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Abstract: Although there have been several analyses for identifying cancer-associated pathways,
based on gene expression data, most of these are based on single pathway analyses, and thus do
not consider correlations between pathways. In this paper, we propose a hierarchical structural
component model for pathway analysis of gene expression data (HisCoM-PAGE), which accounts
for the hierarchical structure of genes and pathways, as well as the correlations among pathways.
Specifically, HisCoM-PAGE focuses on the survival phenotype and identifies its associated pathways.
Moreover, its application to real biological data analysis of pancreatic cancer data demonstrated that
HisCoM-PAGE could successfully identify pathways associated with pancreatic cancer prognosis.
Simulation studies comparing the performance of HisCoM-PAGE with other competing methods
such as Gene Set Enrichment Analysis (GSEA), Global Test, and Wald-type Test showed HisCoM-PAGE
to have the highest power to detect causal pathways in most simulation scenarios.

Keywords: pathway analysis; survival phenotype; Hierarchical structured component model

1. Introduction

Over the past several decades, gene expression data analysis has been the most common approach
to investigate human diseases at the RNA level [1,2]. By analyzing gene expression data, we can gain
a better understanding of disease etiology and biological mechanisms [3]. Especially for cancer prognosis,
genetic information can be very effective in improving prognosis prediction of patients, based only on
clinical information [4].

Analyzing high-throughput gene expression data, at the pathway level, is very effective in two
ways. Firstly, grouping thousands of genes by their respective pathways reduces complexity to just
several hundred pathways. Secondly, identifying active pathways that differ between two conditions,
such as normal and tumor tissues, can have more explanatory power than a simple list of differentially
expressed genes (DEGs) [5,6]. While there have been several methods proposed for gene set analysis,
they mainly focused on the binary phenotypes. There are only a few methods available for dealing
with survival phenotypes [7,8].
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Various cancer prognosis and survival analysis have been reported [9,10]. For example, pancreatic
cancer has a very poor prognosis, compared to other cancers. At the time of diagnosis, fewer than
20% of pancreatic cancer patients can have surgery, and their postoperative 5-year survival rate is
also significantly low [11]. Therefore, more accurate pancreatic cancer prognosis, and early detection,
are needed.

To build a good prediction model, using gene expression data, for actual clinical practice and
medical intervention, it is first necessary to identify genes (features) related to prognosis. Exploring
the pathways to which genes belong can provide valuable biological interpretation and help screen out
false-positive genes. In this study, we mainly focus on finding significant pathways that are relevant
to the prognosis of pancreatic cancer. Through pathway analysis, our ultimate goal is to identify
biological mechanisms that influence the prognosis of disease more clearly.

Since gene set enrichment analysis (GSEA) was proposed, which uses the Kolmogorov-Smirnov
statistic for measuring differentially expressed gene sets, many other pathway-based methods have
been developed [12]. Recently, SetRank was developed to reduce the false positive hits of the GSEA [13].
Unlike other types of phenotypes, however, there are only a few pathway-based methods available
for survival phenotypes. For example, the gene set variation analysis (GSVA) method was proposed
to handle survival times by estimating the variation of pathway activity over a sample population
in an unsupervised way [14]. The global test was proposed for continuous and censored survival
time, based on the score statistics from random effects of parameters for association measure [15,16].
Likewise, the Wald test was proposed for the survival phenotype by summarizing the association
measure from the sum of coefficients from a survival regression model [17]. However, those previous
pathway methods are single pathway analyses, so they do not take into account correlations between
pathways, and the global test only considers correlations between gene expression values. The Wald
test merely sums up the statistics from each gene, to obtain its pathway statistics, so it does not account
for the correlation among pathways. Since some genes may belong to several pathways simultaneously,
there is a need for accounting for this nature of genes and pathways.

To account for this issue, we previously developed our Pathway-based approach using HierArchical
structure of collapsed Rare variant Of High-throughput sequencing data (PHARAOH) method for
discovering rare variants by constructing a hierarchical model that consists of collapsed gene-level
summaries and entire pathways [18]. PHARAOH is based on the generalized structural component
analysis (GSCA) model [19]. Later, we developed our Hierarchical structured CoMponent analysis of
miRNA-mRNA integration (HisCoM-mimi) method to integrate anti correlated expression of miRNA
and mRNA. By extension of PHARAOH, HisCoM-mimi can also account for the biological relationships
between a miRNA and target mRNAs [20]. Recently, we developed another extension, Hierarchical
structural CoMponent analysis of Gene-Gene Interactions (HisCoM-GGI), representing a model that
not only summarizes common variants into gene levels, but also considers interactions among common
variants [21].

In this study, we developed a new pathway-based model for survival phenotypes, based on gene
expression data, by taking advantage of our earlier hierarchical model, referred to as HisCoM-PAGE
which represents Hierarchical structural Component Models for Pathway Analysis for Gene Expression
data. As an extension of HisCoM-mimi, HisCoM-PAGE considers the biological context of gene and
pathway hierarchies, in the form of structured components. HisCoM-PAGE collapses genes into the
pathway in a structured form using latent variables. Unlike other methods analyzing one pathway at
a time, HisCoM-PAGE analyze all pathways simultaneously by one model, which enables considering
the correlation of all pathways by using a ridge penalty in parameter estimation. HisCoM-PAGE can
also successfully examine the effects of individual genes within the pathways.

