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1 Introduction

Topological matter [1–5] is a new quantum state of matter that has a promising application

for quantum computations [6, 7] and there has been a flurry of activities in last 10 years.

It is topological since the Hilbert space has a non-trivial topological structure and the

key is a non-trivial edge state associated with it. It started with materials with negligible

interaction, but recently the importance of its existence in the presence of strong interaction

and finite temperature is getting much attention [4, 8–12]. The basic question is whether

the topological structure, which has been discovered in the non-interacting case, can survive

when one turns on the interaction or other deformations of the system like temperature

or pressure. One can also ask whether a new topological structure which was absent in

the weakly interacting case can arise due to the strong interaction. The purpose of this

paper is to answer both of the question affirmatively. We will show that the topological

structure for Weyl semi-metal is robust even in the case when the spectral function shows

that the line width is broaden and band structure is fuzzy. Also we will describe a model
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with topological dipoles, where Weyl points are separated by only a small distance in

momentum space. We will see that such objects are not so stable in the sense that they

can disappear as temperature goes up high enough.

The general definition of the topological invariant for interacting system is already

defined in terms of the full Green’s function in [2, 9, 10]. However, it can not be very useful

unless one can actually calculate the full Green function, which is beyond the perturbative

field theory. Here we utilize the holographic setup to calculate the Green functions and use

the result to construct the effective Hamiltonian, which in turn allows us to calculate the

winding number of the Weyl points. Previously the Weyl semi-metal in holographic set up

was discussed in [13], and topological invariant was proved to be well define in the limit of

zero temperature and small fermion mass. Here we extend it to the finite temperature and

finite mass, where spectral function becomes fuzzy due to the large imaginary part of self

energy which gives the line broadening.

In section 2, we will set up the problem by reviewing the Weyl semi-metal in quantum

field theory and the holographic version of Weyl semi-metal. We will also give spectral func-

tion at finite temperature. In section 3, we examine the stability of topological invariant.

In section 4. We define and study a model for topological dipole.

2 Weyl semi-metal in QFT and holography

2.1 Weyl semi-metal in quantum field theory of 3+1 dimension

Here we briefly review a quantum field theoretical (QFT) model for Weyl semi-metal

(WSM). WSM has the separate band crossing points in momentum space which can be

achieved by breaking time-reversal symmetry of Dirac semi-metal. Consider the fermion

action in (3+1) dimensional Minkowski space-time with axial vector interaction [14, 15]:

S =

ˆ
d4xΨ̄i(�∂ − q��A−M − iBµγ5γµ)Ψ (2.1)

where A = µdt with the chemial potential µ. Expanding Ψ in momentum basis e−i(ωt−k·x)ψ,

the equation of motion is given by(
i��K −M − iBνγ5γν

)
ψ = 0 (2.2)

where K = (ω+ qµ,~k), and index ν is not summed in (2.2), that is, Bν is just coefficient of

γν . For simplicity, we choose the configuration with only Bz non-zero. Then the dispersion

relations has four branches given by

Bz : ω̄ = ω + qµ = ±
√
Bz

2 + ~k2 +M2 ∓ 2

√
Bz

2(k2
z +M2), (2.3)

For |Bz| > M , the band crossing happens at (kx, ky, kz) = (0, 0,±
√
Bz

2 −M2) and the

spectrum is gapless. The seperation between the crossing points is 2B̄eff = 2
√
B2
z −M2.

See figure 1.

On the other hand, for |Bz| < M , a gap opens and its size is given by 2∆ = 2(M−Bz).
Figure 2 shows the top-view of the fermion spectrum with sections of Dirac cones which
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Figure 1. (a)-(d): the band structure depends on Bz/M . The figure is in (kz, ω̄)-space at kx =

0, ky = 0 slice. Here ω̄ = ω + qµ.
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Figure 2. (a)-(c): the different ω̄ slices of the band structure at kx=0 with (B̄z,M) = (3, 1). The

radius of circle decreases as ω̄ apparoches to 0. This result is the same for ky = 0 plane.

has the centers at the band crossing point of spectrum and it shrinks as we approach to

ω̄ = 0, which implies the spectrum forms cone-structure near the band crossing points.

2.2 Holographic Fermions and their spectral function

To reproduce the above band structure of Weyl-semi metal in the holographic set up, we

use a model which was first introduced in [13]

S = S1 + S2 + Sint (2.4)

S1 =

ˆ
d5x
√
−giΨ̄1(ΓaDa −mf − iAaΓa)Ψ1,

S2 =

ˆ
d5x
√
−giΨ̄2(ΓaDa +mf + iAaΓ

a)Ψ2,

Sint =

ˆ
d5x
√
−g(iη1ΦΨ̄1Ψ2 + iη∗1Φ∗Ψ̄2Ψ1),

where DM = ∂M + 1
4ωabMΓab is the covariant derivative and ωabM is the bulk spin con-

nection, Γab = 1
2 [Γa,Γb]. Aa is a gauge field with zero bulk mass and Φ is a scalar with

m2
Φ = −3, breaking the time reversal symmetry(TRS) and chiral symmetry respectively.
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Figure 3. (a)-(b): profiles for Az and Φ where we fix b = 8 and T = 2/π. We use M = 0, 3.3, 5.5,

7.5, 9.7 for flat-dashed, blue, green, yellow, red (from top to bottom in (a) and from bottom to top

in (b)).

