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Induced magnetic field and viscous 
dissipation on flows of two 
immiscible fluids in a rectangular 
channel
Nehad Ali Shah1, Hussam Alrabaiah2,3, Dumitru Vieru4 & Se‑Jin Yook5*

The unsteady, magneto‑hydrodynamic generalized Couette flows of two immiscible fluids in a 
rectangular channel with isothermal walls under the influence of an inclined magnetic field and an 
axial electric field have been investigated. Both fluids are considered electrically conducting and the 
solid boundaries are electrically insulated. Approximate analytical solutions for the velocity, induced 
magnetic, and temperature fields have been determined using the Laplace transform method along 
with the numerical Stehfest’s algorithm for the inversion of the Laplace transforms. Also, for the 
nonlinear differential equation of energy, a numerical scheme based on the finite differences has been 
developed. A particular case has been numerically and graphically studied to show the evolution of the 
fluid velocity, induced magnetic field, and viscous dissipation in both flow regions.

The dynamics that occur in the motion of liquid–solid, liquid–liquid and liquid–gas environments are a rich 
source of interdisciplinary research, for example, in nanotechnology, the nuclear industry, as well as when cooling 
devices in microelectronics. The overall properties and applicability of multiphase systems are totally dependent 
on interface shapes, which influence and are influenced by each phase’s flow area, where the heat fluxes are not 
equal since the transition in interfacial energy is  considered1,2.

Magneto-hydrodynamic (MHD) devices, generators, accelerators, and flow meters use the flow and heat 
transfer of electrically conducting fluids in channels and circular pipes under the influence of a transverse mag-
netic field, and have uses in nuclear reactors, filtration, and heat exchangers, etc. Decades prior, there was an 
involvement in the influence of the outer magnetic field on heat-physical mechanisms. Blum et al.3 studied heat 
and mass transfer in the presence of a magnetic field and that was one of the first works. Many researchers have 
investigated the flow and heat transfer of a viscous, incompressible, electrically conducting fluid, between two 
infinite, parallel, insulating  plates4–6. Convective heat transfer in channels has also become a common research 
subject in recent decades due to its applications in solar energy, gas cooled reactor protection, and crystal growth 
in liquids, among other things. The first research into a two-phase liquid metal magneto-fluid-mechanics genera-
tor was started by  Thome7.In this study have been analyzed effects of the magnetic field on distribution of gas 
in the field direction, slip ratio, and two-phase pressure drop, by using streams of sodium–potassium alloy and 
nitrogen that were mixed and pumped through a vertical, rectangular channel with a transverse magnetic field 
applied perpendicularly to the long side of the cross section. Postlethwaite and  Sluyter8 gave a summary of the 
heat transfer issues that MHD generators face. Lohrasbi and  Sahai9 investigated MHD two-phase flow and heat 
transfer in a horizontal parallel-plate channel and identified analytical solutions for velocity and temperature 
profiles where only one of the fluids is electrically conducting. Closed-form solutions for two-phase flow and 
heat transfer in a horizontal channel with both phases electrically conducting were mentioned by Malashetty 
and  Leela10,11.

Malashetty and  Umavathi12 recently investigated two-phase MHD flow and heat transfer in an inclined 
channel with buoyancy effects for the case where only one of the phases is electrically conducting. The studies 
mentioned above are helpful in determining the impact of slag layers on the heat transfer aspects of coal fired 
MHD generators.
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Sai et al.13 investigated the flow of two immiscible fluids in a channel with one permeable wall caused by an 
oscillatory pressure gradient. They found slip conditions on the channel wall but assumed continuous veloci-
ties and shear stresses at the fluid–fluid interface. The authors studied the flow of water and mercury under the 
influence of a sinusoidal time-dependent pressure gradient as a particular case. By introducing cross terms to the 
generalized Darcy law, Pasquier et al.14 developed a statistical model of creeping flows that provides an explicit 
coupling term in both phases. Using an extension of the Buckley-Leverett theorem, the effect of the additional 
terminology on saturation profiles and pressure drops was studied. Nicodijevic et al.15 have studied magneto-
hydrodynamic Couette flows of two immiscible, electrically conducting Newtonian fluids in a horizontal channel. 
The flow is influenced by an electric field and an inclined magnetic field while, the channel walls are isothermal 
and insulated. The induced magnetic field has been also determined. Other interesting results of immiscible 
fluids flow can be found  in16–18.

