer fabrication, power elevators, aerodynamic heating, purification of mineral oil and metallurgical 
processing [7,8]. For notable citations regarding the heat and mass exchange with MHD flows we refer to Refs. [9–15]. 

In most of the investigations regarding MHD natural convection flows, it is important to note that the external magnetic field is 
fixed to the fluid. But Narahari and Debnath [16] investigated MHD-free convection flow considering two cases:  

i. The magnetic field is stagnant relative to the fluid (MFSRF),  
ii. The magnetic field is stagnant relative to the plate (MFSRP). 

Later on, Shah et al. [17,18] extended the results for the case of varying wall temperature and a chemical reaction on the plate along 
with the cases MFSRF and MFSRP. 

Transition to turbulence and instability of natural convection on inclined plates are important as they are associated with thermal 
stratifications in heat exchangers and cryogenic tanks etc. Among many investigations regarding natural convection flows on inclined 
plates, Sparrow and Husar [19] reported the generation of longitudinal vortices in the natural convection flow of water on an inclined 
plate. For more related works for the case of natural convection on inclined plates for viscous fluid see Refs. [20–23]. 

Due to many practical applications of porous medium, for instance: its use in solar water desalination systems to boost water 
condensation or evaporation, its use as an insulator (for all temperature ranges) and as a heat transfer promoter motivated the en-
gineers and hydrologists to examine the fluid flows in porous materials ranging from sand packs to fused Pyrex glass in order to 
calibrate their reactions in several types of reservoirs [24]. 

The requirements of modern technology have motivated the interest of researchers in fluid flow studies, to investigate the inter-
action of several phenomena. One of these phenomena is certainly flow of electrically conducting fluid through porous medium in the 
present of magnetic field. 

Darcy [25] seems to be among the pioneers who initiated the mathematical theory of the flow of fluid through a porous medium. 
For the case of steady flows, he made the assumption that the viscous forces are in equilibrium with external forces due to pressure 
difference and body forces. The free as well as forced convection flows through permeable medium and channels are much significant 

Nomenclature 

Symbol Units Description 
τ [K] Temperature of Fluid 
C [mol/m3] Concentration of Fluid 
CR [s− 1] Chemical Reaction Parameter (for first order chemical reaction) 
K [m2] Permeability of porous medium 
βτ [K

− 1] Thermal Expansion Coefficient 
βC [m

3/mol] Concentration Expansion Coefficient 
Dm [m2/s] Mass Diffusivity 
g [m/s2] Acceleration due to Gravity 
ν [m2/s] Kinematic Viscosity 
ρ [kg/m3] Density of Fluid 
λ [s] Relaxation Time 
σ [Sm− 1] Electrical Conductivity 
k [W/m K] Thermal Conductivity 
qr [W/m2] Heat Flux 
cp [J/kg K] Specific Heat at Constant Pressure 
σ [W.m− 2 K− 4] Stefan-Boltzman constant 
Pr [dimensionless number] Prandtl-number 
Rc [W/m K] Radiation-conduction parameter 
Preff [dimensionless number] Effective Prandtl number 
N [dimensionless number] Buoyancy forces ratio parameter 
M [dimensionless number] Magnetic Parameter 
Sc d[imensionless number] Schmidt number 
q [s− 1] Laplace transform parameter 
α,β Constants  
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in scientific and engineering domains that encompasses earth science [26], nuclear engineering [27] and metallurgy [28,29]. 
Cunningham and Williams [30] pointed out many geophysical applications of dynamics of fluids in porous media. McWhirter et al. 

[27] presented the experimental results of the MHD flow in a porous medium necessary for designing a blanket of liquid metal around a 
thermonuclear fusion-fission hybrid reactor. Moreover, results presented by Prescott and Incropera [28] and Lehmann et al. [29] show 
that during the solidification process of the metallic liquid, the intensity of the interdimeric flow in the porous medium is influenced by 
the applied permanent magnetic field. 

Some notable studies of MHD heat mass transfer with porous medium can be found in the references [31–39]. 
The research outcomes of the fluid models with multiple applications cannot be achieved by considering just viscous fluids, so 

fluids with additional properties need to be investigated and, in this regard, non-Newtonian fluids are proven to be more appropriate in 
emerging and modern technologies. Among different classes of non-Newtonian fluids, rate type fluid models in general and Maxwell 
fluids in particular are more practical as they consider both memory and elastic effects. This model was first introduced by Maxwell to 
predict the viscos-elastic characteristics of air [40]. Despite the usefulness of non-Newtonian fluids, the nonlinear relation between 
shear rate and shear stress makes the flow equations more complex and to handle such flow equations is not trivial. Therefore, a very 
few efforts have been made for the research related to the MHD-free-convection considering the rate type fluids, see for example 
[41–43] but it is important to mention that they only correspond to the case when magnetic field is stagnated with respect to the fluid. 

Maxwell fluids are one of the important classes of rate type fluids. In fact, Maxwell fluid is a viscoelastic fluid having the properties 
both of elasticity and viscosity. This class of fluids is named for James Clerk Maxwell who proposed the model in 1867. The Maxwell 
fluid model was originally developed with an aim to describe the elastic and viscous response of air [40]. Nowadays, it is; however, 
frequently used to model the response of various viscoelastic fluids ranging from polymers to the Earth’s mantle. 