M denotes bulk spacetime indices and a, b denote bulk tangent space ones. In ref. [13],

zero temperature analysis was done. Here we will consider the finite temperature case. For

this purpose, we take the Schwarzschild-AdS5 background (2.5).

ds2 = −r2f(r)dt2 +
1

r2f(r)
dr2 +

r2

L2
d~x2

f(r) =
1

L2

(
1− r4

0

r4

)
(2.5)

where L is AdS5 radius and r0 is the radius of the black hole which defines the temperature

of boundary theory, where T = f ′(r0)/4π = r0/πL
2. For Az and Φ, we have the equations

of motion [12] as follows:

A′′z +

(
3

r
+
f ′

f

)
A′z −

2Φ2

r2f
Az = 0 (2.6)

Φ′′ +

(
5

r
+
f ′

f

)
Φ′ −

(
A2
z

r4f
+
m2

Φ

r2f

)
= 0 (2.7)

We can introduce the parameter b and M as a boundary condition for the fields Az and Φ

which satisfy (2.6)

lim
r→∞

Az(r) = b, lim
r→∞

rΦ(r) = M (2.8)

The specified parameter (b,M) at the boundary can be reached by choosing proper horizon

values of Az and Φ, whose profles are shown in figure 3 (a) and (b) respectively.

We use the convention of Γ-matrices for fermion action as follows:

Γt =

(
0 γt

γt 0

)
, Γi =

(
0 γi

−γi 0

)
, Γr ≡ Γ5 =

(
1 0

0 −1

)
, (γt, γi) = i(12, σ

i) (2.9)

where ΓM = eMa Γa and eMa is the inverse vielbein. Taking η1 = 1, the equations of motions

are given by

(ΓaDa −mf − iAzΓz)Ψ1 − ΦΨ2 = 0

(ΓaDa +mf + iAzΓ
z)Ψ2 − ΦΨ1 = 0 (2.10)
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Expanding Ψ̄l in Fourier space,

Ψl = (−ggrr)−1/4eikµx
µ
ψl, (2.11)

with l = 1, 2, the equations of motion for fermions become(√
grrΓr∂r+

√
gttΓt(−iω)+ i

√
gii(kxΓx+kyΓ

y+(kz∓Az)Γz)+(−1)lmf

)
ψl−Φψ3−l = 0

(2.12)

where we fixed L = 1. Near the boundary r →∞, the spinors behave as

ψT1 =
(
A1

1 r
mf , A1

2 r
mf , A1

3 r
−mf , A1

4 r
−mf

)
+ · · · , (2.13)

ψT2 =
(
A2

1 r
−mf , A2

2r
−mf , A2

3 r
mf , A2

4 r
mf
)

+ · · · . (2.14)

We have 8 variables of two first order dirac equations so that 8 “initial” conditions are

required for radial evolution. Eliminating outgoing conditions at the horizon, the degrees

of freedom are reduced to half. We choose four different initial conditions at the horizon

and solve the equations to get near boundary values, which determines the retarded Green

functions. We denote each initial conditions as I, II, III, IV respectively. We can construct

the source and expectation matrices as follows:

A =


A1,I

1 A1,II
1 A1,III

1 A1,IV
1

A1,I
2 A1,II

2 A1,III
2 A1,IV

2

A2,I
3 A2,II

3 A2,III
3 A2,IV

3

A2,I
4 A2,II

4 A2,III
4 A2,IV

4

 , D =


−A2,I

1 −A2,II
1 −A2,III

1 −A2,IV
1

−A2,I
2 −A2,II

2 −A2,III
2 −A2,IV

2

A1,I
3 A1,II

3 A1,III
3 A1,IV

3

A1,I
4 A1,II

4 A1,III
4 A1,IV

4

 (2.15)

The Green function can be obtained by GR = iΓtDA−1. See appendix for more details.

The spectral function is defined as the trace of the imaginary part of the retarded Green

function:

A(ω,~k) = Tr
(

Im
[
GR(ω,~k)

])
. (2.16)

Figure 4 shows the spectral density for this model. For bz > M , band crossing exists and

the distance between the two Weyl points becomes shorter as M increases, and finally gap

is open when M > Mc. Notice that Mc ' bz in holography, which is similar to the QFT

result apart from the line broadening due to the interaction and temperature effects. See

figure 4 and 5. However, we emphasize that the critical value of M/b for the given b is

not exactly the same as 1. The figure 6 shows the difference.

3 Stability of topology

3.1 Topological invariants from Green function

We study topology of holographic Weyl semi-metal (WSM) model using the topological

Hamiltonian [16, 17]

Ht = −G−1
R (ω = 0,~k), (3.1)
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(a) (b,M) = (8, 0). (b) (b,M) = (8, 3.3). (c) (b,M) = (8, 7.5). (d) (b,M) = (8, 9.7).