Thermal management systems/devices must be able to withstand a variety of thermal boundary conditions 
due to their vast range of applications in various sectors. Uniform heat flux, uniform wall temperature, and 
insulated wall boundary conditions are common examples. Numerous studies on studying the convective heat 
transfer process under such boundary circumstances have been published in the literature. However, depending 
on the flow environment, an asymmetric thermal boundary condition may be required to investigate the system’s 
underlying thermal transport properties. We’d like to point out that there are a few studies in the literature that 
analyze the thermo-hydrodynamics of both Newtonian and non-Newtonian fluids while taking the aforemen-
tioned thermal boundary conditions into  account19–21.

The purpose of this article it to investigate the unsteady, magneto-hydrodynamic generalized Couette flows of 
two immiscible fluids in a rectangular channel with isothermal walls under the influence of an inclined magnetic 
field and an axial electric field have been investigated. Both fluids are considered electrically conducting and the 
solid boundaries are electrically insulated. The problem is formulated into the dimensionless form and, at the 
interface the velocity, shear stress, induced magnetic and temperature fields are considered continuous functions. 
The bottom wall of channel is fixed, while the upper wall is moving with a given time-dependent velocity. The 
nonslip conditions on the solid boundaries are also considered. Approximate analytical solutions for the velocity, 
induced magnetic, and temperature fields have been determined using the Laplace transform method along with 
the numerical Stehfest’s algorithm for the inversion of the Laplace transforms. Also, for the nonlinear differential 
equation of energy, a numerical scheme based on the finite differences has been developed. A particular case 
characterized by a time-exponential velocity of the upper wall, has been numerically and graphically studied to 
show the evolution of the fluid velocity, induced magnetic field, and viscous dissipation in both flow regions.

Problem formulation
The physical model shown in Fig. 1 consists of two infinite, parallel plates extending in the x-direction, and 
z-direction. The y-axis is perpendicular to the channel walls. The fluids in the two domains are assumed immis-
cible and electrically conducting. The flow is incompressible, unsteady, one-dimensional, and fully developed.

The region R1 =
{(

x, y, z
)

∈ R
3, 0 ≤ y ≤ h1

}

 is occupied by a fluid of viscosity µ1 , density ρ1 , electrical 
conductivity σ1 , thermal conductivity k1 , specific heat capacity cp1 , and the magnetic permittivity µe1.

The region R2 =
{(

x, y, z
)

∈ R
3, h1 ≤ y ≤ h

}

 is field by a different fluid of viscosity µ2 , density ρ2 , electrical 
conductivity σ2 , thermal conductivity k2 , specific heat capacity cp2 , and the magnetic permittivity µe2.

It is supposed that fluids have laminar, one-dimensional flow with the velocity fields.

where �ex is the unit vector along the x-direction.

(1)�Vi

(

y, t
)

= ui
(

y, t
)

�ex , i = 1, 2,

Figure 1.  Physical model. Coordinate system.
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A uniform magnetic field of the strength B0 is applied such that the angle between vectors �ex and �B0 is equal 
to γ0 ∈ (0, π/2] , therefore, the applied magnetics vector field is

Due to the fluid motion, a magnetic field is induced along of the lines of motion, namely

is induced along of the lines of motion.
The total magnetic field is given by

The walls of the rectangular channel are kept at the constant temperature Tw0 and Tw1 , respectively and the 
plates are electrically insulated.

Also, a time-dependent electric field

is applied to the fluids.
In the above hypotheses, the continuity equation ∇ · �Vi = 0 is satisfied by the velocity fields in (1).
The electro-magneto-hydrodynamic fluids flow problem is mathematically described  by22–24:
The momentum equation

The constitutive equation

The magnetic induction equation

The energy equation

where, the dissipation function φ is given by

and the current density vector due to the magnetic field and electric field is

The magnetic body force becomes

In the case of �V = u(y, t)�ex , the above equations reduce to

(2)�B0 = B0 cos γ0�ex+B0 sin γ0�ey .

(3)�B1 = b(y, t)�ex ,

(4)�B = �B0 + �B1 =
(

b(y, t)+ B0 cos γ0
)

�ex+B0 sin γ0�ey .

