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Abstract: Recently, in the building and infrastructure fields, studies on defect detection methods
using deep learning have been widely implemented. For robust automatic recognition of defects
in buildings, a sufficiently large training dataset is required for the target defects. However, it is
challenging to collect sufficient data from degrading building structures. To address the data shortage
and imbalance problem, in this study, a data augmentation method was developed using a generative
adversarial network (GAN). To confirm the effect of data augmentation in the defect dataset of old
structures, two scenarios were compared and experiments were conducted. As a result, in the models
that applied the GAN-based data augmentation experimentally, the average performance increased
by approximately 0.16 compared to the model trained using a small dataset. Based on the results of
the experiments, the GAN-based data augmentation strategy is expected to be a reliable alternative
to complement defect datasets with an unbalanced number of objects.

Keywords: generative adversarial network; data augmentation; defect recognition; deep learning;
convolutional neural network

1. Introduction

The demand for the development of efficient inspection methods of old building
structures using automatic technology has increased, because the traditional inspection
approach is time-consuming and costly. For this reason, in the building and infrastructure
fields, many studies have explored vision-based approaches to detect damage in structures
for more efficient diagnosis and maintenance [1,2]. In recent years, approaches using deep
learning and image processing techniques have been applied in visual data processing
tasks to detect defects in building structures, such as cracks [3–7], delamination [8], rebar
exposure [9], and corrosion [10]. Previous studies have demonstrated that structural defects
can be automatically recognized by analyzing visual data. However, these studies have
only focused on single damage identification and detection; thus, they have limitations for
application in multi-damage recognition. In the real world, the degrading buildings and
infrastructures expose diverse defects on the superficial structures.

To address these challenges, multi-class damage recognition models, which can simul-
taneously handle multiple damages, have been investigated using deep learning methods.
Dong [11] proposed a deep learning-based multiple defect detection method for tunnel
lining damage involving crack and spalling damage. Wang [12] found several defects, such
as cracks, spalling, and efflorescence, in a historic masonry structure using convolutional
neural networks (CNNs) based on still images. However, the number of specific defect

Sustainability 2021, 13, 12682. https://doi.org/10.3390/su132212682 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su132212682
https://doi.org/10.3390/su132212682
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su132212682
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su132212682?type=check_update&version=2


Sustainability 2021, 13, 12682 2 of 13

types accounted for most of the damage. This data imbalance problem could lead the
deep learning model to overfit specific defects in the training stage. Moreover, in low-data
regimes, such as structural defects in the real world, collecting extensive datasets is a
challenge. Thus, it is difficult to deal with various types of defects, while improving the
performance of deep learning-based models, because of the underdetermined parameters
of imbalanced datasets [13]. Consequently, the results lead to overfitting on the training set
and poor generalization on the test set [14]. To generalize the damage recognition model
and its high performance, it is necessary to overcome the data imbalance problem and
establish a large dataset of various defects in the building and infrastructure fields. To
address these limitations, this study used data augmentation strategies with a generative
adversarial network (GAN) in the building and infrastructure domains and explored the
effects of the GAN-based data augmentation method on defect recognition tasks with
various deep CNNs (DCNNs). By implementing experiments using several deep learning
models, this study verified that the proposed approach is satisfactory for improving the
defect recognition model compared to the model-trained raw dataset.

The remainder of this paper is organized as follows. Section 2 describes previous
studies related to structural defect recognition using deep learning methods and data
augmentation methods for improving neural network models. Section 3 explains the
data collection and preparation with the data augmentation method using geometric
transformation and the GAN. Experiments and results are presented in Sections 4 and 5.
Finally, Section 6 includes the discussion and conclusions.