Through simulation studies, we showed that HisCoM-PAGE performed well, compared to other
existing pathway methods for survival phenotype. Application to real microarray data of pancreatic
ductal adenocarcinoma (PDAC) patients from Seoul National University Hospital (SNUH) showed
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that HisCoM-PAGE could well identify prognosis-related pathways. HisCoM-PAGE is available at
(http://statgen.snu.ac.kr/software/HisCom-PAGE/).

2. Materials and Methods

2.1. Materials

2.1.1. SNUH—PDAC Microarray Data

125 PDAC samples were collected by the department of Hepatobiliary and Pancreatic Surgery
of SNUH and all human subject studies were approved by the Institutional Review Board of SNUH.
The PDAC patients’ average age was 63.32 years, and the standard deviation was 10.064 years; 75 patients
were male, and 50 were female. The median survival time was 25 months. In this dataset, mRNA
expression levels were generated using Affymetrix (Santa Clara, CA, USA) HuGene 1.0 ST arrays. A total
of 32,321 genes were normalized by the Robust Multi-array Average (RMA) method [22]. Of the total,
21,369 genes were annotated. In this analysis, we selected mRNAs whose expressional variances were
ranked in the top 25 percentiles for analysis [23,24]. The detail clinical information is described in Table 1.

Table 1. Demographics and clinical characteristics of study patients.

Variable Variable Description Descriptive Statistics

Age Age at diagnosis 63.32(10.064) mean(se)

Sex Male: 75, Female: 50

Positive
Lymph Nodes (LN)

Number of cancers transmitted by
Lymphocytes

(0,1,2)
(1st Quantile, Median,3rd Quantile)

Size Maximum Tumor Size (cm) 3.574 (mean)

Differentiation Clinico-pathologic characteristics and
prognostic value of various histological types. WD: 19, MD: 85, PD: 18, Other: 2 (NA: 1)

Jaundice Yes: 89, No: 36

7th staging T stage AJCC 7th T staging criteria.
The extent of the tumor.

1th: 6, 2nd: 3,
3rd: 104, 4th: 12

7th staging N stage AJCC 7th N staging criteria.
The spread to nearby lymph nodes. Yes: 71, No: 54

Radiation therapy Radiation therapy after surgery Yes: 72, No: 53

Chemotherapy Chemotherapy after surgery Yes: 94, No: 31

Overall survival time Median: 25 months

Differentiation variables were constituted the following categories: Well Differentiated (WD), Moderately
Differentiated (MD) and Poorly Differentiated (PD). For T and N stage, American Joint Committee on Cancer (AJCC)
7th edition was applied.

2.1.2. The Cancer Genome Atlas - PDAC RNA-Seq Data

The RNA-seq data and the clinical data were downloaded from The Cancer Genome Atlas (TCGA)
GDC portal (https://portal.gdc.cancer.gov) [25]. For the RNA-seq data, an Illumina HiSeq instrument
(San Diego, CA, USA) was used for mRNA profiling. In the sample selection procedure, non-PDAC
samples were removed [26]. Also, samples with a survival time less than 3 months were removed, since
the cause of death may not be due to PDAC. As a result, we analyzed 124 PDAC patients, among which
there were 61 female samples and 63 male samples. The median survival time was 598 days, and the
censoring proportion was 41%. The average age was 64.56 years, and its standard deviation was 10.91.

For the preprocessing procedure of RNA-seq data, the following steps were applied to 56,716
genes annotated. The Relative Log Expression (RLE) normalization method was adopted to control the
gene length bias. The RLE method was implemented in R package (v3.5) “DESeq2” (v1.22.2) [27]. After
RLE normalization, the genes with zero proportion larger than 80% were filtered out [28]. The number
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of remaining genes was 37,405. Next, the RNA-seq mRNA expression data were log2 transformed.
Using unsupervised filtering based on Median Absolute Deviation (MAD), 9,380 genes whose MADs
were ranked in the top 25 percentiles were finally selected for analysis.