(5)�E = E0 sin(ωt)�ez ,

(6)ρ

(

∂ �V
∂t

+
( �V · ∇

) �V
)

= −∇p+ �J × �B,

(7)S = µ

(

∇ �V +
(

∇ �V
)T

)

,

(8)
∂ �B
∂t

−∇ ×
( �V × �B

)

− 1

σµe
��B = 0,

(9)ρcp

(

∂T

∂t
+ �V∇T

)

= k�T + µφ + 1

σ
�J2,

(10)

φ = 2

[

(

∂u

∂x

)2

+
(

∂v

∂y

)2

+
(

∂w

∂z

)2
]

+
(

∂v

∂x
+ ∂u

∂y

)2

+
(

∂w

∂y
+ ∂v

∂z

)2

+
(

∂u

∂z
+ ∂w

∂x

)2

−2

3

(

∇ �V
)2 =

(

∂u

∂y

)2

,

(11)�J = σ
(�E + �V × �B

)

= σ
(

E0sin(ωt)+ B0 sin γ0u(y, t)
)

�ez .

(12)
�Fm = �J × �B = −σB0 sin γ0

(

E0sin(ωt)+ B0 sin(γ0)u(y, t)
)

�ex
+ σ

(

b(y, t)+ B0 cos γ0
)(

E0sin(ωt)+ B0 sin(γ0)u(y, t)
)

�ey .

(13)ρ
∂u(y, t)

∂t
= − ∂p

∂x
+ ∂Sxy(y, t)

∂y
− σB0 sin γ0

(

E0sin(ωt)+ B0 sin(γ0)u(y, t)
)

,

(14)0 = −∂p

∂y
+ σ

(

b(y, t)+ B0 cos γ0
)(

E0sin(ωt)+ B0 sin(γ0)u(y, t)
)

,

(15)Sxy(y, t) = µ
∂u(y, t)

∂t
,
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In this paper, we shall study the problem for zero pressure gradient in the x-direction namely ∂p
∂x = 0 . Also, 

the Eq. (14) that gives the pressure gradient in the y-direction will not be discussed, because it is clear that if 
b(y, t) and u(y, t) are known the variation of the pressure p is easily determined.

The flow, induced magnetic and temperature field of the fluid in two regions are determined by the equations

Along with Eqs. (18)–(21), the following initial, boundary and interface conditions are considered:

In the present problem, it has assumed that the two plates are maintained at constant temperatures. Under 
the flow’s assumptions, the temperature fields can be considered independent of the longitudinal variable x. The 
term involving ∂T

∂x = 0 in the energy Eq. (21) drops out for such conditions.
We introduce the non-dimensional entities

(16)
∂b(y, t)

∂t
− B0 sin γ0

∂u(y, t)

∂y
− 1

σµe

∂2b(y, t)

∂y2
= 0,

(17)ρcp

(

∂T

∂t
+ u

∂T

∂x

)

= k�T + µ

(

∂u

∂y

)2

+ σ(E0sin(ωt)+ B0 sin γ0u)
2.

(18)ρi
∂ui(y, t)

∂t
=

∂Sixy(y, t)

∂y
− σiB0 sin γ0

(

E0sin(ωt)+ B0 sin(γ0)ui(y, t)
)

,

(19)Sixy(y, t) = µi
∂ui(y, t)

∂y
,

(20)
∂bi(y, t)

∂t
− 1

σiµei

∂2bi(y, t)

∂y2
= B0 sin γ0

∂ui(y, t)

∂y
,

(21)ρicpi

(

∂Ti

∂t
+ ui

∂Ti

∂x

)

= ki�Ti + µi

(

∂ui

∂y

)2

+ σi(E0sin(ωt)+ B0 sin γ0ui)
2; i = 1, 2.

(22)u1(y, 0) = 0, u2(y, 0) = 0, b1(y, 0) = b2
(

y, 0
)

= 0, T1(x, y, 0) = Two = T2(x, y, 0),

(23)u1(0, t) = 0, u2(h, t) = U0f2(t), U0> 0,
(

No slip conditions
)

,

(24)u1(h1, t) = u2(h1, t),

(25)S1xy(h1, t) = S2xy(h1, t),

(26)b1(0, t) = 0, b2(h, t) = 0,

(27)b1(h1, t) = b2(h1, t),

(28)
1

σ1µe1

∂b1(y, t)

∂y

∣

∣

∣

∣

y=h1

= 1

σ2µe2

∂b2(y, t)

∂y

∣

∣

∣

∣

y=h1

,

(29)T1(x, 0, t) = Tw0 , T2(x, h, t) = Tw1

(30)T1(x, h1, t) = T2(x, h1, t),

(31)k1
∂T1

∂y

∣

∣

∣

∣

y=h1

= k2
∂T2

∂y

∣

∣

∣

∣

y=h1

.