2. Literature Review
2.1. Structural Defect Recognition Using Deep Convolutional Neural Networks

Recently, deep learning-based image recognition research has been conducted in the
broad domain. In the building and infrastructure fields, several researchers have tried to
apply the deep learning approach to replace traditional image processing tasks with auto-
matic defect detection using deep learning methods. For instance, Yang [6] implemented a
deep convo-fully CNN (FCN) to detect cracks at the pixel level. Maeda [4] developed a
new large-scale dataset for road-damage detection and classification. Hoang [15] proposed
an asphalt pavement crack detection model. Deep learning in the building and infras-
tructure fields has mostly focused on deep learning-based crack detection, because it is a
representative defect of the performance index [16]. However, in the real world, not only
crack damage but also various defects are exposed simultaneously in the structures, and
these damages, as a complex cause, degrade the performance of the structure. Accordingly,
in practice, a system that simultaneously analyzes both cracks and various other types of
damage is required. Cha [3] proposed a deep learning model that can simultaneously detect
corrosion, paint peeling, and cracks occurring in bridges. Lee [17] proposed a multi-class
defect detection model for delamination, cracks, peeled paint, and water-leakage defects,
focusing on residential buildings.

Previous studies have experimentally demonstrated that deep learning models can
effectively recognize multiple classes. However, it has been argued that a robustness model
should be developed to recognize various classes accurately, and enormous datasets are
needed. In particular, Lee [17] emphasized the importance of constructing a sufficiently
balanced dataset between classes to obtain the required model performance.

However, establishing well-balanced datasets is difficult because collecting defect
data is challenging, and the distribution of damage exposed in the facade of a structure
is significantly concentrated on cracks [12]. Consequently, the quantity of data between
defect types has an unbalanced distribution. This imbalanced dataset leads the model in
training phases into overfitting to the training dataset and poor generalization on the test
set because of the underdetermined parameters of deficient data [18]. Therefore, research
on data distribution and data amplification for robust performance of deep learning-based
models is required.
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2.2. Data Augmentation for Improvement of Deep Convolutional Neural Network Performance

Data augmentation is significant for teaching the network the desired invariance
and robustness properties and to enhance the quality and quantity of datasets for better
deep learning models [19]. Previous studies demonstrated that the augmented synthetic
dataset led to deep learning model robustness in the training process [20–22]. For instance,
Hauberg [20] developed a statistical model of the transformations to learn augmentation
schemes from training data and demonstrated that this approach is more beneficial than re-
lying on manual specifications. Krizhevesky [21] proposed a geometric data augmentation
approach using image reflections and Gaussian noise to prevent overfitting. Using these
image transformations can reduce the error rate. Chandran [22] adopted a data augmenta-
tion method, which includes brightness, contrast saturation, blur, noise, and rotation of the
images, to expand the dataset for an investigation on railway fasteners. Although several
augmentation methods were applied to the prepared dataset, the quantity of data of the
entire training set was dependent on the raw dataset. Moreover, Engstrom et al. [23] indi-
cated that random transformation (i.e., rotation and translation) could reduce the model
performance owing to misclassification when dealing with digit datasets. These traditional
approaches, such as geometric transformations including rotation, scaling, cropping, and
horizontal or vertical flipping, do not completely resolve the fundamental problem of data
shortages and data imbalance distributions.

To overcome these issues, many researchers have proposed data augmentation strate-
gies using GANs. Since GANs were introduced by Goodfellow et al. [24], many refined
models have been developed, such as the CycleGAN [25], DCGAN [26], and conditional
GAN [27]. The application of GANs in a deep learning approach has been implemented in
several domains such as medical images [28], fashion [29], and emotion recognition [25].
Data augmentation using GANs has been effectively performed in a low-data target do-
main by generating synthetic images [18,30]. Additional synthetic images in the training
dataset are beneficial for increasing the variety of datasets and improving the performance.
Lee et al. [31] proposed a Wasserstein GAN (WGAN) to solve the data imbalance problem
in predicting aquatic ecosystem health indices. Zhu et al. [25] used a GAN to deal with
imbalanced datasets in facial expression recognition. The synthetic images generated by
the GAN method can be applied to deep learning models to overcome the data shortage
and imbalance problems in various fields.

Inspired by previous research, this study adopted a GAN to enhance the structural
defect recognition model. Data augmentation combined with both the GAN and geometric
transformation methods could provide an alternative solution to by-path the challenges
faced and the difficulty in collecting numerous datasets in the building and infrastruc-
ture fields.

