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Abstract: Predicting the trajectories of surrounding vehicles is important to avoid or mitigate collision
with traffic participants. However, due to limited past information and the uncertainty in future
driving maneuvers, trajectory prediction is a challenging task. Recently, trajectory prediction models
using machine learning algorithms have been addressed solve to this problem. In this paper, we
present a trajectory prediction method based on the random forest (RF) algorithm and the long short
term memory (LSTM) encoder-decoder architecture. An occupancy grid map is first defined for
the region surrounding the target vehicle, and then the row and the column that will be occupied
by the target vehicle at future time steps are determined using the RF algorithm and the LSTM
encoder-decoder architecture, respectively. For the collection of training data, the test vehicle was
equipped with a camera and LIDAR sensors along with vehicular wireless communication devices,
and the experiments were conducted under various driving scenarios. The vehicle test results
demonstrate that the proposed method provides more robust trajectory prediction compared with
existing trajectory prediction methods.

Keywords: machine learning; random forest; LSTM encoder-decoder; collision warning system; lane
changing prediction; trajectory prediction

1. Introduction

Autonomous vehicles have undergone phenomenal development over the past decade
both for safety and efficient mobility [1]. The development of advanced driver assistance
systems (ADAS) is of interest to automotive original equipment manufacturing (OEMs) to
reduce the number of traffic accidents. Vehicles equipped with ADAS such as adaptive
cruise control (ACC), lane keeping assist system (LKAS) and emergency braking system
(EBS) are already extant on the road. One ADAS, the collision warning system (CWS),
is able to predict a collision situation and warn the driver in advance. This means that
perceiving the traffic scene and predicting trajectory of surrounding vehicles (SV) are
critical tasks. However, predicting the trajectory of the SV is quite difficult work since
it depends on characteristics of each driver and various traffic situations. To overcome
this problem, many approaches to trajectory prediction have been proposed in [2]. The
traditional approaches for trajectory prediction are made by assuming a physics-based
model such as one based on kinematics or dynamics. Dynamic models describe motion
based on many internal parameters of the vehicle such as the longitudinal and lateral tire
forces [3,4]. A kinematics model, on the other hand, describes a vehicle’s trajectory based on
the parameters of movement such as velocity, acceleration and position. Kinematics models
are used more than dynamics models for trajectory prediction of SV because the internal
parameters of the SV are not observable by sensors mounted on the ego vehicle (EV).
A comparison and survey of different kinematics models for tracking vehicle trajectory
was given in [5]. In this paper, constant turn rate and acceleration models (CTRA) show
better results in tracking the vehicle trajectory than the constant turn rate and velocity
models (CTRV). However, this model shows high accuracy only in a monotonous driving
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environment. If the road is curved or the SV is overtaking the EV, the accuracy of the
trajectory prediction is very poor. To overcome such limitations, research using maneuver-
based models has been proposed [6–8]. This model predicts the trajectory of SV based on
knowing the driver’s intention in advance. If EV can identify the maneuver intention of
SV, EV can predict trajectory more reliably in the long term than the kinematic models.
Trajectory prediction using a kinematic model has high prediction accuracy when the SV
is driving at a constant speed/acceleration within one lane, but the prediction accuracy
is low in situations where SV are accelerating/decelerating and attempting to change
lanes [9,10]. For this reason, the maneuver intention prediction of SV has been investigated
by many researchers [11–16]. Among these works, machine learning-based algorithms are
very popular because they are affected by the driver’s habit [14–16]. After predicting the
intentions of the SV in this way, trajectory prediction is executed based on maneuver-based
model. Prediction methods can be classified into methods using predefined prototypes and
machine learning algorithms. The predefined prototype method first clusters all trajectories
of vehicles on the road and then each cluster is used as a predefined prototype trajectory
for prediction [17–19]. Subsequent trajectory prediction can be performed by searching
for any similarity between the predefined prototype trajectory and partial trajectory of SV.
However, when trajectory prediction is executed using a finite prototype, the limitation
is that the trajectory is strictly determined. The machine learning algorithm prediction
method, a recent area of study, predicts the trajectory of SVs using a machine learning
algorithm. Research that predicts the trajectory of SV using machine learning mainly uses
recurrent neural network (RNN), which has good performance in predicting time series
data [20–24]. Many previous studies use the publicly available NGSIM as a dataset for
training prediction models [20,21]. Since the NGSIM dataset was created from vehicle
trajectories collected through image processing from a camera mounted on the road, this
data suffers from considerable tracking noise [25]. Additionally, in other previous studies,
the relative coordinates of the SV were used as the result of the prediction model [22–24].
As can be seen in Figure 1, lateral position accuracy is very important in the trajectory
prediction model of SV for CWS. Even if the position accuracy of the prediction model
has an error of less than 1 m, CWS may not operate in a collision situation. Therefore, in
our paper, we propose a method of predicting the trajectory by dividing the longitudinal
prediction model and the lateral prediction model, and expressing the final position in
a grid.
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Figure 1. Collision situation caused by lateral position error.