2.1.3. Simulation Data

To evaluate the performance of the HisCoM-PAGE method and compare its performance with
other pathway methods, we generated a simulation data set, following the simulation settings of Lee
et al [29]. In the simulation study, the following parameters were considered: the sample size (I), total
number of genes (K), pathway size (ms), proportion of censoring (cp), and the proportion of significant
genes in the pathway (mp). Gene expression data were randomly generated from a multivariate normal
distribution with mean zero and covariance matrix Σ. Let the O zero matrix be l × (K-l) dimensions,
where l is the number of causal genes within the gene set. Let Il be an l × l identity matrix, and A be
a l × l symmetric matrix. Then, the covariance matrix is given as follows:

∑
K×K

=

[
A O

OT 0.2IK−l

]
Four different scenarios of covariance matrix Σ were considered. For each scenario, Ahas a different

structure. Here, i,j represent each row and column index for covariance matrix. For Scenario 1, A = 0.2Il;
for Scenario 2, A = 0.2[xij] and xij = 0.02; for Scenario 3, A = 0.2[xij], and xij = 0.1|i−j|. Scenario 4 has
random variances and covariance, such that A is given as follows: A = 0.2[xij], xij = ρij, when i is not
equal to j, and 1, when i is equal to j, and ρij is generated from N(0,0.12). For all scenarios, three different
significant gene proportion was considered. The survival time was generated from a Cox model with
a constant baseline hazard rate of 0.005 whereas the censoring time was generated from an exponential
distribution with a parameter of λ whose value depends on the censoring fraction [30]. The survival time
and censoring time were generated independently. We only observed the minimum value of either the
survival time or the censoring time, which occurred first. For power analysis, the regression coefficients
w were generated from the uniform distribution U(0.2,0.6). For type 1 error estimation, the regression
coefficient w was assumed to be zero.

2.2. Methods

2.2.1. HisCoM-PAGE Method

Let yi denote a survival time (i = 1, . . . ,I). Let xijk denote the kth gene (k = 1, . . . ,m1, . . . ,K)
expression corresponding to the jth pathway (j = 1, . . . ,J) for the ith patient. As shown in Figure 1,
we must then consider latent structures for estimating the model parameters. Let wjk denote the
weight assigned to xijk. The coefficient βj represents the effect of the latent variable fij on the phenotype.
Wj = [wj1, . . . ,wjmj]’, B = [β1, . . . ,βj]’. Considering this structure, we designed the following Cox
proportional hazard model.

h
(
yi
∣∣∣ f i

)
= h0(y i) exp(

J∑
j=1


m j∑

k=1

xi jkw jk)β j) = h0(y i) exp(
J∑

j=1

fi jβ j


To estimate the model parameters for HisCoM-PAGE, we maximized the penalized partial log

likelihood using a ridge penalty. The following Equation (1) then represents the objective function,
which is a partial log likelihood from a Cox model.

φ =
∑

i:Ci=1
(
∑J

j=1 fi jβ j − log
∑

l∈R(yi)
exp(

∑J
j=1 fl jβ j))

−
1
2λgene

∑J
j=1

∑m j

k=1 Pλpathway

(
w jk

)
−

1
2λpathway

∑J
j=1 Pλgene

(
β j

)
, where fi j=

∑m j

k=1 xi jkw jk

(1)
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Here y1 < y2 < . . . <yd denote the distinct and ordered d(≤I) survival times and R(yi) is the risk set
at time yi The objective function can be maximized by an alternating least squares (ALS) algorithm,
which iterates the following two steps until convergence. In the first step, the pathway coefficients are
estimated and updated, using a least-squares approach. For the second step, the weight coefficients
are updated for fixed-path coefficient estimates [31]. In HisCoM-PAGE, we adopted a ridge penalty
to address the multicollinearity of genes. When estimating λgene and λpathway values, we conducted
5-fold cross-validation to obtain optimal values for λgene and λpathway The process of estimating the
coefficients, using the ALS algorithm, with penalty, proceeds as follows:

Let η = XWB, u =
∂φ
∂η

, A =
∂2φ

∂ηηT
, z = η+ A−1u,

1. Initialize B̂ , Ŵ = 0.
2. Compute η, u, A, and z, based on the latest value of B̂ , Ŵ . Then maximize φ(W, B) with the

fixed Ŵ . Repeat these steps until B̂ converges.
3. Compute η, u, A, and z, based on the latest value of B̂ , Ŵ . Then maximize the φ(W, B), with the

updated B̂ . Repeat these steps until Ŵ converges.
4. Iterate steps 2 and 3 until φ(W, B) converges.

Figure 1. A schematic diagram of the HisCoM-PAGE model. Figure 1 shows the HisCoM-PAGE model
with J pathways. Rectangles and circles represent observed variables (mRNA expression) and latent
variables (pathways), respectively. Each pathway consists of three or more genes and is represented by
a latent variable constructed by a weighted sum of its genes. Single-headed arrows represent the effect
of genes in a pathway, and the effect of pathways on the hazard function at the survival time y.

As a convergence criterion, we used the difference between φ(W, B) of consecutive iterations.
The iteration continues until this difference is smaller than the given threshold value. In our analysis,
the threshold value was 10−4. Since it is not straightforward to obtain asymptotic variance estimates of
parameters from ridge estimation, we used a permutation test to obtain a statistical significance level
for HisCoM-PAGE.