Figure 4. (a)-(d): spectral densities on (kz, ω)-space with kx = ky = 0 at T = 2/π. Separation

between the Weyl points is approximately 2
√
b2 −M2.

(a) T = 2/π. (b) T = 10/π. (c) T = 20/π.

Figure 5. (a)-(c): as temperature increases, spectrum broadens. Color code denotes the spectral

height. We used kx = ky = 0 and (b,M) = (8, 3.3).

WSM

Gapped

b =M

0 2 4 6 8
0

1

2

3

4

5

6
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b

M

Figure 6. Phase diagram in (b,M) space. We used T = 2/π. Unlike the field theory, Mc/b = 1

holds only approximately. Dashed line is for b = M .
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(a) Spectral function. (b) Berry curvatures (LHS). (c) Berry curvatures (RHS).

Figure 7. (a) Spectral function without scalar interaction. We used (b,M) = (8, 0) and T = 2/π.

kx = ky = 0 fixed. (b),(c): Berry curvatures near kz = −8 and 8 at the plane (ky = −0.2 , ω = 0),

where topological numbers are still 1 and -1 respectively.

which contains all the effects of interaction and temperature. We can get eigenvectors from

this topological hamiltonian so that we can define Berry connection,

Ak = i
∑
j

〈nk,j |∂k|nkj〉 (3.2)

where njk are eigenvectors for Ht in momentum space and j runs over all occupied bands.

The Berry phase γ is defined by [18]

γ =

˛
C
Ak · dk =

ˆ
S

Ωk · dS (3.3)

where S is a 2-dimensional surface whose boundary is C, a closed loop, and Ωi =

εijl
(
∂kjAki − ∂kiAkj

)
. Since the momentum space is 3-dimensional, we could take an-

other surface S ′ such that its boundary is also C. Then the ambiguity free condition on

the choice of the surface S gives the condition that

C =
1

2π

‹
S−S′

Ωk · dS =

˚
B
∇ · ∇ ×Ak (3.4)

is an interger, a topological invariant known as Chern number. Here B is a ball whose

boundary is the closed surface S − S ′.
In figure 7(a), for example, if we take a closed surface surrounding a crossing point,

then we get C = 1 for the Weyl point at kz = −8 and C = −1 for the one at kz = 8.

Similarly, we get the Chern numbers for (bz,M) = (8, 5.5) of figure 8. As you can see in

figure 4, the band crossing disappears when bz < Mc which is similar to QFT case. In the

next subsection, we will try to understand what we found here in more analytic terms.

3.2 Stability of topology in the presence of temperature and interaction

Figures 7(a) and 8(a) show that the band crossings and fuzziness in spectral lines simulta-

neously so that it is not clear whether there is a Weyl point with well defined topological

– 7 –
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(a) Spectral function. (b) Berry curvatures (LHS). (c) Berry curvatures (RHS).

Figure 8. (a) Spectral function with scalar interaction. We used (b,M) = (8, 5.5) and T = 2/π.

kx = ky = ω = 0. (b),(c): Berry curvatures near kz = −7.26 and 7.26 at the plane (ky = −0.2,

ω = 0), where topological numbers are still 1 and -1 respectively.

number. Nevertheless, figures 7(b)(c) and 8(b)(c) show that there is an integer winding

number for such fuzzy crossing. To understand such numerical result found in the last

subsection, we first notice that the topological number of Weyl point depends only on the

local singularity structure of the Berry phase, because in eq. (3.4), ∇·∇×Ak is zero unless

it is a delta function whose support is inside the ball B. Therefore we only need to look

at small neighborhood of the Weyl point, where only two bands are crossing. Therefore

for the purpose of the topological number, we only need to look at 2 × 2 matrix which

describes one of the crossing point. This is equivalent to neglecting the highest or lowest

branches in figure 1(b). Any 2× 2 matrix can be expanded in the following form

H2×2 = ~b(k) · ~σ + Σ12, (3.5)

where Σ = Σ′ + iΣ′′ is the self-energy. There are a few comments.

i) If Σ were not the coefficient of the 12 matrix, it would be a part of the momentum

shift not energy shift and it would not be called as self-energy.

ii) The matrix becomes non-Hermitian due to the presence of the Σ′′. It is well known

that such non-hermicity is the result of the manybody interaction encoded in the

1-particle effective Hamiltonian: Σ′′ is the sum of probabilities of the state of ω = 0

to go into all other states.

iii) Near a crossing point, ~b(k) ' v(~k − ~k0) and k0 is real. Equivalently, the matrix is

non-Hermitian only by the presence of the self energy term.