The contribution of this paper is to present a trajectory prediction model using a grid.
To ensure accuracy of the lateral position, a lane change prediction model was used. Instead
of the public datasets used in previous studies, we used raw data without filters as input
data. The bounding box coordinate value and size obtained from the camera sensor and
dynamic information of the SV obtained through vehicle-to-vehicle (V2V) communication
were used as input data of the prediction model.

The remainder of the paper is as follows: Section 2 describes the entire prediction
system. The perception system of surrounding environment is described in Section 3. In
Section 4, the system for predicting the trajectory is addressed in detail. The experimental
results are presented in Section 5. Finally, in Section 6, we present conclusions and deal
with future work.
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2. System Overview

We propose a system that predicts the trajectory of SV using on-board sensors and
V2V communication as shown in Figure 2. The EV is equipped with V2V communication
equipment, LIDAR, and camera sensor to recognize the surrounding environment. The
SV is equipped with only V2V communication equipment. The perception system is
implemented to estimate the exact position of the SV using V2V communication and LIDAR.
Among the information exchanged through V2V communication is location data acquired
through the Global Positioning System (GPS). However, GPS has the disadvantage of being
vulnerable to the surrounding environment. For example, when the road environment is
an open area, location information has accuracy reliable to ~1 m, but in the urban areas
reliability of location drops to 5–10 m due to signal blockage and multipaths [26]. Therefore,
we applied differential GPS (DGPS) to our system to overcome this problem. DGPS can
increase the accuracy of location information by receiving correction information from a
base station, where the correction information is calculated from a fixed base station. Since
the fixed base station knows the exact location information, it can periodically calculate the
GPS error and broadcast it [27]. GPS uses a coordinate system known as earth centered-
earth fixed geodetic (ECEF-g), which consists of latitude, longitude and altitude. We
converted this to a local tangent plane and applied the local coordinate system by rotating
the EV heading angle. Our perception system additionally includes location information
obtained from LIDAR. This is because an error occurs depending on the heading accuracy
of EV in the process of changing the global coordinate system to the local coordinate system.
The LIDAR can get a 3D point cloud for the surrounding objects and the position is accurate
to less than 10 cm. Finally, the perception system calculated the location of the SVs by
matching the location information obtained through V2V communication and LIDAR. To
predict the SV position, we propose an ensemble of two models: lane changing prediction
and trajectory prediction. We used RF algorithm to predict lane changing of SV, and the
trajectory prediction model used the Encoder-Decoder LSTM model. The lateral position
prediction accuracy is important in predicting trajectory of SVs for the precollision warning
system because even if EV predicts that the relative longitudinal distance of the SV will be
close, it is in a safe state if the SV is in the adjacent lane. Therefore, we propose a prediction
system that divides the location of SVs into nine grid cells and finally predicts the grid
where the SVs will exist after a certain period of time.
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3. Perception System
3.1. Camera Sensor