2.2.2. Comparison Methods

The following pathway methods were considered to compare the results of HisCoM-PAGE.
We compared other pathway methods such as Gene Set Enrichment Analysis (GSEA) [12], Global Test
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(GT) [15,16] and the Wald type test [17]. The GSEA methods assume that the total number of genes
K and the gene set S is predefined. For the first step, compute the regression coefficients of K genes,
by fitting a univariate Cox models. The regression coefficient is used as an association measure between
phenotype and genes. Secondly, order K genes by the absolute value of t statistics in descending
order. Thirdly, calculate the enrichment score. While computing the enrichment score, GSEA method
consider two methods of weighting, including GSEA1, the case when the weight term is 0, and GSEA2,
the modified version of the original GSEA method when the weight term is 1 [12,29]. Lastly, calculate
the significance level by comparing the observed values and the permutation distribution values.
The Global test is based on the regression coefficients from a Cox model. The Global tests can test
whether the expression of gene, within a predefined pathway, tends to closely associate with the
survival times. The global test’s Q statistic was taken as an average of the m test statistics calculated
from each m individual gene, constituting a pathway by itself. Although the p-values can be calculated
using the permutation and asymptotic method, we used the permutation approach. Thirdly, the Wald
type test is based on the unified pathway method proposed which combined component-wise test
statistics for significance of a subset of genes [17]. The Wald test also assesses whether the predefined
pathway has an association with survival times. Thus, the test statistic is a sum of squares of the Wald
statistic for the individual genes that constitute the pathway.

3. Results

3.1. Real Data Analysis Result

3.1.1. Pathway Analysis Using SNUH Microarray Data

The Affymetrix gene identifiers were mapped to the Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Biocarta databases [32,33]. For the KEGG database, 4,320 genes were mapped to 185 pathways
including overlapping genes. For the Biocarta database, 4,317 genes were mapped to 216 pathways
including overlapping genes. Our objective in this pathway analysis was to identify pathways associated
with PDAC patients’ overall survival times.

For multiple test adjustment, we used the False Discovery Rate (FDR) analysis to calculate the
FDR adjusted q-value as a criterion [34]. From the Biocarta database, HisCoM-PAGE identified four
significant pathways with FDR-adjusted q-value smaller than 0.05. The upper part of Table 2 shows
the list of significant pathways related to the survival times. The transforming growth factor β (TGF-β)
pathway was found to be the most significant. It is well known that the TGF-β pathway is associated
with inflammation promotion and carcinogenesis in the early stage of cancer [35–41]. Transducer of
ERBB2 (TOB1) has previously been reported to be linked to PDAC [42,43].

From the KEGG database, HisCoM-PAGE identified 23 pathways with FDR-adjusted q-values smaller
than 0.05. The lower part of Table 2 shows the list of significant pathways related to the survival times.

The pathways reported to be related to PDAC or pancreatic cancer are as follows. Hedgehog-signaling
dysregulation, due to mutation or overexpression of pathway components and pathway ligands, induces
pancreatic cancer [44]. The Wnt signaling pathway is related to drug resistance of pancreatic cancer and
its function has an association with prognosis [45,46]. The Vascular Endothelial Growth Factor(VEGF)
pathway is angiogenesis related [47], and the insulin-signaling pathway is studied for pancreatic cancer
growth and metastasis [48]. Insulin receptor contributes to the Phosphatidylinositol-3-kinase (PI3K)-Akt
pathway activation and this pathway mediates the therapeutic resistance [49]. The fatty acid metabolism
pathway is closely related to tumor cell survival and growth [50,51]. Glycosphingolipids of the ganglio
globo-series pathway have been reported as carbohydrate antigens with cancer [52]. The steroid hormone
synthesis pathway has been studied for PDAC. In pancreatic cancer cells, cholesterol can be converted
into oxysterol or can be used as a precursor for steroid hormone synthesis [53]. The glycerophospholipid
metabolism pathway is significant for PDAC progression [54]. The mammalian TOR (MTOR) signaling
pathway is reported to be related to metastasis of PDAC [55]. The ErbB signaling pathway is a mediator or
has tumor stroma interactions in PDAC [56].
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Table 2. Significant pathways for PDAC prognosis identified by HisCoM-PAGE using SNUH microarray
data and the replication study result using TCGA RNA-seq data.

Pathway
Database

Pathway Name Microarray Data RNA-seq Data

|βpath| p-Value q-Value |βpath| p-Value q-Value

BIOCARTA

Transforming Growth Factor-β
(TGF-β)* 0.017 0.00001 0.002 0.006 0.053 0.211

Non-Typeable Haemophilus
Influenzae (NTHI) 0.014 0.00033 0.03 0.006 0.314 0.419

MITOCHONDRIA 0.01 0.00054 0.03 0.007 0.197 0.394

Transducer Of ERBB2.1(TOB1)* 0.016 0.00056 0.03 0.005 0.46 0.46

KEGG

BASAL CELL CARCINOMA 0.015 0.0001 0.0074 0.0071 0.261 0.894

COLORECTAL CANCER 0.014 0.0001 0.0074 0.0085 0.843 0.959

CIRCADIAN RHYTHM
MAMMAL 0.01 0.0012 0.0306 0.0062 0.869 0.959

FATTY ACID METABOLISM* 0.012 0.0009 0.0306 0.0088 0.868 0.959

GLYCOSPHINGOLIPID
BIOSYNTHESIS GLOBO

SERIES*
0.01 0.0008 0.0306 0.0018 0.364 0.9055

INSULIN SIGNALING
PATHWAY* 0.016 0.0011 0.0306 0.013 0.951 0.959

STEROID HORMONE
BIOSYNTHESIS* 0.014 0.0015 0.0306 0.0037 0.541 0.959

Vascular Endothelial Growth
Factor (VEGF) SIGNALING * 0.014 0.0007 0.0306 0.0078 0.724 0.959