(32)

ũi =
ui

U0
, ỹ = y

h1
, x̃ = x

h1
, d = h

h1
, t̃ = U0t

h1
, S̃ix̃ỹ =

Sixy

ρiU
2
0

, ω̃ = h1ω

U0
, Ei =

σiB0E0h1 sin γ0

ρiU
2
0

,

Fi =
σiB

2
0h1 sin

2 γ0

ρiUi
, Rei =

h1U0

νi
, b̃i =

bi

B0 sin γ0
, θi =

Ti − Tw0

Tw1 − Tw0

, Pri =
µicpi

ki
, Eci =

U2
0

cpi(Tw1 − Tw0)
,

Hai = B0h1

√

σi

µi
, G0 =

E0

B0U0 sin γ0
, f̃

(

t̃
)

= f2

(

h1

U0
t̃

)

, δ0 =
µe1σ1

µe2σ2
, k0 =

k2

k1
,Rmi = U0h1σiµei .
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Equations (18)–(21) become (the notation “ ∼ ” is neglected)

The non-dimensional boundary conditions are

Velocity field distribution
To solve Eqs. (33) and (34) along with initial-boundary conditions (37) and (38), we use the Laplace transform 
method. Applying the Laplace transform to Eqs. (33) and (34), we obtain

where, χ(y, s) =
∫∞
0 χ(y, t) exp(−st)ds denotes the Laplace transform of function χ(y, t).

Eliminating Sixy between Eqs. (41) and (42), we obtain the following equation for the Laplace transform ui
(

y, s
)

 
of the velocity ui(y, t), i = 1, 2:

Functions ui
(

y, s
)

 have to satisfy the boundary and interface conditions

The general solution of Eq. (43) is

(33)
∂ui(y, t)

∂t
=

∂Sixy(y, t)

∂y
− Eisin(ωt)− Fiui(y, t),

(34)Sixy(y, t) =
1

Rei

∂ui(y, t)

∂y
,

(35)
∂bi(y, t)

∂t
− 1

Rmi

∂2bi(y, t)

∂y2
= ∂ui(y, t)

∂y

(36)Pr
i
Rei

∂θi

∂t
= ∂2θ i

∂y2
+ Pr

i
Eci

(

∂ui

∂y

)2

+ Pr
i
EciHa

2
i sin

2 γ0(G0sin(ωt)+ ui)
2.

(37)ui
(

y, 0
)

= 0, bi
(

y, 0
)

= 0, θi
(

y, 0
)

= 0, i = 1, 2, y ∈ [0, d],

(38)

u1(0, t) = 0, u2(d, t) = f (t),

u1(1, t) = u2(1, t),

S1xy(1, t) = S2xy(1, t),

(39)

b1(0, t) = 0, b2(d, t) = 0,

b1(1, t) = b2(1, t),

∂b1(y, t)

∂y

∣

∣

∣

∣

y=1

= δ0
∂b2(y, t)

∂y

∣

∣

∣

∣

y=1

,

(40)

θ1(0, t) = 0, θ2(d, t) = 1,

θ1(1, t) = θ2(1, t),

∂θ1
(

y, t
)

∂y

∣

∣

∣

∣

∣

y=1

= k0
∂θ2

(

y, t
)

∂y

∣

∣

∣

∣

∣

y=1

.

(41)sui(y, s) =
∂S

i
xy(y, t)

∂y
− Ei

ω

s2 + ω2
− Fiui

(

y, s
)

,

(42)S
i
xy(y, s) =

1

Rei

∂ui(y, s)

∂y
,

(43)
∂2ui(y, s)

∂y2
= Rei(s + Fi)ui

(

y, s
)

+ EiReiω

s2 + ω2
, i = 1, 2.

(44)

u1(0, s) = 0, u2(d, s) = f (s),

u1(1, s) = u2(1, s),

1

Re1

∂u1(y, s)

∂y

∣

∣

∣

∣

y=1

= 1

Re2

∂u2(y, s)

∂y

∣

∣

∣

∣

y=1

.

(45)ui
(

y, s
)

= Ci1(s) sinh
(

ai(s)y
)

+ Ci2(s)cosh
(

ai(s)y
)

+ bi(s),
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where

Using (44), the following expressions of the functions Ci1(s), Ci2(s), i = 1, 2 are found:

Although the inverse Laplace transform of the function (45) can be obtained using the residue theorem, 
the analytical expression of the u(y, t) is complicated and difficult to be used for numerical evaluation. For 
this reason, we prefer to obtain the numerical values of the inverse Laplace transform of u(y, s) using Stehfest’s 
numerical  algorithm25,26

According to the Stehfest’s algorithm, the approximate values of function ui(y, t) are given by

where

In the above relation M is an even, positive integer number and [x] denotes the integer part of the real number 
x.