In the field of autonomous vehicles, the camera is the most used and essential sensor
because it guarantees a high object recognition rate and is cheaper than other sensors
that recognize the surrounding environment. The main role of the camera sensor is to
detect and classify surrounding objects. The most traditional method is to sequentially
apply classifiers that classify simple feature values [28]. However, in order to improve the
performance, a lot of learning data is required, and there is a difference in performance
depending on the quality of the learning data. Another way is to use the Histogram of
Oriented Gradient (HOG) to classify surrounding objects [29,30]. This is a method of
classifying objects by using the gradient distribution characteristics of the objects in the
camera image. However, the slow image processing speed constitutes a fatal drawback in
the autonomous vehicle field where real-time guarantee is important. Recent research is
actively underway to classify surrounding objects using a Convolution Neural Network
(CNN). The first object detection using CNN started with classifying handwritten numbers
in the 1990s [31]. However, it has not been in the spotlight because of algorithms with better
performance and less complex machine learning such as support vector machine (SVM).
In 2012, as AlexNet reduced the object recognition error rate from 26% to 15.3%, research
on object recognition using CNN was underway [32]. Then, in 2015, ResNet achieved an
error rate of 3.6% lower than that of classifying objects with the human eye. CNN’s ability
to distinguish a single object in an image is powerful, but distinguishing multiple objects
remains a problem. To remedy this problem, Regions with CNN (R-CNN) was proposed,
which first selects candidates that likely have objects in the image [33]. However, this has
disadvantages in that a large storage space is required and the operation processing speed
is slow because a network exists for each region selected as a candidate. To address these
problems, Faster R-CNN was proposed [34]. It gets regional proposal from the final image
obtained through the network process. The above two models (R-CNN/Faster R-CNN) are
called 2-stage detectors because localization and classification are separately configured.
This is the main cause of the slowdown in image processing. An algorithm called You Only
Look Once (YOLO) can detect real-time objects because localization and classification are
processed simultaneously [35]. Since YOLO’s recognition speed is over 45 fps, and real-
time guarantee is important for our system, we used YOLO to recognize the surrounding
environment and get the bounding box value. As can be seen in Figure 3, the coordinate
value and size of the bounding box are correlated with the relative coordinates of the SV. If
the SV is far from the EV, the size of the bounding box is small. Conversely, if it is close, the
size of the bounding box is large. Further, if the SV is driving in the adjacent left lane, the
bounding box is to the left from the center point of the image. For this reason, we used the
bounding box obtained through the camera as the input value of the prediction model.
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3.2. V2V Communication and LIDAR

Vehicle-to-Vehicle (V2V) communication is considered an essential factor for more ad-
vanced ADAS. V2V communication follows the wireless access in vehicular environments
(WAVE) standard defined by IEEE, which is based on IEEE 802.11P and IEEE 1609 [36]. V2V
communication using the WAVE standard exchanges information every 100 ms using the
5.9 GHz DSRC frequency band. The information exchanged between these vehicles follows
the basic safety message (BSM) among the set of j2735 messages defined by SAE [37]. As
shown in Table 1, the BSM contains dynamic information of the vehicle such as steering
angle and acceleration that is difficult to obtain with existing on-board sensors apart from
V2V communication.

Table 1. SAE J2735 BSM.