Σ′′ is what makes the spectral function and the ARPES data fuzzy. Below we can easily

demonstrate the details why such fuzzy Fermi surface can still give well defined winding

number. For simplicity, let v = 1 and the Weyl point be at the origin so that ~k0 = 0. The

solution of eigenvalue problem H|nk〉 = E|nk〉 are given by

|n1
k〉 =

(−kx + iky, |~k|+ kz)√
2|~k|(|~k|+ kz)

, |n2
k〉 =

(|~k|+ kz, kx + iky)√
2|~k|(|~k|+ kz)

(3.6)

– 8 –
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Berry potential given by eq. (3.2) defines the vector potential of a magnetic monopole

sitting at ~k = 0 whose field strength is given by F12 = kz/2k
3 whose integral over a small

sphere S0 around the ~k = 0 is 2π, so that the chern number C =
´
S0

F
2π = +1.

The key observation is that there is no Σ dependence in the expression of eigenvectors

in eq. (3.6). Therefore although the self energy term can make the Fermi surface fuzzy, it

can not change the structure of Berry potential and hence can not change the topological

structure.

One may want to consider the full 4 × 4 matrix directly instead of looking at the

crossing point, which reduced the effective Hamiltonian to 2× 2 matrix. The cost is rather

expensive: the calculation is long so that even the result for the Berry potential takes a

few pages to write. Nevertheless we can discuss some essence of the topological structure.

We describe it in the appendix C.

4 Topological dipole in a holographic theory

In this section we consider a slightly modified model where some unusual but interesting

phenomena happen.

4.1 Spectral functions and multiple band crossing

We start from the topological dipole model,

S1 = i

ˆ
M
d5x
√
−gψ̄1

(
ΓMDM −m− iAzΓ5Γz

)
ψ1

S2 = i

ˆ
M
d5x
√
−gψ̄2

(
ΓMDM +m− iAzΓ5Γz

)
ψ2

Sint = i

ˆ
M
d5x
√
−g(−Φψ̄1ψ1 + Φψ̄2ψ2) (4.1)

where Sint is the scalar interaction with φ ∼ M/r near boundary. We take different

sign for scalar interaction φ to make the term invariant under the parity transformation

(~k → −~k) [19].

The equations of motion are given by

(��D −m− Φ− iAzΓ5Γz)ψ1 = 0

(��D +m+ Φ− iAzΓ5Γz)ψ2 = 0 (4.2)

We can decompose the bulk fermion field into two component spionors ψI+ and ψI−, which

are eigenvectors of Γr with I = 1, 2 so that ΓrψI± = ±ψI±. Let

ψI±(r, x) = (−ggrr)−1/4eikµx
µ
φ±(r, k), φI± =

(
yI±
zI±

)
(4.3)

– 9 –
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Using (4.3), the equations of motion for bulk fermion fields ψ1 are given by√
gii
grr

y′1+(r)− (m+ Φ)
√
giiy1+(r) + (u+ − kz)y1−(r)− (kx − iky)z1−(r) = 0√

gii
grr

z′1+(r)− (m+ Φ)
√
giiz1+(r)− (kx + iky)y1−(r) + (u− + kz)z1−(r) = 0√

gii
grr

y′1−(r) + (m+ Φ)
√
giiy1−(r)− (u+ + kz)y1+(r)− (kx − iky)z1+(r) = 0√

gii
grr

z′1−(r) + (m+ Φ)
√
giiz1−(r)− (kx + iky)y1+(r)− (u− − kz)z1+(r) = 0 (4.4)

where u± = ω ± Az. One can get the equations of motion for ψ2 by m,Φ → −m,−Φ,

which changes the chirality. At the boundary region (r → ∞), the geometry becomes

asymptotically AdS5, so that eqs. (4.4) have asymptotic solution as

y1+(r) = A11r
m +B11r

−m−1, y1−(r) = C21r
m−1 +D11r

−m

z1+(r) = A12r
m +B12r

−m−1, z1−(r) = C22r
m−1 +D12r

−m (4.5)

y2−(r) = A21r
m +B21r

−m−1, y2+(r) = C21r
m−1 +D21r

−m

z2−(r) = A22r
m +B22r

−m−1, z2+(r) = C22r
m−1 +D22r

−m (4.6)

Here, we have two independent sets of equations. Each set needs four initial conditions, but

as in WSM, we can fix half of them by choosing infalling condition at the horizon. Hence,

it is required that we choose two independent initial conditions so that we can obtain two

corresponding sets of source and expectation values to compute Greens function for each

ψI . By denoting each initial conditions as (1), (2) respectively, we can construct the source

and expectation matrices as 2 × 2 matrices.

AI =

(
A

(1)
I1 A

(2)
I1

A
(1)
I2 A

(2)
I2

)
, DI =

(
D

(1)
I1 D

(2)
I1

D
(1)
I2 D

(2)
I2

)
(4.7)

The retarded Green function is defined by GRI = iγtDIA
−1
I = −DIA

−1
I . However, since we

know that each set of Greens function is independent, so we can construct Greens function

matrices as 4× 4 block diagonalized matrices which is given by

GR =

(
GR1 0

0 −GR2

)
where the − sign in front of GR2 represents the alternative quantization [20].