3. Methodology
3.1. Dataset Collection of Concrete Damage Images

In this study, a concrete surface damage dataset was established by collecting five data
categories, including one intact surface image and four representative superficial defects:
crack, delamination, leakage, and rebar exposure. The 4032 × 3024 resolution images were
obtained through the investigation of defects in deteriorated concrete structures using a
digital camera. The number of image data was established from the total of 1954 images
containing concrete damage, and the training and validation datasets were respectively
divided at a ratio of 1430 to 355 (80% of the total dataset) in the preprocessing stage. The
remaining 196 images (10%) were used to test the proposed model. The size of the raw
images was 4032 × 3024 pixels, but the images were resized to small scales (224 × 224) to
fit the proposed model. To prepare the training dataset, the dataset was classified into the
following categories: crack (477), rebar exposure (242), delamination (507), leakage (188),
and non-damage (371) images. The compositions of the validation and test datasets are
presented in Table 1.
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Table 1. Distribution of raw datasets.

Category C0 C1 C2 C3 C4 Total

Raw
Dataset 412 530 268 563 208 1954

Train 297 382 194 406 151 1430
Val 74 95 48 101 37 355
Test 41 53 26 56 20 196

C0: Non-damage, C1: Crack, C2: Rebar exposure, C3: Delamination, C4: Leakage.

Approximately 2000 images are insufficient for training a DCNN and achieve excellent
performance in the damage classification task. For better performance and more robust
models, larger and various datasets are required [21], but it is difficult to obtain specific
damages such as rebar exposure and leakages compared to cracks and delamination. Data
imbalance makes it difficult to improve the performance because of the underdetermined
parameters [14]. To address this limitation, data augmentation strategies are essential for
enhancing the fine-tuning of deep networks [19].

3.2. Data Augmentation Using Geometric Transformation

To overcome these issues, many researchers have proposed data-augmentation strate-
gies for efficient network training. Krizhevesky [21] proposed image translations and
horizontal and vertical reflections to prevent overfitting. The use of these image trans-
formations can reduce the error rate. Another approach, proposed by Hauberg [20], is to
develop a statistical model of the transformations to learn augmentation schemes from
training data, and it was demonstrated that this approach is more beneficial than relying
on manual specification. Therefore, this study adopted data augmentation strategies to
prevent overfitting during the training process. This approach enables the improvement of
training accuracy without additional training data through image transformations such as
horizontal/vertical reflection, random brightness, rotation, zoom, and cropping within a
defined range [21].

3.3. Data Augmentation Using Generative Adversarial Network

Although several augmentation methods were applied to the prepared dataset, the
quantity of data of the entire training set was dependent on the raw dataset. In other
words, when the specific raw dataset is insufficient compared to the other datasets, the
data imbalance remains. In particular, both the rebar exposure and leakage damage classes
have data imbalance problems because their quantity of data is lower than that of cracks or
delamination. To solve this problem, this study employed a data augmentation strategy
using a GAN [24]. Recently, a GAN has become commercially available to effectively train
even low-data target domains by generating synthetic images [14,30]. Figure 1 shows a
conceptual schematic of a GAN for generating synthetic concrete damage images.

Additional synthetic images in the training dataset are beneficial for increasing the
variety of datasets and improving the performance. Gao [30] applied a GAN for infras-
tructural image data augmentation, and the results demonstrated the effectiveness and
robustness of the proposed methods. Moreover, facial image generation [26,32] and the
medical field [33] have adopted GANs to enable effective experimental implementation
under the conditions of a low-data regime and limited computational power. The synthetic
images generated by the GAN method can be applied to train an image classification
model to recognize the damages derived from exposure to various environments. Figure 2
presents images generated by GAN training corresponding to rebar exposure and leakage.
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3.4. Establishment of the Concrete Damage Image Dataset

To establish the concrete damage dataset, data augmentation strategies using both
geometric transformation and GAN were applied to train the DCNN models. Consequently,
the training and validation datasets were expanded to 100,000 images with 20,000 images
of damage in each class. Approximately 200 test datasets in which damage appeared,
which were not used for the training and validation stages, were prepared to evaluate the
accuracy of the trained model. However, the number of test datasets was insufficient to
estimate the performance between the architectures proposed in this study. The test dataset
also adopted data augmentation strategies to evaluate the model performance sensitively.
For test data augmentation, only horizontal flipping with random cropping was applied,
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because the test images must be set in an equivalent form to the real environment. The
established concrete dataset is presented in Table 2.

Table 2. Number of concrete damage images using data augmentation.