WNT SIGNALING* 0.017 0.0014 0.0306 0.0104 0.415 0.905

ADHERENS JUNCTION* 0.013 0.0018 0.0326 0.01 0.819 0.959

DILATED CARDIOMYOPATHY 0.016 0.0023 0.0326 0.011 0.851 0.959

OTHER GLYCAN
DEGRADATION 0.009 0.0021 0.0326 0.0031 0.665 0.959

OXIDATIVE
PHOSPHORYLATION* 0.015 0.0022 0.0326 0.0099 0.178 0.894

AMYOTROPHIC LATERAL
SCLEROSIS(ALS) 0.01 0.0028 0.0369 0.0108 0.004 0.0852

DORSO VENTRAL AXIS
FORMATION 0.009 0.0031 0.0369 0.0036 0.344 0.905

SULFUR METABOLISM 0.008 0.0032 0.0369 0.0046 0.212 0.894

CARDIAC MUSCLE
CONTRACTION 0.013 0.0038 0.0373 0.0086 0.732 0.959

ERBB SIGNALING* 0.013 0.004 0.0373 0.0069 0.401 0.9055

GLYCEROPHOSPHOLIPID
METABOLISM* 0.015 0.0036 0.0373 0.0121 0.952 0.959

HYPERTROPHIC
CARDIOMYOPATHY (HCM) 0.015 0.004 0.0373 0.0127 0.959 0.959

GLIOMA 0.012 0.0044 0.039 0.0081 0.711 0.959

Mammalian TOR (MTOR)
SIGNALING* 0.011 0.0055 0.0465 0.0098 0.014 0.112

HEDGEHOG SIGNALING * 0.011 0.0058 0.047 0.0068 0.258 0.894

Pathways related to PDAC or pancreatic cancer are denoted by *. The pathways uniquely identified by HisCoM-PAGE
are denoted as bold. Kyoto Encyclopedia of Genes and Genomes (KEGG).

Figure 2 is a Venn diagram showing the numbers of pathways and their list commonly identified
by HisCoM-PAGE and other methods. Each pathway-based method seems to provide a different
list of significant pathways. No pathway was identified by all four methods. The four pathways
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selected significantly by three methods are as follows: Adherens junction pathway, Colorectal cancer
pathway, Circadian rhythm mammal pathway, and Dorso vental axis formation pathway. Among
these pathways, only the E-cadherins protein in the Adherens junction pathway is reported to have an
association with lymph node metastasis in high-grade PDAC [57,58].

Figure 2. Venn diagram for the significant pathways identified by four different methods using the
KEGG database. The pathways are listed with FDR-adjusted q-values less than 0.05. The 17 pathways
uniquely identified by HisCoM-PAGE are highlighted in Table 2.

3.1.2. Pathway Analysis Using TCGA RNA-Seq Data

We performed RNA-seq data analysis for a replication purpose of SNUH microarray analysis results.
Thus, only the genes used for SNUH microarray data analysis were selected for RNA-seq analysis.
As a result, for the KEGG database, 3,258 genes were mapped to 185 pathways. For the Biocarta database,
1,162 genes were mapped to 216 pathways.

Table 2 shows the RNA-seq data results. The last three columns summarize the results of RNA-seq
data. Since RNA-seq analysis was performed only for a replication purpose, FDR was used to correct
the significant pathways identified from SNUH microarray data analysis. There were no significant
pathways with FDR-adjusted q-value smaller than 0.05. From the Biocarta database, TGF-β pathway’s
nominal p-value was 0.053. For the KEGG database, the Amyotrophic lateral sclerosis pathway and
MTOR signaling pathway were significantly identified with a nominal p-value Less than 0.05.

In addition, among the pathways significant at the nominal level by RNA-seq analysis,
the Neurotrophic signaling pathway showed the FDR-adjusted q-value close to 0.05 by microarray
data analysis (p-value = 0.007 and FDR-adjusted q-value = 0.052). The neurotrophic signaling pathway
is known to promote pancreatic cancer invasion [59].

3.1.3. PDAC-Related Genes Using SNUH Microarray Data

With pathways associated with prognosis, we could also find genes meaningfully related to PDAC
prognosis, as well as considering hierarchies of genes and pathways. Table 3 shows genes significant
for the survival phenotype. Using the coefficients of our proposed model, we were able to calculate the
wgene × βpath value for each gene. As a result, it was possible to simultaneously consider the effect of the
matched gene to the pathway, and the effect size of the pathway to the phenotype. After calculating
each coefficient, significance testing was performed, using a permutation method. If the marker was
selected based only on a nominal p-value, obtained by adapting the entire gene, a type 2 error and
the false negative error can be large. Therefore, we used FDR analysis to calculate the FDR-adjusted
q-value as a criterion.
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Table 3. Significant genes in PDAC prognosis identified by HisCoM-PAGE using the SNUH microarray
dataset and the replication study result using the TCGA RNA-seq data.