Comparing these spectral functions with holographic WSM case, one can see from

figure 9 that the outermost part of the spectrum evolves similarly to that of WSM case. As

M increases, the separation between outermost band-crossing points decreases and, after

M > Mc = 4.3, a gap opens and its size gets larger. However, there are crucial difference

is that here we have multiple band-crossings. Each band forms cone-like structure.

As we increase the temperature, the spectrum goes fuzzy and the distance between

adjacent spectra also increases with the position of the outermost part of spectrum fixed,

which implies the number of crossing points near ω = 0 decreases. See figure 10.
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(a) (b,M) = (8, 5.5). (b) (b,M) = (8, 7.5). (c) (b,M) = (8, 11). (d) (b,M) = (8, 12.7).

Figure 9. (a)-(d): band structure in (kz, ω) with kx = ky = 0 of model in eq. (4.1). We used

T = 2/π. Notice that at the critical point (c), it is not reduced to a Dirac point but to a higher

Lifshitz point.

(a) T = 2/π. (b) T = 10/π. (c) T = 20/π.

Figure 10. (a)-(c): temperature effect on the spectral function when (b,M) = (8, 5.5) on (kz, ω)-

space with kx = ky = 0.

4.2 Topological dipoles

We can also calculate the topological invariants of crossing points for this model. In this

case, we have multiple crossing points unlike WSM, therefore we calculate Berry phase at

each crossing points. For k < 0, net topological invariants near the band crossing point

are -1 while those for k > 0 are 1. However, except for the outermost band crossing

points, each poles of Berry curvature comes with its conjugate pair with opposite sign to

make dipoles. See figure 11. Notice that as we increase the temperature, the inner band-

crossing points disappear (figure 10). Since they depend on temperature sharply, we may

consider that they are not stable. This is not surprising since two topological charges are

so closely separated in momentum space, it is expected to be unstable for relatively small

perturbations. From the Schrödinger potential picture, each band is induced by a confining

well structure and disappearance in temperature means that the potential well is eaten by

the black hole horizon as temperature increases. Notice that the leftmost crossing point

has topological charge of (−1, 2) with small separation: it is a combination of the Weyl

point having topological charge +1 and small separated dipole charges (-1,1).
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(a) Spectral function.

-1 -11
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(b) Berry curvatures (kz < 0).

1 -1 1

4 5 6 7 8

-0.4

-0.2

0.0

0.2

0.4

kz

ky

(c) Berry curvatures (kz > 0).

Figure 11. (a) Spectral function with kx = 0, ky = 0. Colored boxes are the regions where we

draw Berry curvatures at Fermi level in (b) and (c) with (b,M) = (8, 5.5) and T = 2/π. Each

numbers in (b) and (c) represents winding number computed from Berry curvatures. As we can see

from figure 10, this dipole structure can disappear when temperature goes up.

To explain this better, we draw the contribution of ψ1 and ψ2 separately. For GR1 , there

are 4 band crossing points. The rightmost one is the Weyl point with topological charge

-1 and other three crossing points are dipoles with small separated -1 and +1 from left to

right. Similarly for GR2 , there are 4 band crossing points and the leftmost one is the Weyl

point with topological charge +1 and other three crossing points are dipoles with small

separated -1 and +1 from left to right. Now combining these two, the position of dipole’s

+1 charge happens to coincide with that of the Weyl point with charge +1.

Similar story goes on for the rightmost band crossing with opposite monople charge

and the same dipole charge.

Why dipole should come in this model? We can understand it as follows. Two fermions

ψ1, ψ2 are not mixing directly. So if one fermion has total Weyl charge +1, the other one

has -1. Now if we draw spectral function for ψ1, the shape has multiple crossings. Each

crossing point has well defined topological charge. Now, the right-most crossing has -1

and unpaired, therefore all other 3 crossing points should come as a pair with topological

charge (+1,-1) not to change the total charge −1. Similarly for ψ2, the left-most crossing

has +1 and unpaired, therefore every other ones should come as pairs. This is the reason

why dipole should appear. Notice that if we sum two spectral function, then the total

charge is summed to be 0. See figure 11.

5 Discussion

In this paper, we discussed the stability of the topological invariant of the interacting Weyl

semi-metal at finite temperature and finite fermion mass. We utilize the holographic setup

to calculate the Green’s functions and use the result to construct the effective Hamiltonian,

which allows us to calculate the winding number of the Weyl points. We found that the

topological winding number is stable even in the case where spectral function is fuzzy. The

winding number turns out to be integer as far as there is band crossing at the Fermi level.

Here we summarize the arguments why that is so: the topological number’s integrand is

ddABerry which is zero or delta function by Bianchi identity so that we only need to look at
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neighborhood of the Weyl point, where only two bands are crossing. Therefore it is enough

to consider 2x2 matrix only. The interaction can change the spectral function to make

it fuzzy by creating Σ′′ but the latter is a coefficient of 12 so that it can not modify the

Eigenvectors which are the building blocks of the Berry potential determining the winding

number. The formula of winding number is nothing but the reading machine of coefficient

of that singularity, which can not be changed by smooth deformation of the theory by the

interaction or temperature.