Motivated with these above-mentioned investigations, the aim of this manuscript is to investigate the MHD free convection flow of 
Maxwell fluid on a porous layered inclined plate. Further, the plate is exposed to double-sided heat action of surrounding environment 
temperature and a slanted magnetic field that is held stagnated either with respect to the fluid or to the plate. More exactly, our interest 
is to bring to light the influence of the inclination of the plate and the slanted angle of the magnetic field on the dynamics of the fluid. 
Moreover, by customizing the values of inclination of the plate and slanted angle of the plate we can discuss the cases for horizontal/ 
vertical plate and coplanar and transverse magnetic field influences, respectively. In our model, we are considering the general mo-
tions of the plate and temperature distribution of the plate governed by general function of time. Selecting different values of the 
functions and parameters in our general solutions, we can recover several results including the corresponding results for the viscous 
fluid from the literature as limiting case. Consequently, the problem related to similar models is completely solved. Finally, the effects 
of the parameters on the velocity of the fluid over moving plate and temperature distribution are also investigated and useful con-
clusions are reported. 

2. Problem statement 

Consider the unsteady free convection flow of an electrically conducting incompressible Maxwell fluid over an inclined porous 
plate. The x-axis is taken as vertical, and plate is making an angle γ with it and 0 ≤ γ ≤ π

2. Moreover, the plate is non-conducting and 

having infinite length. A uniform magnetic field of strength B→= (B cos ϑ,B sin ϑ) is applied slanted to the plate with slant angle ϑ, 
further with the provision that other held magnetic field is fixed to the fluid or to the plate. At the beginning, fluid and plate are 
stationary having constant temperature τ∞ and species concentration C∞. 

After the time t = 0+, temperature varies according to the relation τ∞ + τwf(t) and concentration is maintained at the constant 
value Cw. Moreover, the plate starts to excel with certain velocity Fog(t). Here, Fo is a constant having dimension of velocity and f( ·), 
g( ·) are piecewise continuous functions that diminish at t = 0. 

2.1. Geometry of the problem 

Adopting the usual Boussinesq’s approximation, neglecting the viscous dissipation and Joule heating effects, assuming the induced 
magnetic field is imperceptible in contrast to the applied magnetic field and following [41,42] the governing equations for Maxwell 
fluid flow model related to shear stress and magneto-free convection and thermal radiations are given by the following system of 
partial differential equations (PDEs) 

∂F(y, t)
∂t

=
1
ρ

∂S(y, t)
∂y

+ gβτ(τ − τ∞)cos(γ)+ gβC(C − C∞)cos(γ) −
v
K

F(y, t) −
σB2sin 2 ϑ

ρ F(y, t), (1)  

(

1+ λ
∂
∂t

)

S(y, t)= μ ∂F(y, t)
∂y

; y, t > 0, (2)  

where F(y, t)denotes the velocity of the fluid and S(y, t) is the shear stress. 
Eq. (1) is valid if the magnetic lines of forces are stagnated relative to the fluid, if the magnetic lines of forces are stagnated relative 

to the plate, then Eq. (1) is replaced by [16,17,47]. 
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∂F(y, t)
∂t

=
1
ρ

∂S(y, t)
∂y

+ gβτ(τ − τ∞)cos(γ) + gβC(C − C∞)cos(γ) −
v
K

F(y, t)−

−
σB2sin 2 ϑ

ρ (F(y, t) − εFog(t)); y, t > 0.
(3) 

In the above expression, the parameterε is 0 and 1 for MFSRF and MFSRP, respectively. 
Eliminating S(y, t) from (3) by using (2), we get 

(

1 + λ
∂
∂t

)
∂F(y, t)

∂t
= v

∂2F(y, t)
∂y2 +

(

1 + λ
∂
∂t

)

(g(βτ(τ − τ∞)cos(γ) + βC(C − C∞)cos(γ))−

−
v
K

F(y, t) −
σB2sin 2 ϑ

ρ (F − εFog(t))
)

.

(4) 

Further, heat and concentration equations are 

ρcp
∂τ(y, t)

∂t
= k

∂2τ(y, t)
∂y2 −

∂qr

∂y
, (5)  

∂C(y, t)
∂t

=Dm
∂2C(y, t)

∂y2 − CR(C − C∞), (6) 

With the boundary and initial conditions 

F(0, t) =Fog(t), τ(0, t) = τ∞ + τwf (t),C(0, t) = Cw; t ≥ 0, (7)  

F(y, t)<∞, τ(y, t) → τ∞,C(y, t) → C∞ as y → ∞. (8)  

F(y, 0)= 0, S(y, 0) = 0, τ(y, 0) = τ∞,C(y, 0) = C∞; y ≥ 0, (9) 

By adapting (for an optically thick fluid) the Rosseland diffusion approximation [44,45]. 

qr = −
4
3

σ
Rk

∂τ4

∂y
, (10) 

And for the case |τ − τ∞| << 0, equation (5) can be re-written in the following simpler form [29,46]. 