The induced magnetic field
The magnetic field induction is given by Eq. (35) along with conditions (39). Applying the Laplace transform 
to Eq. (35), using initial conditions (37)2 and the velocity expression (45), we obtain for the Laplace transform 
bi
(

y, s
)

 of bi
(

y, t
)

 the differential equation

along with the boundary and interface conditions

The general solution of Eq. (50) is given by

where

(46)ai(s) =
√

Rei(s + Fi), b0i(s) =
Eiω

(s + Fi)(s2 + ω2)
, i = 1, 2.

(47)

C11(s) =
(

f (s)− b02(s)
)

cosh (a2(s))

cosh (a2(s)d) sinh (a1(s))
+ b02(s)− b01(s)+ b01(s)cosh(a1(s))

sinh(a1(s))

− sinh((d − 1)a2(s))

cosh (a2(s)d) sinh (a1(s))
C21(s),

C12(s) = −b01(s),

C22(s) =
f (s)− b02(s)

cosh (a2(s)d)
− sinh (a2(s)d)

cosh (a2(s)d)
C21(s),

C21 =
Fa(s)

Fb(s)
,

Fa(s) = Re2a1(s)
[

b01(s) cosh (a2(s)d)+
(

f (s)− b02(s)
)

cosh (a1(s)) cosh (a2(s))

+
(

b02(s)− b01(s)
)

cosh (a1(s)) cosh (a2(s)d)
]

− Re1a2(s)
(

f (s)− b02(s)
)

sinh (a1(s)) sinh (a2(s)),

Fb(s) = Re1a2(s) cosh (a1(s))sinh[(d − 1)a2(s)]

+ Re2a1(s) sinh (a1) cosh [(d − 1)a2(s)].

(48)ui(y, t) ≃
ln 2

t

M
∑

k=1

bkui

(

y,
k ln 2

t

)

,

(49)bk = (−1)k+
M
2

min
(

k,M2

)

∑

j=
[

k+1
2

]

j
M/2(2j)

(

M/2 − j
)

!j!
(

j − 1
)

!
(

k − j
)

!
(

2j − k
)

! .

(50)
∂2bi

(

y, s
)

∂y2
− Rmisbi

(

y, s
)

= −Rmiai(s)
[

Ci1(s) cosh
(

ai(s)y
)

+ Ci2(s)sinh
(

ai(s)y
)]

,

(51)

b1(0, s) = 0, b2(d, s) = 0,

b1(1, s) = b2(1, s),

∂b1
(

y, s
)

∂y

∣

∣

y=1 = δ0
∂b2

(

y, s
)

∂y

∣

∣

y=1 .

(52)
bi
(

y, s
)

= Di1(s) sinh
(

y
√
Rmis

)

+ Di2(s) cosh
(

y
√
Rmis

)

+ di(s)
[

Ci1(s) cosh
(

ai(s)y
)

+ Ci2(s)sinh
(

ai(s)y
)]

,
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We introduce the notations

we have

Using the boundary and interface conditions (51), we obtain the algebraic system for the unknown functions 
Di1(s), Di1(s), i = 1, 2 :

whose solution is

where

with

Numerical values of the induced magnetic fields (52) shall be determined with the numerical approximate 
formula (48) updated for bi(y, t).

The temperature field
Approximate analytical solution. Let’s introduce notation

(53)di(s) =
Rmiai(s)

Rmis − a2i (s)
= Rmi

√
Rei(s + Fi)

(Rmi − Rei)s − ReiFi
.

(54)Gi

(

y, s
)

= di(s)
[

Ci1(s) cosh
(

ai(s)y
)

+ Ci2(s)sinh
(

ai(s)y
)]

,

(55)Hi

(

y, s
)

= ∂Gi

(

y, s
)

∂y
= ai(s)di(s)

[

Ci1(s)sinh
(

ai(s)y
)

+ Ci2(s)cosh
(

ai(s)y
)]

,

(56)
b1(y, s) = Di1(s) sinh

(

y
√
Rmis

)

+ Di2(s) sinh
(

y
√
Rmis

)

+ Gi(y, s),

∂b1(y, s)

∂y
=

√
Rmis

[

Di1(s)cosh
(

y
√
Rmis

)

+ Di2(s) sinh
(

y
√
Rmis

)]

+Hi(y, s).