One subtle point at this moment is whether the interaction can develop the imaginary

part of b in eq. (3.5). We numerically checked that the expression is still b ∼ (k−k0) near the

crossing point. In fact, if there is a tiny imaginary part in k0, one can show that topological

number is zero. If a weak interaction or small temperature can induce imaginary part in k,

it is equivalent to saying that topology is unstable for small deformation, which does not

make sense. So we believe that the reality of k0 is protected by a discrete symmetry. It is

equivalent to say that effective Hamiltonian can be non-Hermitian only by the presence of

imaginary self-energy term which is diagonal. In fact, there is no reason why interaction

can generate arbitrary non-hermitian structure in the effective Hamiltonian. We want to

comeback to the analysis of various discrete symmetry in the future.

We also defined a model where Weyl points are separated only by a small distance.

We call it Topological Dipoles and study its topological invariant.

It would be very interesting to generalize this work to the case with more general type

of interaction and also to Dirac materials in 2+1 dimension having other type singularities.

For example, for the line node cases, multiple band crossings can define a new type of

topological invariant [21]. New type of topological matter called “Fragile Topology” [22–

24] is also interesting possibility. We hope we comeback to these issues in future works.
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A Effective Schrödinger potential

We can define the effective bulk potential to analyze the role of scalar interaction for Dirac

fermion in the bulk.

SD =

ˆ
d5x
√
−gψ̄(ΓMDM −m− φ)ψ + Sbd (A.1)

Here, we use the pure AdS background which is given by

ds2 = −r2dt2 +
dr2

r2
+ r2d~x2 (A.2)

The Dirac equation in Fourier space is given by

rΓr∂rψ +
i

r
Γ · kψ + 2Γrψ − (m+ φ)ψ = 0 (A.3)
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M / r

M
˜
 r
3

z

Veff(z)

(a) Veff for different interaction.

z

Veff(z)

(b) Temperature evolution of Veff.

Figure 12. Schematic Schroedinger potential: (a) Comparison between M/r and M̃/r3. The

coordinate used is z = 1/r. (b) Temperature evolution of the effective potential in the bulk.

Dashed lines are the event horizons at each temperature which moves in as T increases, and the

potential changes from purple to red accordingly.

We can decompose the bulk fermion field into two component spionors ψ+ and ψ−, which

correspond to eigenvectors of Γr. That is, Γrψ± = ±ψ± and ψT = (ψ+, ψ−).

Then, equation (A.3) becomes coupled equations for ψ±

ψ+ = − iγ · k
k2

A(−m,−φ)ψ−, ψ− =
iγ · k
k2

A(m,φ)ψ+ (A.4)

where k2 = ~k2 − ω2 and

A(m,φ) = r (r∂r + 2−m− φ) (A.5)

from which we obtain [25]

k2ψ+ = A(−m,−φ)A(m,φ)ψ+ (A.6)

Changing the coordinate r = 1/z, we substitute ψ+ = r2ψ to the equation (A.5). Then,

we can get the Schrödinger form of the Dirac equation:

−ψ′′ + Veff(z)ψn = Eψ

V (z) = φ(z) +
m(m− 1)

z2
(A.7)

We can extend the analysis to the finite temperature case, which has the Schwarzschild-

AdS5 background. We will not show the details of calculation for this since it is very

complicated. We just show the effective bulk potential schematically for finite temperature

case in figure 12. As the temperature increases, the radius of black hole horizon increases

so that the effective potential cannot form steep wall near the horizon. Hence, there cannot

be a bound state, which gives a band structure.

But, we cannot apply this analysis to our model because we have the momentum

transfer in spectral densities and it might not be possible to construct the Schrodinger form

of equations of motion. Even if it is possible to construct, we need to encode the momentum

dependence on the effective potential, which should be done for each fixed momentum.
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For the simple scalar interaction, there’s no momentum dependence, it is enough to

calculate the case of k = 0. Since r corresponds to energy scale and k = 0 means small

energy scale so that the contribution of Vk(r) at r ∼ 0 is significant. On the other hands,

for our model, which does have momentum dependence, the k dependence of the effective

potential is significant. Hence the behavior of Vk(r) at the finite r is important.

B Holographic Greens function

We start from the simple probe fermion model,

Sbulk =

ˆ
M
d5x
√
−giψ̄

(
ΓMDM −m)

)
ψ (B.1)

However, the action (B.1) is not sufficient and the boundary term is required to guarantee

that the variational principle is well-defined. We will discuss later. The equations of motion

are given by

(��D −m)ψ = 0 (B.2)

Taking decomposition of the bulk fermion field into two component spinors ψ+ and ψ− as

previous section, we now expand the bulk-spinors in Fourier-space as following:

ψ±(r, x) = (−ggrr)−1/4eikµx
µ
φ±(r, k), . (B.3)