Preff
∂τ(y, t)

∂t
=

∂2τ(y, t)
∂y2 ; y, t > 0, (11)  

where Preff = Pr
1+Rc

, Pr = μcp
k and Rc = 16

3
σ

kkR
τ3

∞. 
Employing the following dimensionless quantities 

y* =
Fo

ν y, t* =
Fo

2

ν t, F* =
F
Fo
, τ* =

τ − τ∞

τw
, C* =

C − C∞

Cw − C∞
, β* =

ν
Fo

2 β, K* =

(
ν

Fo

)2 1
K

R* =
ν

Fo
2 R, f *(t*) = f

(
ν

Fo
2t*
)

, g*(t*) = g
(

ν
Fo

2t*
)

, λ* =
Fo

2

ν λ, S* =
S

ρFo
2

(12) 

Into (2), (4)–(9), (11) and dropping out the star notation, our problem transforms into following dimensionless PDEs 
(

1+ λ
∂
∂t

)

S(y, t)=
∂F(y, t)

∂y
, (13)  

(

1 + λ
∂
∂t

)
∂F(y, t)

∂t
=

∂2F
(
y, t
)

∂y2 +

(

1 + λ
∂
∂t

)

(τ(y, t)cos(γ) + NC(y, t)cos(γ)−

− KF
(
y, t
)
− Msin 2 ϑ(F(y, t) − εf (t))

)
,

(14)  

Preff
∂τ(y, t)

∂t
=

∂2τ(y, t)
∂y2 , (15)  

∂C(y, t)
∂t

=
1
Sc

∂2C(y, t)
∂y2 − CRC(y, t), for y, t > 0 (16) 

Subject to the boundary and initial conditions 

F(0, t) = g(t), τ(0, t) = f (t), C(0, t) = 1; t > 0, (17) 
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F(y, t)<∞, τ(y, t), C(y, t) → 0 · as · y → ∞, (18)  

F(y, 0)= 0, S(y, 0) = 0, τ(y, 0) = 0, C(y, 0) = 0; y ≥ 0, (19)  

where N =
βC(Cw − C∞)

βττw
,M = σB2

ρ
ν
F2

0
, and Sc = ν

Dm
. 

3. Solution of the problem 

It is important to mention that here our concern to find the velocity of fluid and shear stress. But, it could not be done unless we 
have the expressions for the temperature and concentration. In order to obtain them, we adopt the standard Laplace transform method 
to solve (15)-(19). 

3.1. Calculation of temperature field 

Now, applying Laplace transforms to (15), using the corresponding initial conditions, we find that 

∂2τ̃(y, q)
∂y2 − Preff qτ̃(y, q) = 0, (20) 

With the boundary conditions 

τ̃(0, q)= g̃(q) · and · τ̃(y, q) = 0 · as · y → ∞. (21) 

The solution of the differential equation (20) along with the boundary conditions (21) is 

τ̃(y, q)= f̃ (q)e− y
̅̅̅̅̅̅̅̅
Preff q

√
. (22) 

Applying the inverse Laplace transform and using relation (A-1) from Appendix, the temperature field can be presented as 

τ(y, t)=
y
̅̅̅̅̅̅̅̅̅
Preff

√

2
̅̅̅
π

√

∫t

0

f (t − s)
e
−

(
y2 Preff

4s

)

s3 /

2
ds. (23) 

Moreover, the rate of heat transfer can be determined from Nusselt number (Nu), defined as 

Nu= −
∂τ(y, t)

∂y

⃒
⃒
⃒
⃒

y=0
(24) 

Using (23) in (24), we get 

Nu=
̅̅̅̅̅̅̅̅̅
Preff

√

2
̅̅̅
π

√

∫t

0

f (t − s)
s3 /

2
ds (25)  

3.2. Calculation of concentration field 

Applying Laplace transform to (16), and using the corresponding initial conditions, we get 

∂2C̃(y, q)
∂y2 − (q+CR)C̃(y, q)= 0, (26)  

with the boundary conditions 

C̃(0, q)=
1
q
· and · C̃(y, q) = 0 · as · y → ∞. (27) 

The solution of Eq. (26) with the boundary conditions (27) is 

C̃(y, q)=
1
q

e− y
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sc(q+CR)

√
. (28) 

Applying the inverse Laplace transform and using relation (A-1) from Appendix, the concentration field can be presented as 

C(y, t)=
1
2

[

e− y
̅̅̅̅̅̅̅
CRSc

√

erfc
(

y
̅̅̅̅̅
Sc

√

2
̅̅
t

√ −
̅̅̅̅̅̅̅
CRt

√
)

+ ey
̅̅̅̅̅̅̅
CRSc

√

erfc
(

y
̅̅̅̅̅
Sc

√

2
̅̅
t

√ +
̅̅̅̅̅̅̅
CRt

√
)]

. (29) 

The mass transfer rate known as Sherwood number(Sh) is defined as 
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Sh= −
∂C(y, t)

∂y

⃒
⃒
⃒
⃒

y=0
. (30) 

Using (29) in (30), we get 

Sh=
̅̅̅̅̅
Sc

√
(

e− CRt
̅̅̅
π

√ +
1̅̅
̅̅̅̅

CR
√ erf

( ̅̅̅̅̅̅̅
CRt

√ ))

. (31)  