Message Content

Part 1

Message count
Temporary ID

Time
Latitude

Longitude
Elevation

Position accuracy
Transmission state

Speed
Heading

Steering wheel angle
Acceleration

Yaw rate
Brake system status

Vehicle size (width, length)

Part 2

Event flags
Path history

Path prediction
RTCM package

The relative coordinates of EV and SV should be calculated using the GPS information
(latitude/longitude) in BSM. The GPS coordinate system is known as the earth centered-
earth fixed geodetic (ECEF-g) coordinate system. To change this to a local coordinate
system with EV as the origin, it is necessary to change it to the earth centered-earth fixed
rectangular (ECEF-r) coordinate system and to a local tangent plane (LTP). The ECEF-r
coordinates can be calculated from the ECEF-g coordinate system as shown in Equation (1).

x = (h + N) cos λ cos φ
y = (h + N) cos λ sin φ

z =
(
h +

(
1 + e2)N

)
sin λ

(1)

where λ is the latitude, φ is the longitude, e is the eccentricity. N is the distance from the
surface to the z axis along the ellipse normal and is defined by Equation (2).

N =
a√

1− e2 sin2 (λ)
(2)

where a is WGS-84 earth semimajor axis. As shown in Equation (3), the ECEF-r coordinate
system is converted to an LTP coordinate system. − sin φ cos φ 0

− cos φ sin λ − sin λ sin φ cos λ
cos λ cos φ cos λ sin φ sin λ

·
 x− x0

y− y0
z− z0

 (3)
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If <x, y, z> is the ECEF-r coordinate of SV, and <x0, y0, z0> is the ECEF-r coordinate of EV,
the local coordinate system is completed by rotating the heading angle of EV. However,
if there is an error in the heading angle of EV, there is a disadvantage in that an error
occurs in the relative position. To overcome this problem, we estimated the location of
the SV using the point cloud obtained through the LIDAR. The point cloud is just a set
of points in the XYZ coordinate system around the LIDAR position. These are the points
scanned by multiple rotating laser beams. The advantage is that the accuracy of the
distance to the object measurement is high, but there is a disadvantage in that additional
work is required to classify the object. Therefore, research on accurately detecting the
surrounding environment using LIDAR is largely divided into three categories: object
clustering, object classification and tracking the movement [38,39]. If two objects exist
nearby, there is a problem of recognizing them as one during the object clustering process
because the traditional clustering method classifies objects based on Euclidean distance.
Recent research approaches object classification using machine learning algorithms by
learning the shape and characteristics of objects [40,41]. This approach shows better
performance than the traditional clustering method, but incurs high computational cost
and requires high vertical-resolution. This means that autonomous vehicles should be
equipped with expensive LIDAR.

To overcome the limitations described above, we proposed a method of estimating the
exact location by a fusion of the location information calculated from V2V communication
and the point cloud obtained from LIDAR. Although there is an error in the relative
position obtained through V2V communication, the position of the SV can be estimated.
If clustering is performed around this estimated position, we can distinguish the points
reflected from the SV. As shown in Figure 4a, these reflected points are mostly reflected
from the rear of the SV. Of course, as shown in Figure 4b, when the SV changes lanes or
drives on a curved road, there are also points that have returned from the side of the SV.
The closest points among the reflected points are recognized as the rear of the SV, and the
final position of the SV is calculated by considering the specifications (width/length) of the
vehicle obtained through V2V communication.
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4. Prediction System

The vehicle trajectory is characterized by having a continuous value. Therefore,
recurrent neural network (RNN) structures are widely used in many papers for predicting
trajectory [23,24]. It is necessary to predict the location of the SV after a certain period
of time to give the driver an advance warning to prevent a collision. In the prediction
system, the lateral position accuracy is very important when considering the width of the
lane within the road because given the width of each vehicle, a false negative/positive
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pre-warning may occur even if the location accuracy error is only 0.5–1 m. Therefore, as
shown in Figure 5, we divided the locations where the SV is likely to exist after a certain
period of time into nine grid cells. In addition, we propose a system that predicts the
intention to change lanes to determine the vertical lines of the grid and one that predicts
the trajectory to determine the horizontal lines.
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4.1. Input Features

Our proposed system for predicting the trajectory of SV consists of a lane changing
prediction model and a trajectory prediction model. To avoid overfitting of the prediction
model, an input data that has a high correlation to the output data should be selected. We
selected the feature value using the correlation coefficient as shown in Equation (4).