Category C0 C1 C2 C3 C4 Total

Raw Dataset 412 530 268 563 208 1954
Train Dataset 297 382 194 406 151 1430
Val Dataset 74 95 48 101 37 355
Test Dataset 41 53 26 56 20 196

Train Dataset _DA 16,000 16,000 16,000 16,000 16,000 80,000
Val Dataset _DA 4000 4000 4000 4000 4000 20,000
Test Dataset _DA 2368 2988 1436 3036 1092 10,920

C0: Non-Damage, C1: Crack, C2: Rebar exposure, C3: Delamination, C4: Leakage; DA: Data Augmentation
including GAN.

4. Experiments

DCNN-based image analysis models have been developed and proposed in several
domains. However, the proposed models are intended to deal with specific problems
defined by researchers. Therefore, to address concrete damage image recognition, it is
necessary to perform fine-tuning of the DCNN model using concrete damage images.
Therefore, this study carried out several examinations to identify which models have the
appropriate structures to extract features from complex and complicated concrete damages.
Accordingly, based on the established concrete damage dataset, this study examined a
representative deep neural network for selecting the most suitable architecture to address
concrete damage images. The examination was carried out using several architectures,
namely, AlexNet [21], VGG16 [34], Inception-V3 [35], ResNet50 [36], and MobileNetV2 [37].
These models have already been verified by providing high performance for large-scale
image analysis [38]. In addition, they can provide a framework for stable learning in
concrete damage recognition. Thus, according to the results of the experiments, the most
suitable model was adopted for developing a concrete damage recognition model as
a backbone network. The following section explains the experimental procedure and
interpretation of the test results.

4.1. Experimental Settings

In this study, experiments were implemented using the Keras platform on a workstation
with a GPU (GeForce GTX 1080Ti) and a CPU (Intel Core i9-7980XE CPU, 2.60 GHz × 18).
To identify optimal architectures on the concrete damage dataset, an examination was
conducted using AlexNet, VGG16, ReNet50, InceptionV3, and MobilenetV2, as proposed
in the literature. For the training process, the concrete damage images were resized to
224 × 224 pixels. A common issue in DCNN training is that hyperparameters are quite
sensitive; thus, the network was trained using the Adam Optimizer [39] with a learning
rate of 0.0001, and its performance was evaluated with a test set and other raw images.
As a first scenario, the experiment was performed with the raw dataset excluding data
augmentation using a 224 × 224 image size. The second scenario was implemented with a
dataset using data augmentation strategies. A loss function was employed as a criterion
to evaluate the distance between the predicted and true values. The loss function in this
experiment used the cross-entropy (CE) loss function.

Cross-Entropy Loss Function = −
n

∑
i=0

n

∑
i=0

yi,jlog
(

pi,j
)

(1)

where yi,j denotes the true value yi,j ∈ [0, 1], and pi,j indicates the probabilities for each
class set predicted by the proposed model.
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4.2. Experimental Metrics

Accuracy was used as the metric to measure the performance of the model across all
predictions, and it was defined as the ratio of the number of correct answers to the entire
test dataset. Herein, the accuracy calculated only the true positive in each class with the
total test dataset as the denominator.

Accuracy =
∑k

i=1 tpi

tp + tn + f p + f n
(2)

Here tp denotes the true positive (correctly recognized in the targeted defect class), tn
means correctly classified in the non-targeted class, f p means mistakenly classified in
the targeted defect class, and f n denotes the false negative (erroneously spotted in the
defect class). In other words, it is an indicator that evaluates the number of correctly
predicted classes comprising the entire actual class. However, accuracy is not a preferred
performance measure for classifiers, especially when dealing with imbalanced validation
data. A more suitable way to evaluate the performance of a classifier is to provide the
precision, recall, and F1-Score. The equations are as follows:

Precision =
∑k

i=1 tpi

∑k
i=1(tpi + f pi)

(3)

Recall = ∑k
i=1 tpi

∑k
i=1(tpi + f ni)

(4)

F1-Score = 2· Precision·Recall
Precision + Recall

(5)

Therefore, in this study, five metrics were used to evaluate the performance of the
models: loss, accuracy, precision, recall, and F1-Score. The first two metrics were used
to monitor the performance of the experimental architectures during the training and
validation processes, and the other three metrics were used to evaluate the performance of
a trained model using a test dataset with loss and accuracy metrics.