3.3. Calculation of velocity field 

Applying the Laplace transform to Eq. (14) and using the (19)1, we get 

(
q + λq2)F̃(y, q) =

∂2F̃(y, q)
∂y2 + (1 + λq)

(
τ̃
(

y, q
)

cos(γ) + NC̃
(

y, q
)

cos(γ)−

− KF̃(y, q) − Msin 2 ϑ
(

F̃(y, q) − εg̃
(

q
)))

,

(32)  

with the boundary conditions 

F̃(0, q)= g̃(q), · F̃(y, q) < ∞ · as · y → ∞, (33)  

where, F̃(y,q) = L{f(y, t)}and g̃(q) = L{g(t)}. Introducing Eqs. (22) and (28) into (32), it yields 

∂2F̃(y, q)
∂y2 −

(
λq2 +(1+ λH)q+H

)
F̃(y, q)=

= − (1+ λq)
(

εM g̃(q)sin 2 ϑ + f̃ (q)cos(γ)e− y
̅̅̅̅̅̅̅̅̅
Preff q

√
+N

1
q

cos(γ)e− y
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sc(q+CR)

√ )

,

(34)  

where.H = K+ Msin 2 ϑ.
The solution of the differential equation (34) with the boundary conditions (33), is 

F̃
(

y, q
)

= g̃
(

q
)

e− y
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λq2+(1+λH)q+H

√
+

εMsin 2 ϑ(1 + λq)g̃
(
q
)

λq2(1 + λH)q + H

(
1 − e− y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λq2+(1+λH)q+H

√ )
+

+
(1 + λq)̃f (q)

(
λq2 +

(
1 − Preff + λH

)
q + H

) cos(γ)
(

e− y
̅̅̅̅̅̅̅̅
Preff q

√
− e− y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λq2+(1+λH)q+H

√ )
+

+
N

q(λq2 +
(
1 − Sc + λH

)
q + H − Sc g̃

(
q
)) cos(γ)

(
e− y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sc(q+CR)

√
− e− y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λq2+(1+λH)q+H

√ )
.

(35) 

Applying the inverse Laplace transform and using (A-1) and (A-2) from Appendix, the velocity field can be presented as 

F(y, t)=Fm(y, t) + FT(y, t) + FC(y, t), (36)  

where 

Fm(y, t) =
∫t

0

ψ(y, s; λ,H)g(t − s)ds+

+εMsin 2 ϑ
∫t

0

e− Hsg(t − s)ds − εMsin 2 ϑ
∫t

0

∫s

0

g(t − s)e− Huψ(y, s − u; λ,H)duds,

(37)  

Fτ(y, t) =

(
1 + Preff − λH

)
cos(γ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 − Preff

)2
− λH

(
2
(
1 + Preff

)
− λH

)√

∫t

0

∫s

0

f (t − s)e
−

(
1− Preff +λH

2λ

)

u
ch(b1u)

⎛

⎜
⎝

y
̅̅̅̅̅̅̅̅̅
Preff

√

2
̅̅̅
π

√
(s − u)

3 /

2
e−

y2 Preff
4(s− u) − ψ(y, s − u; λ,H)

⎞

⎟
⎠duds+

+

∫t

0

∫s

0

f (t − s)e
−

(
1− Preff +λH

2λ

)

u
sh(b1u)

⎛

⎜
⎝

y
̅̅̅̅̅̅̅̅̅
Preff

√

2
̅̅̅
π

√
(s − u)

3 /

2
e−

y2 Preff
4(s− u) − ψ(y, s − u; λ,H)

⎞

⎟
⎠duds, (38)  
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FC

⎛

⎝y, t

⎞

⎠ =
N cos(γ)

H − ScCR

⎛

⎝φ
(

y
̅̅̅̅̅
Sc

√
, t;CR, 0

)
−

∫t

0

ψ(y, s; λ,H)ds+

+

∫t

0

e−
1− Sc+λH

2λ

⎛

⎜
⎜
⎜
⎝

y
̅̅̅̅̅
Sc

√
e−

Scy2+4CR (t− s)2

4(t− s)

2
̅̅̅
π

√
(t − s)

3 /

2
− ψ(y, t − s; λ,H)

⎞

⎟
⎟
⎟
⎠

(
(λ(H − 2ScCR) − (1 − Sc))sh(b2s) − ch(b2s)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − Sc)2
+ λ(H(λH − 2Sc − 2) + 4ScCR)

√

)

ds

⎞

⎟
⎟
⎟
⎠

(39) 

Denotes the mechanical, thermal and concentration components, respectively. In the above expressions 

b1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 − Preff + λH

)2
− 4λH

√

2λ
, b2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − Sc + λH)
2
− 4λ(H − ScCR)

√

2λ
.

Moreover, the functions φ(y, t; a, b) and ψ(y, t; λ,H)are defined in Appendix (A-2) and (A-9), respectively. 
It can easily verify that F(y, t), given by Eq. (36), satisfies the imposed boundary and initial conditions. 
Further, as y → ∞, we have 

lim
y→∞

F(y, t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ε = 0

Msin 2 ϑ
∫t

0

e− Hsg(t − s)ds if ε = 1. (40) 

Finally, for the case MFFRP, far away from the plate the fluid does not remain at rest. 
Certainly, by customizing to f( ·) and g( ·) suitable forms, we can recover the exact solutions for any motion with technical relevance 

of this type that is discussed in section 4. 