Pathway
Database

Pathway Name Gene
SNUH Microarray TCGA RNA-seq

|wgene × βpath| p-Value q-Value |wgene × βpath| p-Value q-Value

BIOCARTA

Non-Typeable
Haemophilus

Influenzae (NTHI)
SMAD3 0.032 0.00001 0.004 0.004 0.1246 0.298

Transducer Of
ERBB2.1(TOB1) SMAD3 0.032 0.00001 0.004 0.004 0.1134 0.298

Transforming
Growth Factor-β

(TGF-β)
SMAD3 0.032 0.00001 0.004 0.004 0.1114 0.298

CHEMICAL BCL2L1 0.024 0.00003 0.004 0.006 0.0762 0.259

IL-2 receptor beta
chain (IL2RB) BCL2L1 0.024 0.00003 0.004 0.006 0.0866 0.266

RAS BCL2L1 0.024 0.00003 0.004 0.006 0.0783 0.259

Bcl-2 antagonist of
cell death (BAD) BCL2L1 0.024 0.00003 0.004 0.006 0.0777 0.259

MITOCHONDRIA BCL2L1 0.024 0.00003 0.004 0.006 0.0753 0.259

CCCTC-binding
factor (CTCF) TGF-β1 0.019 0.00005 0.004 0.008 0.9707 0.982

Inflammatory
Response(INFLAM) TGF-β1 0.019 0.00005 0.004 0.008 0.9715 0.982

Erythrocyte
Differentiation

(ERYTH)
TGF-β1 0.019 0.00005 0.004 0.008 0.9716 0.982

MAP
Kinase(MAPK) TGF-β1 0.019 0.00005 0.004 0.008 0.9726 0.982

Anaplastic
lymphoma

kinase(ALK)
TGF-β1 0.018 0.00006 0.004 0.008 0.9695 0.982

G1 TGF-β1 0.018 0.00006 0.004 0.008 0.9706 0.982

P38MAPK TGF-β1 0.019 0.00006 0.004 0.008 0.9718 0.982

TOB1 TGF-β1 0.018 0.00006 0.004 0.008 0.971 0.982

NKT TGF-β1 0.018 0.00006 0.004 0.008 0.971 0.982

Interleukin-1
receptor (IL1R) TGF-β1 0.018 0.00006 0.004 0.008 0.971 0.982

TGF-β TGF-β1 0.018 0.00006 0.004 0.008 0.971 0.982

KERATINOCYTE ETS1 0.015 0.00008 0.005 0.001 0.3516 0.643

E-26-specific (ETS) ETS1 0.015 0.0001 0.006 0.001 0.3588 0.643

P53HYPOXIA HIF1A 0.016 0.00047 0.028 0.0002 0.4766 0.762

Hypoxia-Inducible
Factor(HIF) HIF1A 0.016 0.00047 0.028 0.0001 0.4767 0.762

Erythropoietin
mediated

neuroprotection
through NF-kB

(EPONFKB)

HIF1A 0.016 0.0005 0.028 0.0001 0.4786 0.762

Vascular Endothelial
Growth Factor

(VEGF)
HIF1A 0.015 0.0006 0.033 0.00005 0.9824 0.982

DEATH TNFRSF10B 0.018 0.00064 0.033 0.002 0.647 0.897

Formyl methionyl
leucyl phenilalanine

(FMLP)
GNA15 0.015 0.00074 0.037 0.006 0.0485 0.24

IL1R IL1RAP 0.01 0.00095 0.041 0.002 0.2839 0.581

SET GZMA 0.015 0.001 0.041 - - -

Phosphoinositides
(PTDINS) PFKP 0.011 0.0011 0.041 0.00008 0.5064 0.778
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Table 3. Cont.

Pathway
Database

Pathway Name Gene
SNUH Microarray TCGA RNA-seq

|wgene × βpath| p-Value q-Value |wgene × βpath| p-Value q-Value

Extrinsic
Prothrombin
Activation

(EXTRINSIC)

TFPI 0.013 0.00115 0.041 0.002 0.6457 0.897

Acute Myocardial
Infarction (AMI) TFPI 0.013 0.00116 0.041 0.002 0.6457 0.897

protease-activated
receptors-1 (PAR1) GNAI1 0.017 0.00118 0.041 0.007 0.0502 0.24

Endothelial
differentiation gene-

1 (EDG1)
GNAI1 0.017 0.00119 0.041 0.007 0.0464 0.24

G protein-coupled
receptors (GPCR) GNAI1 0.017 0.00119 0.041 0.007 0.0499 0.24

SPPA GNAI1 0.017 0.00122 0.041 0.007 0.0481 0.24

Bioactive Peptide
Induced Signaling
(BIOPEPTIDES)