5. Results
5.1. Scenario 1: Experiments with a Small Dataset

In the first scenario, the experiment was conducted using a raw dataset. The dataset
was prepared with approximately 2000 image data, established as described in Section 3.1.
To monitor the progress of learning, loss and accuracy curves were generated during the
training stage. Figure 3 shows the loss and accuracy monitored during the training stage
(500 epochs).

The loss function was used as an indicator to measure the learning state when training
a neural network. Accordingly, to monitor the status of the training implementation,
the trend of the graph of the loss function was confirmed through the loss curve. As
shown in Figure 3, the loss value was gradually reduced and optimized as the training
progressed. Simultaneously, the accuracy increased as the learning process progressed.
This means that the models in the training stage were optimized sharply in the training
dataset. Consequently, the 224 × 224 image datasets provided stable optimization during
the training stage.

However, the deep learning model needs to maintain good performance even with
unseen data, that is, data that are not used for learning. Thus, this experiment monitored
the model performance using a validation set that was different from the training dataset.
Monitoring the learning process is useful for examining whether the model is overfitting
or improving model accuracy while learning data. Figure 4 shows the loss and accuracy
graphs for the validation stage.
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As shown in Figure 4, by monitoring the loss value for each epoch using validation
data, it was observed that the loss value did not decrease or increase after 50 epochs.
This is a form of the overfitting problem, which means that the weight value learned
in the training process can recognize the patterns from the training set, but is limited
for recognizing the validation images representing various spatial damage forms. In
addition, the accuracy in the validation stage cannot break through the ceiling of the model
performance. This means that the model parameters are overfitted in the training dataset;
thus, it is difficult to generalize the model performance when unexpected datasets are
applied to the overtrained models.

To evaluate the performance of the experimental models quantitatively, the accuracy
of each one was compared using a test dataset. Figure 5 shows the confusion matrix for the
VGG16 model. In the confusion matrix, the right column shows the number of real images
corresponding to the actual target class, and the bottom row shows the number of classes
predicted using the trained VGG16 model. Here, the number specified in the dark blue box
with a diagonal line indicates the quantity of data accurately predicted by the model. In
other words, the sum of the data specified on the diagonal line represents the number of
correct predictions of the model. These results indicate that VGG16 accurately predicted
157 of 196 data points, a performance with 0.8010 accuracy. Table 3 summarizes the results
of evaluating the performance of the trained model using the test dataset.
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Table 3. Results of the experiments (Scenario 1: no data augmentation).

Models Loss Accuracy Precision Recall F1-Score

AlexNet 0.8778 0.8469 0.8468 0.8418 0.8443
VGG16 1.5567 0.8571 0.8697 0.8506 0.8600

ResNet50 1.3334 0.7500 0.7561 0.7449 0.7504
InceptionV3 0.7465 0.8367 0.8484 0.8316 0.8398

MobileNetV2 1.2994 0.6888 0.6961 0.6786 0.6871

Average 1.1627 0.7959 0.8009 0.7908 0.7957

Consequently, the results demonstrate that the VGG16 architecture exhibits the best
performance. However, as described above, there are some limitations in dealing with
the concrete dataset and evaluating the model performance because of insufficient data.
For example, this could cause overfitting of the model during the training and validation
stages. To overcome this problem, this study adopted data augmentation strategies, and a
second scenario for exploring the optimal architecture was implemented. The following
section describes the experiments conducted using the augmented dataset.

5.2. Scenario 2: Experiments with Data Augmentation

In the second scenario, an experiment was performed by applying a data augmentation
strategy using a GAN. Thus, the DCNN model adopted data augmentation strategies and
provided a more robust learning state than when learning in the low-data regime during
the training and validation processes.