3.4. Calculation of shear stress 

Taking Laplace transform of (13) and making use of condition (19)2, we obtain 

(1+ λq)S̃(y, q)=
∂F̃(y, q)

∂y
, (41)  

S̃(y, q)=
1

1 + λq
∂F̃(y, q)

∂y
. (42) 

Plugging Eq. (35) in the last expression, we get 

S̃(y, q)= −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λq2 + (1 + λH)q + H

√

1 + λq
e− y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λq2+(1+λH)q+H

√
g̃(q)+

εMg̃(q)e− y
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λq2(1+λH)q+H

√
sin 2 ϑ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λq2 + (1 + λH)q + H

√ +

+
f̃ (q)

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λq2 + (1 + λH)q + H

√
e− y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λq2+(1+λH)q+H

√
−

̅̅̅̅̅̅̅̅̅̅̅
Preff q

√
e− y

̅̅̅̅̅̅̅̅
Preff q

√ )

(
λq2 +

(
1 − Preff + λH

)
q + H

) cos(γ)+

+
N
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λq2 + (1 + λH)q + H
√

e− y
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λq2+(1+λH)q+H

√
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sc(q + CR)

√
e− y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sc(q+CR)

√ )

q(1 + λq)(λq2 + (1 − Sc + λH)q + H − ScCR)
cos(γ).

(43) 

As the above expression represents the shear stress solutions in terms of the Laplace transform parameterq, it is therefore inverted 
back to the original time domain with the help of a numerical Laplace inversion called Stehfest’s algorithm for numerical inversion of 
Laplace transform [48]. Employing this algorithm, we have 

S(y, t) =
ln 2

t
∑2p

i=1
(− 1)i+p

∑min(i,p)

n=

[

i+1
2

]

np(2n)!
(p − n)!n!(n − 1)!(i − n)!(2n − i)!

τ̃
(

y,
ln 2

q

)

, (44)  

where pis a positive integer and [ ·] denotes the positive part of the real number. 
Now, in the next section, with the aim to get some physical understanding of the obtained results, we shall consider the dynamics of 

fluid under the influence of different modes of heating of plate as well as general the motion of the plate. 

4. Different cases regarding temperature distribution and the motion of the plate 

Observed that, heat and mass transfer can influence the fluid motion, so logically it is required to know that if their influence is 
prominent or it can be ignored in some motions with desirable engineering applications. 

Now, we will discuss the solutions corresponding to different modes of heating of the plate. 
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4.1. Case-I:f(t) = H(t) (constant heating of the plate) 

Substitutingf(t) = H(t) in (38), we get 

Fτcon (y, t)=
1
H

⎛

⎝erfc
(

y
2
̅̅
t

√

)

−

∫t

0

ψ(y, s; λ,H)ds

⎞

⎠cos(γ) −

−
1
H

cos(γ)
∫t

0

e
−

(
1− Preff +λH

2λ

)

u
ch(b1s)

(

erfc
(

y
2
̅̅̅̅̅̅̅̅̅̅
t − s

√

)

− ψ(y, t − s; λ,H)

)

ds+

+

(
λH −

(
1 − Preff

))
cos(γ)

H
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 − Preff

)2
+ λ
(
λH
(
H − 2

(
1 + Preff

)))√

∫t

0

e
−

(
1− Preff +λH

2λ

)

u
sh(b1s)

(

erfc
(

y
2
̅̅̅̅̅̅̅̅̅̅
t − s

√

)

− ψ(y, t − s; λ,H)

)

ds.

(45) 

Moreover, in this case by substituting f(t) = H(t)in (25) gives 

Nu=
̅̅̅̅̅̅̅̅̅
Preff

πt

√

. (46)  

4.2. Case-II:f(t) = H(t)(1 − αe− βt) (exponential heating of the plate) 

Substituting f(t) = H(t)(1 − αe− βt) where 0 < β < α < 1, in (38), we get 

Fτ exp (y, t)=
1
H

⎛

⎝erfc
(

y
2
̅̅
t

√

)

−

∫t

0

ψ(y, s; λ,H)ds

⎞

⎠cos(γ)+

+
α(βλ − 1)cos(γ)

λβ2 −
(
1 − Preff + λH

)
β + H

⎛

⎝φ
(
y
̅̅̅̅̅̅̅̅̅
Preff

√
, t; 0, − β

)
−

∫t

0

e− βuψ(y, t − s; λ,H)ds

⎞

⎠+

+

(
1 − Preff

)
β − (1 + α)H − λβ(β − (1 − α)H)

H
(
λβ(β − H) −

(
1 − Preff

)
β + H

) cos(γ)
∫t

0

e
−

(
1− Preff +λH

2λ

)

u
ch(b1s)

(

erfc
(

y
2
̅̅̅̅̅̅̅̅̅̅
t − s

√

)

− ψ(y, t − s; λ,H)

)

ds+

+A cos(γ)
∫t

0

e
−

(
1− Preff +λH

2λ

)

u
sh(b1s)

(

erfc
(

y
2
̅̅̅̅̅̅̅̅̅̅
t − s

√

)

− ψ(y, t − s; λ,H)

)

ds,

(47)  

where 

A=
2λ
(
1 − Preff

)(
(α − 1)H + β

(
1 − Preff

)
+ λβ

(
(H − β)

(
1 − Preff

)
− Hα

))

H
(
H −

(
1 − Preff

)
β − λβ(H − β)

) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 − Preff + λH

)2
− 4λH

√ −

−
1 − Preff + λH

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 − Preff + λH

)2
− 4λH

√
λ
H

(
1 − Preff

)
β − (1 + α)H − λβ(β − (1 − α)H)

λβ(β − H) −
(
1 − Preff

)
β + H

.