GNAI1 0.017 0.00122 0.041 0.007 0.0476 0.24

CXC chemokine
receptor type-4

(CXCR4)
GNAI1 0.017 0.00122 0.041 0.007 0.0447 0.24

Mannose
6-phosphate

receptors (MPR)
GNAI1 0.017 0.00122 0.041 0.008 0.0432 0.24

Glycogen synthase
kinase-3 (GSK3) GNAI1 0.017 0.00123 0.041 0.008 0.0432 0.24

Peroxisome
proliferator-activated

receptor alpha
(PPARA)

ACOX1 0.015 0.00122 0.041 0.003 0.3221 0.63

VEGF VEGFA 0.01 0.00146 0.047 0.003 0.1576 0.339

Nitric Oxide-1(NO1) VEGFA 0.01 0.00147 0.047 0.003 0.1575 0.339

KEGG
CELL CYCLE SMAD3 0.023 0.0001 0.047 0.003 0.099 0.099

WNT SIGNALING SMAD3 0.023 0.0001 0.047 0.003 0.096 0.099

TGF-β SMAD3 0.023 0.0001 0.047 0.003 0.0957 0.099

Bold pathways were significantly identified by HisCoM-PAGE.

Table 3 shows the significant genes with FDR-adjusted q-values < 0.05. SMAD3, BCL2, and
TGF-β1 are well known to be related to PDAC. Upregulated SMAD3 promotes epithelial mesenchymal
transition and predicts poor PDAC [60,61]. Also, it has been reported that BCL2 downregulated
expression is a poor prognostic factor for PDAC [62]. TGF-β1 levels are significantly related to PDAC
patients’ prognosis [63]. That is, the patients with high levels of TGF-β1 showed higher overall
survival times. Some other PDAC-related genes are as follows. ETS1 is known to have resistance
to pancreatic cancer chemotherapy. Furthermore, ETS1 can exacerbate poor PDAC prognosis after
radiation therapy [64]. HIF1A was reported as a significant indicator of PDAC prognosis [65–67].
GNAI1 is known to be a suppressor of tumor cell migration and invasion that is post-transcriptionally
targeted by mir-320a/c/d [68]. Mir-320a is found to confer 5-FU chemo-resistance upon human pancreatic
cancer cells [69].

3.1.4. PDAC-related Genes Using TCGA RNA-Seq Data

Table 3 shows the gene results from the TCGA RNA-seq data analysis. FDR was used for
significant genes identified from SNUH microarray data analysis. For the Biocarta database, GNAI1
was also significant with a p-value less than 0.05, and BCL2L1 was significant with a p-value less
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than 0.1. In addition, the p-value of SMAD3 was close to 0.1. However, TGF-β1 and ETS1 were not
replicated. For the KEGG database, the p-value of SMAD3 was less than 0.1.

3.2. Simulation Analysis Result

3.2.1. Type 1 Error

Figure 3 shows the simulation results, for each method, when total number of genes (K) = 200,
sample size (I) = 80, gene set size (ms)= 50, and censoring proportion (cp) = 0, 0.1, 0.2, 0.3, 0.4, 0.5.
The number of permutations for significance testing was 1000. We checked the 95% confidence interval
level of the estimated type 1 error. Overall, type 1 errors were shown to be well controlled in various
scenario settings; especially in the HisCoM-PAGE method, the type 1 error is well controlled, even
when the censoring fraction is high.

Figure 3. The empirical type 1 error with 1000 replicates at the 0 to 0.5 censoring proportions. The x-axis
represents the censoring proportion and the y- axis represents the type 1 error. Comparison methods
are as follows: Gene Set Enrichment Analysis with weight zero (GSEA1), Gene Set Enrichment Analysis
with weight 1 (GSEA2), HisCoM-PAGE (HisCoM), Global test (GT) and Wald type test (Adewale).

3.2.2. Comparison of Power

For power analysis, we varied the censoring proportion and the proportion of significant genes
in the causal pathway. We set the parameters as follows: total genes (K) = 200 sample size (I) = 80,
pathway size (ms) = 50, significant gene proportion (mp) = 0.1, 0.3, 0.5 and censoring proportion
(cp) = 0, 0.3. HisCoM-PAGE showed better performance than the other methods, when the significant
gene proportions were not high, and the power was close to 1, when the significant gene proportion
increases. Figure 4 shows the power of each method for the four correlation structure scenarios. Overall,
the Global and the Wald type tests showed similar trend in power, and GSEA showed a relatively
low power, compared to other methods, in many scenarios, as shown in the paper [29]. As shown by
Chiristiaan [70], power depends largely on gene proportion, which has effects within a causal pathway.
In Scenario 1, when all gene expression values are independent of each other and compared to other
scenarios, the statistical power is strongly affected by the centering ratio. In Scenario 2, when the
correlation coefficient between casual genes has the same effect, we could see a relatively high power
compared to other scenarios.