(57)

D12(s)+ G1(0, s) = 0,

D21(s) sinh
(

d
√
Rm2s

)

+ D22(s) cosh
(

d
√
Rm2s

)

+ G2(d, s) = 0,
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)
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)
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)
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(√
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)
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[
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)
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)]
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√
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[
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(√
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)

+ D22(s)sinh
(√
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)]

+ δ0H2(1, s).

(58)D12(s) = −G1(0, s) = −d1(s)C11(s),

(59)D22(s) =
−G2(d, s)
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(

d
√
Rm2s

) − sinh
(

d
√
Rm2s

)

cosh
(

d
√
Rm2s

) D21(s),

(60)D11(s) = D00(s)+ D01(s)D21(s),

(61)

D00(s) = G1(1, s)
cosh

(√
Rm1s

)

sinh
(√

Rm1s
) + G2(1, s)− G1(1, s)

sinh
(√

Rm1s
) − G2(d, s) cosh

(√
Rm2s

)

sinh
(√

Rm1s
)

cosh
(

d
√
Rm2s

) ,

D01(s) =
sinh

(√
Rm2s

)
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(

d
√
Rm2s

)

− sinh
(

d
√
Rm2s

)

sinh
(√

Rm1s
)

cosh
(

d
√
Rm2s

) ,

(62)D21(s) =
E01(s)

E00(s)
,

(63)

E00(s) = D01

√
Rm1s cosh

(√
Rm1s

)

− δ0
√
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cosh
[
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√
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]

cosh
(

d
√
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) ,

E01(s) =
√
Rm1ssinh

(√
Rm1s

)

G1(0, s)−H1(1, s)+ δ0H2(1, s)

−
√
Rm1s cosh

(√
Rm1s

)

D00(s)−
δ0
√
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(√
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(

d
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(64)Wi(y, t) = Pr
i
Eci

(

∂ui(y, t)

∂y

)2

+ Pr
i
EciHa

2
i sin

2 γ0
[
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where ui is given by Eq. (45).
Temperature fields are solutions of the equations

along with the initial-boundary and interface conditions

Applying the Laplace transform to Eq. (65), we obtain the transformed equation

The general solution of Eq. (70) is

where Di1 , Di2 have to satisfy conditions

From Eq. (72), we have

respectively,

Replacing (74) into (71), we obtain

where,

Unknown functions Ei1(s) , Ei2(s) shall be determined using the boundary and interface conditions

After direct calculations, we obtain

(65)
∂2θi(y, t)

∂y2
− Pr

i
Rei

∂θi(y, t)

∂t
+Wi(y, t) = 0, i = 1, 2,

(66)θi
(

y, 0
)

= 0, y ∈ [0, d],

(67)θ1(0, t) = 0, θ2(d, t) = 1, t > 0,

(68)θ1(1, t) = θ2(1, t) = 1, t > 0,

(69)
∂θ1

(

y, t
)

∂y

∣

∣

∣

∣

∣

y=1

= k0
∂θ2

(

y, t
)

∂y

∣

∣

∣

∣

∣

y=1

, t > 0.

(70)
∂2θ i(y, s)

∂y2
− Qisθ i(y, s)+Wi(y, s) = 0, i = 1, 2, Qi = Pr

i
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√
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√
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√
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√
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√
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√

Qis e
y
√
QisD

′
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(73)D
′
i1(y, s) =
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√
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√
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√
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(77)
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∣
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where,

Numerical values of the temperature θi(y, t) could be determined with the numerical approximate formula 
(48) updated for θ i(y, s) . However, the expressions of the temperature fields (75) are quite complicated and 
also contain functions �i1(s), �i2(s) that are defined by means of some definite integrals. For this reason, the 
numerical inversion with the Stehfest’s algorithm becomes difficult. Therefore, in the following, we will elaborate 
a numerical scheme adequate to the integration of the differential Eq. (65) with the initial-boundary conditions 
(66)–(69).

Numerical scheme. Temperature fields θ1(y, t), θ2(y, t) are solutions of the equations

along with the initial, boundary and interface conditions

We consider the step size �t for the time t, step size �y1 for the spatial coordinate y ∈ [0, 1] , and the sequences 
tn = n�t, n = 0, 1, ...,Nt , yj = j�y1, j = 0, 1, ...,N1, �t = T/Nt , �y1 = 1/N1 . Using the approximate formulas 
for the derivatives,

Equation (82)1 is written as

where,

The initial and boundary conditions (83) and (84) lead to the following relations:

For the interval y ∈ [1, d] , we consider the sequence

(79)E11 =
−1

2
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[

(d − 1)
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]

+ G2(s) sinh
[

(d − 1)
√
Q2s

]