Again, customizing f(t) = H(t)(1 − αe− βt)in (25) yields 

Nu=(1 − α)
̅̅̅̅̅̅̅̅̅
Preff

πt

√

+ αe− βt
̅̅̅̅̅̅̅̅̅̅̅
βPreff

√
erf
(

i
̅̅̅̅
βt

√ )
. (48) 

Now, we will discuss the solutions corresponding to motions due to a variably accelerating plate (when δ > 0) and oscillating 
motion of the plate. 

4.3. Case-III:g(t) = H(t)tδ (variably accelerating plate) 

Now, substitutingg(t) = H(t)tδ, with δ > 0, into equation (37), we get 

Fm(y, t) =
∫t

0

ψ(y, s; λ,H)(t − s)δds + εMsin 2 ϑ
∫t

0

e− Hs(t − s)δds−

− εM
∫t

0

∫s

0

(t − s)δe− Huψ(y, s − u; λ,H)duds,

(49)  

which represents motions due to a slowly, constantly or highly accelerating plate. 
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Moreover, the case relating to δ = 0, i.e. when plate moves with constant velocity 

F0m(y, t) =
∫t

0

ψ(y, s; λ,H)ds+ ε
(
1 − e− Ht) − εMsin 2 ϑ

∫t

0

∫s

0

e− Huψ(y, s − u; λ,H)duds. (50) 

Further, by taking limit λ → 0,γ = 0,ϑ = π
2 and K = 0for Eq. (48), yields 

Fm(y, t)=
y

2
̅̅̅
π

√

∫t

0

(t − s)δ

s
̅̅
s

√ exp
(

−
y2

4s
− Hs

)

ds+ εMsin 2 ϑ
∫t

0

(t − s)δe− Hserf
(

y
2
̅̅
s

√

)

ds, (51) 

The solutions for free convection flows of viscous fluid on a moving vertical plate [18]. 

4.4. Case-IV:g(t) = H(t)cos(ωt) or H(t)sin(ωt) (oscillating plate) 

Putting g(t) = H(t)cos(ωt) or H(t)sin(ωt)into Eq. (37), we obtain 

Fcm(y, t) =
∫t

0

ψ(y, s; λ,H)cos(ω(t − s))ds + εM
(

He− Ht

H2 + ω2 +
cos(ωt + θ)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H2 + ω2

√

)

−

− εM
∫t

0

(
He− Hs

H2 + ω2 +
cos(ωs + θ)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H2 + ω2

√

)

ψ(y, t − s; λ,H)ds,

(52)  

Fsm(y, t) =
∫t

0

ψ(y, s; λ,H)sin[ω(t − s)]ds + εMsin 2 ϑ
(

ωe− Ht

H2 + ω2 +
sin(ωt − θ)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H2 + ω2

√

)

−

− εMsin 2 ϑ
∫t

0

(
ωe− Hs

H2 + ω2 +
sin(ωs − θ)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H2 + ω2

√

)

ψ(y, t − s; λ,H)ds.

(53) 

It is important to note that, the dimensionless velocitiesFcm(y, t) and Fsm(y, t)(as represented by Eqs. (52) and (53)) represents the 
motion of fluid sometime after its initiation. After sometime, when the transients departs, Eqs. (52) and (53) become 

Fcmp(y, t) =
∫∞

0

ψ(y, s; λ,H)cos(ω(t − s))ds +
εMsin 2 ϑ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H2 + ω2

√ cos(ωt + θ)−

−
εMsin 2 ϑ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H2 + ω2

√

∫∞

0

cos(ωs + θ) ψ(y, t − s; λ,H)ds,

(54)  

Fsmp(y, t) =
∫∞

0

ψ(y, s; λ,H)sin[ω(t − s)]ds +
εMsin 2 ϑ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H2 + ω2

√ sin(ωt − θ)−

−
εMsin 2 ϑ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H2 + ω2

√

∫∞

0

sin(ωs − θ) ψ(y, t − s; λ,H)ds,

(55) 

The steady-state solutions. 
Moreover, it is easy to verify that these solutions satisfy the boundary conditions and governing equation (14) in absence of thermal 

effects and concentration. As a result, in the absence of these effects, after a certain characteristic time fluid flow according to Eqs. (54) 
and (55). Taking the limit y → ∞ on Eqs. (54) and (55), we get 

Fcmp(∞, t) =

⎧
⎪⎨

⎪⎩

0 if ε = 0

Msin 2 ϑ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H2 + ω2

√ cos(ωt − θ) if ε = 1,
(56) 