As shown in Figure 6, the learning process in Scenario 2 stably decreased the loss
value to the optimization level in both the training and validation stages with performance
improvement. The results demonstrate that the data augmentation strategies used in
this experiment enable the provision of stable learning environments in the training and
validation stages with performance improvement. Figure 7 shows the experimental results
for Scenario 2. Compared to the experiments in Scenario 1, all the CNN models increased
the accuracy at the same training epochs. The experimental results (scenario 2) evaluated
by using the augmented test dataset are presented in Figure 8.
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As presented in Table 4, the accuracy of all models trained in Scenario 2 was improved
compared to that achieved in Scenario 1. The average accuracy of each model in Scenario
1 was 0.7959; meanwhile, in the case of Scenario 2, the average accuracy was 0.9607.
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Consequently, it is demonstrated that the accuracy of the model trained using the data
augmented dataset is increased by approximately 0.16 compared to the models trained
using the raw dataset.

Table 4. Results of the experiments (Scenario 2: Data augmentation).

Models Loss Accuracy Precision Recall F1-Score

AlexNet+DA 0.4199 0.9235 0.9429 0.9184 0.9300
VGG16+DA 0.1562 0.9755 0.9704 0.9704 0.9704

ResNet50+DA 0.1924 0.9605 0.9603 0.9608 0.9608
InceptionV3+DA 0.1017 0.9756 0.9771 0.9750 0.9760
MobileNetV2+DA 0.1194 0.9685 0.9698 0.9680 0.9686

Average 0.1972 0.9607 0.9651 0.9595 0.9621

6. Discussion and Conclusions

The purpose of this study is to solve the problem of data shortage by using a GAN
with geometric data augmentation and to demonstrate experimentally that GAN-based
data augmentation contributes to the improvement of the structural damage recognition
model. The model presented in this study was designed with the target of four types
of damage that are mainly exposed in deteriorated structures. In contrast to previous
studies, this study presented selective GAN-based data augmentation approaches to solve
the imbalance of specific defects such as leakage and rebar exposure, which are relatively
low in frequency. As a result, the data imbalance can be solved by generating a synthetic
image using the GAN data augmentation technique. It was experimentally proved that
this approach can be an alternative to acquire data of defect types in the construction field
that are difficult to obtain efficiently.

For this experiment, approximately 2000 pieces of raw data (non-damage, 412; crack,
530; rebar exposure, 268; delamination, 563; and leakage, 208) were collected from an
actual damaged building, and the dataset was classified into five categories. Subsequently,
the experiments were implemented using two approaches. The first scenario was imple-
mented using a raw dataset, and five models, AlexNet, VGG16, Resnet50, InceptionV4,
and MobileNet, were used as DCNN models. In the second scenario, the experiment was
conducted using an amplified dataset as the training data based on the same five models.
The data augmentation method, geometric transformation, and GAN method were applied.
In particular, the GAN method was applied to rebar exposure and leakage data to prevent
data imbalance problems.

The experimental results confirmed that both scenarios were optimized well in the
data learning stage, but the performance did not improve by more than a certain amount
in Scenario 1 in the validation stage. Meanwhile, in Scenario 2, the performance was
improved to the same level as the graph shown in the training stage, and the average
accuracy improved by approximately 0.16 in the performance evaluation with the test data.

This study proposes a method to solve the data shortage problem in the building
and infrastructure fields, and experimentally demonstrates that the proposed method
contributes to an improvement in performance of the deep learning model. The GAN-based
data augmentation approach proposed in this study contributes to solving the problems of
a small dataset and data distribution imbalance in a multi-class dataset. Synthetic images
generated through the GAN cannot completely replace real-world data, but they can be
effectively applied to prevent performance degradation due to data imbalance conditions.

However, a limitation of this study is the lack of diversity in the models used in the
experiments. Recently, the improvement in model performance has been actively explored
using various techniques such as attention networks and knowledge distillation, but this
study focused on providing the effect of data augmentation using five representative CNN-
based models. As this study did not explore every presented model and its scope was
limited to solving the image classification problem, the obtained results have limitations
for representing an absolute solution to the defect detection problem. At present, various
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augmentation techniques for solving the object detection problem are being studied. In
future works, the GAN-based selective object augmentation method in the training stage
could be applied to improve the performance of the defect detection model in practical
fields. Nonetheless, the experiments implemented in this study demonstrated that the
GAN-based data augmentation strategy can be a reliable alternative to complement defect
datasets with an unbalanced number of objects. In addition, the model trained using
augmented data can be extended to pre-trained models as backbone networks on object
detection models for the building and infrastructure domains.
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