Setting φT± = (y±, z±), the eqs. of motion for bulk fermions are given by√
gii
grr

y′+(r)−m√giiy+(r) + (ω − kz)y−(r)− (kx − iky)z−(r) = 0√
gii
grr

z′+(r)−m√giiz+(r)− (kx + iky)y−(r) + (ω + kz)z−(r) = 0 (B.4)

and

√
gii
grr

y′−(r) +m
√
giiy−(r)− (ω + kz)y+(r)− (kx − iky)z+(r) = 0√

gii
grr

z′−(r) +m
√
giiz−(r)− (kx + iky)y+(r)− (ω − kz)z+(r) = 0, (B.5)

using (B.3). Near the boundary (r → ∞), the geometry becomes asymptotically AdS5

spacetime, so that the equations of motion (B.5) have asymptotic behaviors as

y+(r) = A1r
m +B1r

−m−1, y−(r) = C1r
m−1 +D1r

−m

z+(r) = A2r
m +B2r

−m−1, z−(r) = C2r
m−1 +D2r

−m (B.6)

Back to the boundary term, we take the variation to the bulk action (B.1),

δSbulk =

ˆ
∂M

d4x
√
−h i

2
(δψ̄+ψ− + ψ̄−δψ+ − δψ̄−ψ+ − ψ̄+δψ−) + bulk part (B.7)

where h = ggrr and bulk part vanishes when the Dirac equations holds [20].

– 15 –



J
H
E
P
1
0
(
2
0
1
9
)
1
0
9

Since the Dirac equation is the first order differential equation, we cannot fix both ψ+

and ψ− on the boundary simultaneously. Therefore we need the additional boundary to

give well-difined variational principle:

Sbdy = ± i
2

ˆ
∂M

d4x
√
−hψ̄ψ = ± i

2

ˆ
∂M

d4x
√
−h(ψ̄−ψ+ + ψ̄+ψ−) (B.8)

The sign can be determined such that we take positive(negative) sign when we fix the value

of ψ+(ψ−) at the boundary, where δSbdy cancels all the terms including δψ− (δψ+) in δSD.

And this defines the standard(alternative) quantization. By using (B.6), the boundary

action in (B.8) becomes

Sbdy ∼ y−z− + y+z+ = (A1D1 +A2D2) + Σ±E±r
±2m−1 + E2r

−2, (B.9)

It seems that Sbdy blows up at the boundary when m > 1/2, but, it can be cancelled by

introducing proper counter terms [26], which do not have finite terms at the boundary.

As we mentioned above, if we choose the standard quantization, we should fix ψ+ at the

boundary so that Ai are the sources and Di are the expectation values. From now on, we

will hold to this quantization rule. Therefore, if variables with − index and those with +

in equations are not mixed such as kx = ky = 0, the retarded Green’s function is given by

G = diag

(
−D1

A1
,−D2

A2

)
≡ diag(G+, G−) (B.10)

In this paper, however, we should consider all (ω,~k) space so that the variables in equations

cannot be decoupled. Hence, we need to define the Green function in another way. We

have 4 variables and each needs 1 initial condition, hence 4 initial conditions are required.

By choosing infalling functions at the horizon, we can relates y+ to y− and z+ to z−, which

means there are only two dimensional space of initial condition. These are the pair of

coefficients of infalling wave functions of y+, z+: denote them (y0
+, z

0
+). Two independent

basis vector of this space can be chosen as (1, 1) and (1,−1). Let’s call them ~e1 and ~e2

respectively. For each i, ~ei determines their counterpart at the horizon (i.e y0
−, z

0
−) and one

can integrate the equations of motion from the horizon to the boundary. Then, for each

initial conditions ~ei, i = 1, 2, we get near-boundary solution

y
(i)
+ = A

(i)
1 rm +B

(i)
1 r−m−1, y

(i)
− = C

(i)
1 rm−1 +D

(i)
1 r−m

z
(i)
+ = A

(i)
2 rm +B

(i)
2 r−m−1, z

(i)
− = C

(i)
2 rm−1 +D

(i)
2 r−m (B.11)

Since the choice of coefficients is arbitary, the general boundary solutions should be a linear

combnination of the such solution with some coefficients. For example, y+ = c1y
(1)
+ +c2y

(2)
+ .

For the general boundary solutions, its coefficients Xa, where X = A,B,C,D are given by

Xa =
∑

iX
(i)
a ci. The matrix X is defined by the components X

(i)
a where a, i = 1, 2 are the

row index and columb index respectively. We can solve for ci: by definition, ~c = A−1 ~A for

X = A. Green function can be derived from the relation between ~D and ~A:

~D ≡ S ~A = DA−1 ~A ⇒ GR ≡ iγtS = −DA−1 (B.12)
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C Topology in 4 by 4 Hamiltonian model for WSM

First let’s assume following form of the effective Hamiltonian:

H = −G−1
R (0,~k) =

(
~b1(k) · ~σ + Σ12 m12

m12
~b2(k) · ~σ + Σ12

)
(C.1)

where ~b1(k) ' v(~k − ~k0) near the right Weyl point and ~b2(k) ' −v(~k + ~k0) near the left

Weyl point. In fact, if we start from (2.4), the effective hamiltonian eq. (3.1) numerically

calculated always takes above form. There are a few steps to prove that the presence of

topological number.