r =
σxy

σxσy

σx =

√
n
∑

i=1

(
xi − µx

)2

σy =

√
n
∑

i=1

(
yi − µy

)2

σxy =
n
∑

i=1

[(
xi − µx

)(
yi − µy

)]
(4)

Here, x and y are each feature, and µ is the average of the feature. σxy is the covariance
between features x and y, and σx and σy are the standard deviations of each feature. This
coefficient represents the linear dependence between features. As shown in Figure 6a,
the coordinate value and size of the bounding box obtained from the camera have a high
correlation with the relative position between EV and SV. It can be seen in Figure 6b that
velocity, longitudinal acceleration, heading, and steering angle are correlated with the
relative position among BSM. Therefore, we defined feature values to be used as input in
the prediction model as shown in Equation (5).

X =
[

xt−(h−1)
bbox,bsm, · · · , xt−1

bbox,bsm, xt
bbox, bsm

]
Here,

xt
bbox = [xmin, xmax, ymin, ymax, width, height, ]

xt
bsm =

[
xt, yt, vt, at, θt, δt]

(5)

where xmin is the left coordinate value of the bounding box in the image, xmax is the right
coordinate value of the bounding box, ymin is the top coordinate value of the bounding
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box, ymax is the bottom coordinate value of the bounding box, x and y are the relative
coordinates of SV with EV as the origin, v is the SV’s velocity, a is the SV’s acceleration,
θ is the SV’s heading, δ is the steering angle of SV, and h is observation time of previous
trajectory. The output value of the model is defined as follows.

Y =
[
yt+1

position, yt+2
position, · · · , yt+p

position

]
Here,

yt
position = [x, y]

(6)

where x and y are relative coordinates of SV with EV as the origin, and p is prediction time
of the future trajectory.
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4.2. Lane Change Prediction Model

Random Forest (RF) is an ensemble method with multiple decision trees [42]. Although
each decision tree has a high variance problem, the ensemble reduces the variance of
bagging and the risk of overfitting. The four steps of the random forest algorithm are
as follows:

Step 1: Extract n bootstrap samples from the original dataset (permission for repetition).
Step 2: Train the base classifier from the bootstrap sample.

• Select d base classifiers from all base classifiers.
• Split into the node with the best classifier performance using information gain.

Step 3: Iterate the previous step K times.
Step 4: Assign a class label using majority voting.
In general, the more decision trees, the higher the computational cost, but the better

the RF classifier performance. In addition, if there are factors that affect the results a lot,
a simple and intuitive RF algorithm has good classification performance. The driver’s
intention to change lanes is closely related to the lateral position. Therefore, the lateral
motion of the bounding box obtained from the camera sensor is an important factor in
the prediction model. In addition, we can obtain the steering angle and accurate heading
angle for SV through V2V communication. These two features are also decisive factors in
lane change prediction models. In many previous studies, there has been a lot of research
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on predicting lane change using machine learning algorithms [43,44], but since we can
obtain a decisive factor through camera and V2V communication, we use RF to predict lane
changing intent. In Section 4.1, we defined the feature value to be used in the prediction
model. Then the label value for feature value was defined as the maneuver state of the SV
(lane keeping: 0, left lane changing: 1 and right lane changing: 2). As shown in Figure
7, the end point of the lane changing maneuver Te is defined as the point at which the
center of the SV reaches the center line of the target lane. The lane changing maneuver
duration Td is determined by the driver characteristics. For example, if the driver attempts
an aggressive lane change, Td will be shortened. As shown in Figure 8, the initiation point
of a lane change Ti is defined as an instance that goes back by Td from Te.
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4.3. Trajectory Prediction Model
4.3.1. LSTM

Machine learning algorithms for supervised learning assume that the input data are
independent and identically distributed. However, to predict the trajectory of the SV, time
series data is entered as an input value. This means that the input data is not independent.
Therefore, we make a trajectory prediction model using an RNN that uses sequentially
structured data as input data. However, it has the disadvantage of gradient vanishing or
exploding for a long input sequence. To overcome this problem, LSTM was proposed [45].
As shown in Figure 9, the updated LSTM has a cell state idea that is regulated by three
gates: the forget gate, input gate, and output gate [46].