Respectively 

Fsmp(∞, t) =

⎧
⎪⎨

⎪⎩

0 if ε = 0

Msin 2 ϑ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H2 + ω2

√ sin(ωt − ϕ) if ε = 1.
(57) 

Now, for analogy, if we take g(t) = H(t)cos(ωt) or g(t) = H(t)sin(ωt) into Eq. (40). The related results 
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Fc(∞, t) =

⎧
⎪⎨

⎪⎩

0 if ε = 0

−
M2sin 4 ϑ
H2 + ω2 e− Ht +

Msin 2 ϑ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H2 + ω2

√ cos(ωt − θ) if ε = 1,
(58)  

Fs(∞, t) =

⎧
⎪⎨

⎪⎩

0 if ε = 0

Mωsin 2 ϑ
H2 + ω2 e− Mt +

Msin 2 ϑ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H2 + ω2

√ sin(ωt − θ) if ε = 1,
(59) 

Agree with those from Eqs. (55) and (56). Eqs. (58) and (59) also involve the transient parts of velocity. 

5. Results validation 

In order to check the validation of our results, by taking K = 0,λ = 0, ϑ = π
2,γ = 0 and f(t) = H(t)(1 − αe− βt)in Eqs. (37)–(39) we get 

the corresponding results of Shah et al. [18, Eqs. (27)–(29)] for the case of viscous fluid. Moreover, for g(t) = H(t) and λ = 0, ϑ = π
2 and 

γ = 0,in (37) and using relations (A-3) and (A-4) from the Appendix. As it is expected, the obtained results are similar to those reported 
by Narahari and Debnath [16, Eqs. (11a) with ao = 0] and Tokis [47, Eq. (12)] when there are no thermal, porous and concentration 
effects. 

Again for λ = 0,K = 0,ϑ = π
2,γ = 0 , f(t) = H(t)(1 − αe− βt)and g(t) = H(t)sin(ωt)orH(t)cos(ωt),Eq. (37) yields the corresponding 

results for the case of viscous fluid [18], as follow 

Fsm(y, t) =
y

2
̅̅̅
π

√

∫t

0

sin(ω(t − s))
s
̅̅
s

√ e
−

(
y2
4s+Ms

)

ds+ εM
∫t

0

sin(ω(t − s))e− Mserf
(

y
2
̅̅
s

√

)

ds, (60)  

Fcm(y, t) =
y

2
̅̅̅
π

√

∫t

0

cos(ω(t − s))
s
̅̅
s

√ e
−

(
y2
4s+Ms

)

ds+ εM
∫t

0

cos(ω(t − s))e− Mserf
(

y
2
̅̅
s

√

)

ds. (61)  

6. Numerical results and discussion 

In this article, the MHD free convection flow of Maxwell fluid on a porous layered inclined plate is investigated. The problem is 
simulated as the natural convection for oscillating and general emotions of an inclined plate embedded in a porous medium in the 
presence of slanted external magnetic field that is either fixed or moves along with the plate. Heat transfer analysis is carried out by 
considering constant concentration, first order chemical reaction and thermal conductivity as a general function of time. The non- 
dimensional partial differential equations are solved by Laplace transform method. Mechanical, thermal and concentration effects 
on the fluid motion are independently taken into account. In order to get the physical understanding of obtained results, several cases 
of theoretical interest with engineering applications I have been taken and some already established results in the existing literature 
have been recovered as limiting case. Moreover, the influence of essential parameters and variables N,Sc,CR and λ especially the 
inclination of the plate (with the vertical) and slanted magnetic field on the motion of the fluid is graphically analyzed and discussed 

Fig. 1. Plots of F(y, t)iversusi y for N = 2.5,Preff = 4.5,Sc = 0.8,λ = 0.5,CR = 0.7,K = 1,ϑ = π
6,γ = π

6, and different values of t.  
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for a slowly accelerating motion of the plate. 
Fig. 1 is prepared to show the plot of the velocity F(y, t) versus y at different times. As reported, the profiles corresponding to MFSRP 

are considerably larger in comparison to the case of MFSRF. Moreover, there is a smooth decrease in velocity from certain maximum 
value on the boundary to an asymptotical value as y increases. Further, as recorded from these diagrams that, the asymptotic values of 
velocities are non-zero as y goes to infinity for the case of MFSRP. 

Fig. 2 presents the influence of buoyancy force parameter on the velocity of the fluid. Here, F(y, t) is plotted versus y at t = 2 for 
several values of N. It is observed that velocity of fluid increases for increasing values of N. Because, for N > 0, the buoyancy force due 
to the species diffusion supports the thermal buoyancy force and as a result velocity of the fluid increases for increasing values of N.

But, for N < 0,species diffusion opposes the thermal buoyancy forces and hence resists the flow of fluid. Moreover, as buoyancy forces 
ratio parameter calibrates the relative contribution of the mass flux on the free convection flow, so we can say that increase in mass 
fluxion the free convection flow increases the velocity of the fluid. 