For the GSEA method, the Cox model was only used for ordering genes, but enrichment scores
were calculated using the relative rank only. In the case of the competitive analysis of the pathway
methodology, observed statistics of the pathway of interest are compared with those of the pathway
consisting of the genes within the pathway [71]. By contrast to GSEA-based method, HisCoM-PAGE
can directly calculate the effect of the causal pathway, quantitatively, on the survival time. We could
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also confirm that the power of HisCoM-PAGE was higher than the other methods in Scenario 1, even
when the censoring ratio was high.

Figure 4. Empirical power of four scenarios. For the simulated gene expression data set, four correlation
structures were considered. The x-axis refers to significant gene proportion, and the y-axis represents
power. The percentage in the parenthesis indicates the censoring proportion.

4. Discussion and Conclusions

Among pathway analysis methods, few have been developed only for survival times. Thus, there
is a need to quantitatively determine how much the pathway affects the survival phenotype and to
identify a relative way of ranking pathways. To this end, HisCoM-PAGE uses structural equations to
model real biological phenomena, so it can estimate not only the value of statistics of a pathway but
also the meaning of pathway statistics. In other words, HisCoM-PAGE can find not only pathways
related to prognosis but also how strongly genes contribute to the pathway. The estimated weight
represents the gene effect on the pathway, and βpath represents the effect of pathway on the hazard rate
through a Cox model.
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It is well known that biological phenomenon is a result of complex pathway interactions. That is,
multiple pathway analysis provides a more biologically interpretable result than single pathway analysis.
HisCoM-PAGE can perform multiple pathway analysis by considering all pathways simultaneously.
No existing pathway methods can perform these analyses.

Recently, many studies have been actively conducted to examine cancer prognosis using RNA-seq
data [26,72]. HisCoM-PAGE could easily be applicable to RNA-seq data. From the SNUH microarray
data, HisCoM-PAGE identified PDAC prognosis-related pathways such as TGF-β, Hedgehog signaling
pathways, MTOR signaling pathway, and so on. As a pilot study, we conducted the replication analysis
using TCGA RNA-seq data. Application of HisCoM-PAGE to the TCGA RNA-seq data replicated
TGF-β and MTOR signaling pathways. Furthermore, HisCoM-PAGE also replicated the GNAI1 gene
as a PDAC prognosis-related gene among the genes SMAD3, BCL2, TGF-β1 and GNAI1 identified from
SNUH microarray data analysis.

There have been several studies for comparing microarray and RNA-seq platforms [73,74].
For example, in identifying differentially expressed genes (DEGs), there were a number of genes
specifically detected as DEGs in only one platform, while a large number of genes were identified
as DEGs in both microarray data and RNA-seq data platforms [74]. A large discrepancy is expected
between the two platforms when the treatment effect is small. In our pathway analyses, there was
a discrepancy in analysis results between microarray data and RNA-seq data. To find out the main
reason for this discrepancy, first the expression profiles of genes in two platforms were compared.
The correlation between the averages of normalized and log2 transformed values of two platforms was
high, with Pearson correlation coefficient of 0.62 and Spearman correlation coefficient of 0.72. However,
when the p-value from a univariate Cox model for each gene was compared between the two platforms,
the correlation of −log(p-value)s was low, with Pearson correlation coefficient of 0.25 and Spearman
correlation coefficient of 0.23. This low correlation was caused by the different survival curves between
microarray data and RNA-seq data. The two Kaplan-Meier curves from both microarray data and
RNA-seq data were quite different and the log-rank test for the equivalence for these two survival
curves has a p-value of 0.046 [75]. Since HisCoM-PAGE is based on the association between the survival
time and genes based on a Cox model, it might be that the discrepancy of the pathway analyses
between microarray and RNA-seq data was caused by the heterogeneity of survival times between
two platforms. It could be expected that the samples with less heterogeneous survival times could
provide more consistent results.

Next, we are planning to improve the performance of HisCoM-PAGE by taking the characteristics
of RNA-seq data into account. Then, we need to conduct a simulation study to investigate its properties
and compare it with other methods for RNA-seq data.

We believe that HisCoM-PAGE can be easily applicable to other types of omics data such as
integration analysis of multi-omics data. Furthermore, we can also use the HisCoM-PAGE approach
to construct predictive models for prognosis. We could study a design of a prognostic prediction
model using the latent variable pathway as a marker, as well as the genetic marker [76]. In this case,
unlike building predictive models using only genetic markers, we can add interpretability because
the designed predictive model considers the contribution of genetic markers in a pathway manner.
Also, it would be possible to study the relationship between genes and pathways, beyond the linear
relationship, using the kernel generalized structured component analysis (GSCA) method.

In summary, we proposed a new pathway analysis method, Hierarchical Structural Component Models
of Pathway Analysis for Gene Expression (HisCoM-PAGE), to identify disease prognosis-related pathways.
Using simulated data, PDAC microarray and RNA-seq data, we can confirm that HisCoM-PAGE can
identify pathways and genes that have an association with a survival phenotype. Moreover, HisCoM-PAGE
can also find interpretable and meaningful pathways and prognostic genetic markers.
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