√
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(√
Q1s

)
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[

(d − 1)
√
Q2s

]

+√
Q1s cosh

(√
Q1s

)

sinh
[

(d − 1)
√
Q2s
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(80)

E22 =
1

2

G1(s)
√
Q1s cosh

(√
Q1s

)

− G2(s) sinh
(√

Q1s
)

ed
√
Q2s

{√
Q2s sinh

(√
Q1s

)
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[

(d − 1)
√
Q2s

]

+√
Q1s cosh

(√
Q1s

)

sinh
[

(d − 1)
√
Q2s
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(81)

G1(s) =
1

s
e(d−1)

√
Q2s − e−

√
Q2s�21(d, s)− e(2d−1)

√
Q2s�22(d, s)+ e−

√
Q2s�21(1, s)+ e

√
Q2s�22(1, s),

G2(s) = −
√
Q2s

s
e(d−1)

√
Q2s +

√

Q2se
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Q2s�21(d, s)+
√

Q2se
(2d−1)

√
Q2s�22(d, s)
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√
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√
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√
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√
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√
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∂t
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∂t2
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(83)θ1(y, 0) = 0, y ∈ [0, 1]; θ2(y, 0) = 0, y ∈ [1, d],

(84)θ1(0, t) = 0; θ2(d, t) = 1, t > 0,

(85)

θ1(1, t) = θ2(1, t) = 0, t > 0,

∂θ1(y, t)

∂y

∣

∣

∣

∣

y=1
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∂y

∣

∣

∣

∣
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∂t

∣

∣

∣

∣

(y,t)=(yj ,tn)

= 1
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[
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]

, n = 0, 1, . . . ,Nt − 1, j = 0, 1, . . . ,N1,
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∣

∣

∣

∣
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�y2
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, n = 0, 1, . . . ,Nt , j = 1, 2, . . .N1 − 1,

(87)θ
j,n+1
1 = α00θ

j+1,n
1 + α01θ

j,n
1 + α02θ

j−1,n
1 + α03W

j,n
1 , n = 0, 1, . . . ,Nt − 1, j = 1, 2, . . . ,N1 − 1,

(88)θ
j,n
1 = θ1
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yj , tn
)

, and, α00 = α02 =
�t

Q1�y21
, α01 = 1− 2�t

Q1�y21
, α03 =
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Q1
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(89)θ
j,0
1 = 0, j = 0, 1, ...,N1; θ

0,n
1 = 0, n = 0, 1, ...,Nt .
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From the interface condition (85)1, we obtain

while, from the condition (85)2, we have

Equation (82)2 is written as

where,

Using the boundary condition (84)2, we obtain

Now, the above relations, determine the values θ1(yj , tn), θ2(yk , tn) of the temperature fields.
Indeed, using Eqs. (93) and (95), the values θN1+k,n

2 , k = 1, 2, ...,N2, n = 0, 1, ...,Nt are determined.
The values θ j,n1 , j = 0, 1, ...,N1, n = 0, 1, ...,Nt of the temperature field in zone y ∈ [0, 1] are determined using 

Eq. (87) together with Eq. (92).

Numerical results and discussion
Flows inside channels, such as magneto-hydrodynamic, electro-hydrodynamic, and electrokinetic flows are 
important in many microscale applications. The generation of such flows is often done with the help of external 
fields (mechanical, thermal, magnetic, electric) applied to the fluids. In this section, the generalized Couette 
flow studied in previous paragraphs is numerically and graphically simulated in the case when the motion of 
the upper plate is given by the function f (t) = 1− exp(−t), t ≥ 0.

For the non-dimensional parameters that characterize the studied fluids and fields, the following numerical  
va lues  were  used:  d = 1.5, ω = π/4, F1 = 0.5, F2 = 0.6,E1 = 0.55, E2 = 0.75, Re1 = 0.8, Re2 = 2,

Rm1 = 1.2, Rm2 = 0.8, Pr1 = 1.5, Pr2 = 3.5,Ec1 = 2.5, Ec2 = 1.5, G0 = 1.5, Hb1 = 0.8, Hb2 = 0.4, γ0 = π/6.
Figure 2 shows the profiles of fluid velocities in both flow regions for different values of the time t. As expected, 

the fluid flows more slowly in the region bounded by the lower wall. This behavior is due to the fact that the 
lower wall of the canal is fixed, so the viscosity force will slow down the fluid motion. In the region of the canal 
bounded by the upper wall, the fluid moves at a higher velocity due to the movement of the wall with the velocity 
given by the function f (t) . It is observed in Fig. 2 that for large values of the time t, fluid velocity on the upper 
wall becomes almost constant, because limt→∞ f (t) = limt→∞(1− exp(−t)) = 1.