The influence of the chemical reaction parameter CR on velocity of fluid is recorded in Fig. 3. From this figure, it is noticed that the 
velocity decreases corresponding to the increasing value of chemical reaction parameter. Increase in the chemical reaction parameter 
suppresses the concentration of the fluid and concentration distribution decreases throughout the fluid flow field ultimately decreases 
the concentration buoyancy effects and hence, velocity of the fluid decreases. Furthermore, it is reported that the velocity profiles are 
higher in the case when magnetic field is fixed relative to the plate. 

Moreover, the contributions of the three components of velocity (mechanical, thermal and concentration) on the fluid motion are 
plotted in Fig. 4 both for MFSRF and MFSRP. It is evident from these figures that each component contributes and has an appreciable 
influence on the fluid velocity and hence, cannot be neglected. As reported from Figs. 5 and 6, the velocity of the fluid decreases with 
the increase in inclination of the plate with the vertical as well as the parameter of porosity. Moreover, velocity of the fluid decreases 

with the increase of slant angle ϑ ∈
[
0, π

2

]
of the magnetic field with the plate. For increasing values of ϑ ∈

[
0,π2
]
, the magnetic term M =

σB2sin 2 ϑ
ρ is getting stronger and its effects on an electrically conducting fluid give rise to a Lorentz force, that has the tendency to slow 

down the motion of the fluid and increases its boundary layer. This result qualitatively agrees with the expectations, since magnetic 
field exerts retarding force on the free convection flow. So, we can control the strength of the magnetic term not only by magnetic field 
strength parameter B but also by the slant angle ϑ to get the desired controls. It is reported from Fig. 7 that heat transfer rate is an 
increasing function of effective Prandtl number but decays with time. Moreover, in Fig. 8, we have plotted Sh versus t for different 
values of CR. It is observed that the rate of mass transfer increases with the increasing values of chemical reaction parameter as well as 
the transport parameter. Because, increase in the values of chemical reaction parameter implies more interaction of species concen-
tration with momentum boundary layer that results in as an increase in the mass transfer rate. In all of the figures (Figs. 1–8) we have 
fixed. α = 0.70, β = 0.10,B = 0.6.

7. Conclusions 

Magneto-free-convection flows of Maxwell fluid on a porous layered inclined plate have been investigated. The problem is modeled 
as natural convection for general motions of an inclined plate moving in a magnetized medium with a slanted external magnetic field 
that is either stationary or moving in the same direction as the plate’s plane. Constant concentration, first order chemical reaction, and 
thermal conductivity as a general function of time are used in heat transfer analysis. On the velocity of the fluid, the effects of varied 
plate angles with the wall, as well as the slanted angle of the magnetic field with the plate, are examined. The velocity of the plate and 

Fig. 2. Plots of F(y, t) versusi y at t = 2 for Preff = 4.5,Sc = 0.8,λ = 0.5,CR = 0.7,K = 1,ϑ = π
6,γ = π

6, and different values of N.  
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temperature distribution in certain circumstances are described. Furthermore, for the condition of a slowly accelerating motion and 
exponential heating of the plate, parametric analysis on fluid dynamics is performed using graphical simulations. The following are the 
key findings:  

• The fluid velocity is significantly larger in the case when magnetic field is fixed relative to the plate as compared to the case when it 
is fixed with respect to fluid.  

• Far away from the plate velocity of the fluid does not become zero if the magnetic field is fixed relative to the plate.  
• Velocity of the fluid increases for increasing values of buoyancy forces ratio parameter N.

• Contributions of mechanical, thermal and concentration components of velocity are considerable and they cannot be ignored.  
• The velocity of the fluid decreases with the increase in the angle of inclination of the plate with the vertical as well as the parameter 

of porosity.  
• Mass flux increases with the increase in buoyancy ratio.  
• Increase in the slant angle of the magnetic field and chemical reaction parameter retargeted motion of the fluid.  
• Motion of the fluid could be controlled not only by the strength of the magnetic parameter but also by the slant angle of magnetic 

field. 

Fig. 3. Plots of F(y, t) versusyat t = 2.5 for Preff = 4.5,N = 2.5,λ = 0.5,Sc = 0.8,K = 1,ϑ = π
6,γ = π

6, and different values of CR.  

Fig. 4. Behaviour of velocities Fδm(y, t),Fδm(y, t) + FC(y, t) and Fδm(y, t) + Fτ(y, t) + FC(y, t) versusy at t = 2 for Preff = 4.5,N = 2.5,CR = 0.7,Sc =

0.8,K = 1,ϑ = π
6,γ = π

6, and λ = 0.5.
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Fig. 5. Plots of F(y, t)versusyat t = 1.5 for Preff = 4.5,N = 2.5,CR = 0.7,Sc = 0.8,K = 1,ϑ = π
6,λ = 0.5 and different values of inclination of the plate 

with the vertical. 

Fig. 6. Plots of F(y, t)versusyat t = 1.5 for Preff = 4.5,N = 2.5,CR = 0.7,Sc = 0.8,ϑ = π
6,γ = π

6,λ = 0.5 and different values of K.  

Fig. 7. Behaviour of heat transfer rate for different values of effective Prandtl number.  
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where I1( ·) is the modified Bessel function of first kind. 
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Fig. 8. Behaviour of mass transfer rate for different values of chemical reaction parameter.  
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