The forget gate determines the information to be forgotten using the input data at the
current time step xt and the hidden state at the previous time step ht−1, and is given as:

ft = σ
(

W f xt + U f ht−1 + b f

)
(7)

The input gate determines which cell state must be updated with new information. It is
composed of it and C̃t as described by:

it = σ(Wixt + Uiht−1 + bi) (8)
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C̃t = tan h(Wcxt + Ucht−1 + bc) (9)

where it determines how much information at the current time should contribute to the
new cell state, and C̃t proposes the new candidate cell state. As shown in Equation (10),
the new cell state Ct is updated as described by:

Ct = ft × Ct−1 + it × C̃t (10)

As shown in Equations (11) and (12), the hidden state ht is calculated from the cell state Ct
and the output gate. Output gate ot determines the state of the cell that contains a large
amount of information.

ot = σ(Woxt + Uoht−1 + bo) (11)

ht = ot·tanh(Ct) (12)

where W f , U f , Wi, Ui, WC, UC, Wo, and Uo are weight matrices connecting xt, ht−1 to
the three gates and the cell input, and where b f , bi, bc, bo are bias terms of the three gates
and the cell input. The sigmoid function is represented by σ(x), and tanh represents the
hyperbolic tangent function.
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4.3.2. LSTM Encoder-Decoder

The LSTM encoder-decoder architecture is also called a sequence-to-sequence model,
and it converts an input data in a sequence form into an output data in a sequence form.
This model is most used in the fields of machine translation, text summarization, and
image captioning [47,48]. The trajectory prediction model of the SV also predicts a future
trajectory sequence by training input sequence. Therefore, it has been widely used in the
field of autonomous vehicles in recent years [24,49]. LSTM encoder-decoder is based on
the RNN model and is divided into an encoder part and a decoder part. First, it receives an
input value from the encoder part and creates a vector containing the information of the
input value. After that, the decoder uses this vector to recursively generate an output value.

The LSTM encoder-decoder architecture of the trajectory prediction model proposed
in our paper is shown in Figure 10. Our model defined the observation time of previous
trajectory and the prediction time of future trajectory as 2 s. The input data is divided
into information obtained through the camera and information obtained through V2V
communication. The feature values obtained through the camera are the coordinates and
width/height of the bounding box. Feature values obtained through V2V communication
include relative coordinates, velocity, acceleration, heading, and steering angle values from
among BSM information for SV.
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5. Experiment and Results
5.1. Vehicle Configuration

In our experiment, EV is equipped with sensors to obtain feature values to be used in
the trajectory prediction model. We obtained the training dataset to be used for the model
using two vehicles as shown in Figure 11. We obtained BSM of SV using Cohda MK5(Cohda
Wireless, Wayville, Australia) as V2V communication device. However, since the GPS
receiver of the Cohda MK5 provides low location accuracy, we improved the location
accuracy by using a DGPS receiver that can use NTRIP correction information as shown
in Figure 12. Although the improved location information can be transmitted/received
through V2V communication, a location error occurs in the process of changing the global
coordinate system to the local coordinate system as mentioned in Section 3. In order
to correct the location error, we calculated the location of the SV using the point cloud
obtained from the Velodyne LIDAR-VLP 16 sensor as shown in Figure 13.