1. For small m and near k0, taking the expansion in m gives us ~B = ∇ × ~A(k) =
1
2

~p
|p|3 +O(m2) with p = k − k0.

2. ∇ · ~B = 0 off the Weyl point by the Bianchi identity,.

3. From 1 and 2, ∇ · ~B = 2πδ(~k − ~k0). Therefore C = 1
2π

´
S0
B · dS is non-zero integer

or zero depending on whether S0 contains Weyl point k0 or not.

4. The topological number C is independent of m, therefore we can set m = 0 for the

purpose of calculating the Chern number. For m = 0, we only need to handle 2 × 2

matrix, which was already done above.

One can prove that topological structure is intact as far as k0 is real. The fact that

k0 does not get imaginary part is due to the discrete symmetry P (parity) and T(Time

reversal). Even in the case where the Fermi sea disappears due to the interaction, such

crossing point is located exactly at the ω = 0 by T symmetry. When k0 gets imaginary

numbers, the monopole singularity is smoothed out in the real domain and the chern

number becomes 0. This is expected because the topology of a manifold and the singularity

of the harmonic function defined on it is equivalent and because the singularity of the

monopole field ∼ 1/k2 is resolved.

Note that the figure 4 is for finite temperature. The position of the Weyl point is not

changed compared with the Minkowski space, the non-interacting case, but there is finite

line broadening. Figures 7 and 8 are the spectral functions at different temperature and

for different fermion mass M , where one can see that the topological number is the same

integer value in spite of very different broadening widths. Increasing temperature makes

the spectral lines even fuzzier leaving the topological invariant still fixed.

Therefore the topological structure is very stable under the variation of temperature

and interactions in holographic theory. The argument here can be generalized to other

class of topological matter although we focus here on Weyl semi-metal Hamiltonian.

In appexdix C, we consider more general cases where m12 is replaced by m12 + ~q · ~σ
and classify the cases where Weyl points exist.

Now, what if the off-diagonal interaction is added to the H0 so that the effective

Hamiltonian becomes

H =

(
(~p− ~p0) · ~σ, m12 + ~q · ~σ
m12 + ~q · ~σ, −(~p+ ~p0) · ~σ

)
(C.2)
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(a) (k0, q1, q2) = (2, 1, 2).
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(b) (k0, q1, q3) = (2, 1, 2).

Figure 13. Dispersion curve for m = 0 (a) q1, q2 6= 0, (b) q1, q3 6= 0.

where ~q = (q1, q2, q3). For Weyl points, Eigenvalues should vanish only at two distinct

points with kx = ky = 0. It is difficult to get explicit form of Eigenvalues of H in general.

Therefore we classify the cases and study one by one.

C.1 m = 0

• q3 = 0.

When q3 = 0 and q1, q2 6= 0, the dispersion relation is given by

(ω − kz)2 = k2
0 + q2

1 + q2
2 (C.3)

which implies that two Weyl points always exist at (kx, ky, kz) =

(0, 0,±
√
k2

0 + q2
1 + q2

2). See figure 13(a).

• q3 6= 0 and q1q2 = 0.

When q2 = 0, the dispersion relation is given by

ω2 = k2
z + k2

0 + q2
1 + q2

3 ± 2
√
k2
z(k

2
0 + q2

1) + k2
0q

2
3 (C.4)

In this case, there is no Weyl point and this hamiltonian is gapped. See figure 13(b).

This result is symmetric for q1 and q2. One should notice that only when q1 = q2 = 0

one can have Weyl point in the presence of q3.

• q3 6= 0 and q1 = q2 = 0, the dispersion relation becomes

ω = ±
(
k0 ±

√
k2
z + q2

3

)
. (C.5)

In this case, the system has two Weyl points if k0 > q3, or gapful if k0 < q3.

C.2 m 6= 0

When both m and q3 are non-zero we can not get analytic expression for the dispersion

curve unless q1 = q2 = 0.
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(a) (m, k0, q1, q2) = (1, 2, 1, 2).
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(b) (m, k0, q3) = (2, 5, 3).

Figure 14. Dispersion curve for m > 0. (a) q1, q2 6= 0 and (b) q1, q2 = 0.

• q3 = 0.

When q3 = 0, the dispersion curve is given by

ω = ±
(√

k2
z +m2 ±

√
k2

0 + q2
1 + q2

2

)
(C.6)

which implies that Weyl points exist at k2
z = k2

0 −m2 + q2
1 + q2

2 if k2
0 + q2

1 + q2
2 > m2 holds

and gapful otherwise. See figure 14(a)

• q3 6= 0 and q1 = q2 = 0.

When q1 = q2 = 0, the dispersion curve is given by

(ω − k0)2 = k2
z + (m± q3)2 (C.7)

In this case, we have 4 roots for ω = 0 and as you can see from dispersion curve, the Weyl

points are lifted due to the shift of ω by k0. See figure 14(b). If both m and q3 are non-zero,

we could get analytic expression for the dispersion curve only when q1 = q2 = 0. Therefore

we leave it future work for such case.
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