This property is most clearly evident from Fig. 3 which shows the profiles of velocities as a function of time 
t for three positions of the channel, namely, y ∈ {0.5, 1.0, 1.25}.The curves in Fig. 2, show that for t ≥ 15 fluid 
velocities tend to become constant. Also, Figs. 2 and 3 highlight that fluid velocity satisfy the interface condition 
u1(1, t) = u2(1, t).

Figures 4 and 5 show profiles of the ratio of induced magnetic field, and the external applied magnetic field, 
versus spatial coordinate y, respectively versus time t. Note that in the y = 1 position of the channel, where the 
velocities are equal, the variation of the induced magnetic field is slower. It can be seen that in this position the 
induced magnetic field has a slow increase and after the value t = 5 , the values of the induced magnetic field are 
almost constant. In the first flow zone, in which the velocity gradient has large variations, the induced magnetic 
field also has significant variations. These variations are attenuated in the second flow area where the speed gra-
dient variations are smaller. Also, we note that for t ≥ 15 , the values of induced magnetic field become almost 
constant for any position of the channel. This behavior is in accordance with the fluid motion whose velocity 
tends to constant values for large values of the time t.

Figures  6 and 7 are plotted to show the variation in space and time of the dissipative functions 
W1(y, t), W2(y, t) . It is known that viscous dissipation acts as a source of energy in the fluid flow and it affects 
the temperature distribution. The shear stress within the fluid layer induced by the motion of the upper plate 
significantly influences the energy dissipation. It is observed in Figs. 6 and 7 that for a short time interval, the 
dissipative function in the region bounded by the lower wall is higher than the dissipative function in the other 
region. After this instant, the dissipative function in the region bounded by the upper plate becomes higher. This 
fact is generating by the evolution in time of the velocity in this region.

Conclusions
Unsteady, magneto-hydrodynamic generalized Couette flows of two immiscible fluids in a rectangular channel 
have been studied.

(91)θ
N1,n
1 = θ

N1,n
1 , n = 0, 1, . . . ,Nt ,

(92)
θ
N1,n
1 = θ

N1,n
2 = δ00θ

N1+1,n
2 + δ01θ

N1−1,n
1 , n = 1, 2, . . . ,Nt ,

δ00 =
k0�y1

�y2 + k0�y1
, δ01 =

�y2

�y2 + k0�y1
.

(93)
θ
N1+k,n+1
2 = β00θ

N1+k+1,n
2 +β01θ

N1+k,n
2 +β02θ

N1+k−1,n
2 +β03W

N1+k,n
2 , n = 0, 1, ...,Nt−1, k = 1, 2, ...,N2−1,

(94)θ
N1+k,n
1 = θ1

(

yN1+k , tn
)

, and, β00 = β02 =
�t

Q2�y22
, β01 = 1− 2�t

Q2�y22
, β03 =

�t

Q2
.

(95)θ
N1+N2,n
2 = 1, n = 1, 2, ...,Nt .
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Figure 2.  The profiles of velocities u1(y, t), u2(y, t) versus y for different values of the time t.

Figure 3.  Time-evolution of velocities u1(y, t), u2(y, t) in three different positions of channel.
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The flow is influenced by an inclined magnetic field and an axial time-oscillating electric field. Both fluids are 
considered electrically conducting and the solid boundaries are electrically insulated.

The problem is formulated into the dimensionless form and at the interface the velocity, shear stress, induced 
magnetic and temperature fields are considered continuous functions. Both walls are isothermal. The bottom wall 
of channel is fixed, while the upper wall is moving with a given time-dependent velocity. The nonslip conditions 
on the solid boundaries are also considered.

Approximate analytical solutions for the velocity, induced magnetic, and temperature fields have been deter-
mined using the Laplace transform method along with the numerical Stehfest’s algorithm for the inversion of 
the Laplace transforms.

A numerical scheme based on the finite differences has been developed for the non-linear energy equation.

Figure 4.  The profiles of induced magnetic fields b1(y, t), b2(y, t) versus y for different values of the time t.

Figure 5.  Time-evolution of induced magnetic fields b1(y, t), b2(y, t) in three different positions of channel.
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A particular case characterized by a time-exponential velocity of the upper wall, has been numerically and 
graphically studied to show the evolution of the fluid velocity, induced magnetic field, and viscous dissipation 
in both flow regions.
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