5.2. Dataset Collection

In the training dataset, the actual vehicle driving trajectory was collected in the testbed
similar to a highway environment as shown in Figure 14. We did not set a specific trajectory
to create various driving trajectories; rather, we defined only the scenario as shown in
Figure 15, and the actual driving was done freely by the driver. This scenario is divided
into four action types: acceleration and lane-keeping, acceleration and lane-changing,
deceleration and lane-keeping, and deceleration and lane-changing. To avoid overfitting
and to reflect various driver characteristics as much as possible, the number of trajectories
was increased by reflecting the lateral inversion and longitudinal shift to the trajectory [50].
These four scenarios are sampled at the dataset sampling rate of 10 Hz. We used the robot
operating system (ROS) to synchronize the time input data from camera sensor, lidar, and
V2V communication [51]. As a result, we collected 932 trajectories from four scenarios,
which consist of a total of 9428 instances as shown in Table 2.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 10. LSTM encoder-decoder architecture for trajectory prediction model. 

5. Experiment and Results 
5.1. Vehicle Configuration 

In our experiment, EV is equipped with sensors to obtain feature values to be used 
in the trajectory prediction model. We obtained the training dataset to be used for the 
model using two vehicles as shown in Figure 11. We obtained BSM of SV using Cohda 
MK5(Cohda Wireless, Wayville, Australia) as V2V communication device. However, 
since the GPS receiver of the Cohda MK5 provides low location accuracy, we improved 
the location accuracy by using a DGPS receiver that can use NTRIP correction information 
as shown in Figure 12. Although the improved location information can be transmitted/re-
ceived through V2V communication, a location error occurs in the process of changing the 
global coordinate system to the local coordinate system as mentioned in Section 3. In order 
to correct the location error, we calculated the location of the SV using the point cloud 
obtained from the Velodyne LIDAR-VLP 16 sensor as shown in Figure 13. 

  
(a) (b) 

Figure 11. (a) EV’s sensor configuration; (b) SV’s sensor configuration. Figure 11. (a) EV’s sensor configuration; (b) SV’s sensor configuration.



Electronics 2021, 10, 420 12 of 19
Electronics 2021, 10, x FOR PEER REVIEW 13 of 20 
 

 

 
 

(a) (b) 

Figure 12. (a) DGPS antenna mounted in the center of the vehicle; (b) environment inside the vehi-
cle. 

  
(a) (b) 

Figure 13. Perception system result. (a) Bounding box obtained from camera sensor; (b) estimated 
location of SV obtained by fusion of LIDAR and V2V communications. 

5.2. Dataset Collection 
In the training dataset, the actual vehicle driving trajectory was collected in the 

testbed similar to a highway environment as shown in Figure 14. We did not set a specific 
trajectory to create various driving trajectories; rather, we defined only the scenario as 
shown in Figure 15, and the actual driving was done freely by the driver. This scenario is 
divided into four action types: acceleration and lane-keeping, acceleration and lane-
changing, deceleration and lane-keeping, and deceleration and lane-changing. To avoid 
overfitting and to reflect various driver characteristics as much as possible, the number of 
trajectories was increased by reflecting the lateral inversion and longitudinal shift to the 
trajectory [50]. These four scenarios are sampled at the dataset sampling rate of 10 Hz. We 
used the robot operating system (ROS) to synchronize the time input data from camera 
sensor, lidar, and V2V communication [51]. As a result, we collected 932 trajectories from 
four scenarios, which consist of a total of 9428 instances as shown in Table 2. 

Table 2. Dataset statistics. 

Scenario Number of Trajectory 
Acceleration and Lane-Keeping 242 

Acceleration and Lane-Changing 230 
Deceleration and Lane-Keeping 231 

Deceleration and Lane-Changing 229 

Figure 12. (a) DGPS antenna mounted in the center of the vehicle; (b) environment inside the vehicle.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 20 
 

 

 
 

(a) (b) 

Figure 12. (a) DGPS antenna mounted in the center of the vehicle; (b) environment inside the vehi-
cle. 

  
(a) (b) 

Figure 13. Perception system result. (a) Bounding box obtained from camera sensor; (b) estimated 
location of SV obtained by fusion of LIDAR and V2V communications. 

5.2. Dataset Collection 
In the training dataset, the actual vehicle driving trajectory was collected in the 

testbed similar to a highway environment as shown in Figure 14. We did not set a specific 
trajectory to create various driving trajectories; rather, we defined only the scenario as 
shown in Figure 15, and the actual driving was done freely by the driver. This scenario is 
divided into four action types: acceleration and lane-keeping, acceleration and lane-
changing, deceleration and lane-keeping, and deceleration and lane-changing. To avoid 
overfitting and to reflect various driver characteristics as much as possible, the number of 
trajectories was increased by reflecting the lateral inversion and longitudinal shift to the 
trajectory [50]. These four scenarios are sampled at the dataset sampling rate of 10 Hz. We 
used the robot operating system (ROS) to synchronize the time input data from camera 
sensor, lidar, and V2V communication [51]. As a result, we collected 932 trajectories from 
four scenarios, which consist of a total of 9428 instances as shown in Table 2. 

Table 2. Dataset statistics. 

Scenario Number of Trajectory 
Acceleration and Lane-Keeping 242 

Acceleration and Lane-Changing 230 
Deceleration and Lane-Keeping 231 

Deceleration and Lane-Changing 229 

Figure 13. Perception system result. (a) Bounding box obtained from camera sensor; (b) estimated location of SV obtained
by fusion of LIDAR and V2V communications.

Electronics 2021, 10, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 14. Testing ground at the Korea Automotive Technology Institute. 

 
Figure 15. Trajectory definition for data set: acceleration and lane keeping (same/adjacent), acceler-
ation and lane changing (left/right). 

5.3. Trajectory Prediction Model 
5.3.1. Lane Change Prediction Model 

We used an RF algorithm that ensembles multiple decision trees to predict the lane 
change intention of SV. RF has the advantage of not being sensitive to hyperparameters, 
but it has a disadvantage of low accuracy in the case of complex classification because it 
is an ensemble of decision trees. For example, the coordinate value of the bounding box 
for SV obtained through the camera sensor clearly shows the characteristic of moving to 
the center. In addition, the steering angle, which is part of the BSM information obtained 
through V2V communication, is an important feature value that SV uses to distinguish 
between lane-keeping and lane-changing. As can be seen in Figure 16, using the learning 
curve, we analyzed whether overfitting or underfitting was occurring. 

 
Figure 16. Learning curve of lane change prediction model using the RF. 

Figure 14. Testing ground at the Korea Automotive Technology Institute.

Electronics 2021, 10, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 14. Testing ground at the Korea Automotive Technology Institute. 

 
Figure 15. Trajectory definition for data set: acceleration and lane keeping (same/adjacent), acceler-
ation and lane changing (left/right). 

5.3. Trajectory Prediction Model 
5.3.1. Lane Change Prediction Model 

We used an RF algorithm that ensembles multiple decision trees to predict the lane 
change intention of SV. RF has the advantage of not being sensitive to hyperparameters, 
but it has a disadvantage of low accuracy in the case of complex classification because it 
is an ensemble of decision trees. For example, the coordinate value of the bounding box 
for SV obtained through the camera sensor clearly shows the characteristic of moving to 
the center. In addition, the steering angle, which is part of the BSM information obtained 
through V2V communication, is an important feature value that SV uses to distinguish 
between lane-keeping and lane-changing. As can be seen in Figure 16, using the learning 
curve, we analyzed whether overfitting or underfitting was occurring. 

 
Figure 16. Learning curve of lane change prediction model using the RF. 

Figure 15. Trajectory definition for data set: acceleration and lane keeping (same/adjacent), accelera-
tion and lane changing (left/right).



Electronics 2021, 10, 420 13 of 19

Table 2. Dataset statistics.

Scenario Number of Trajectory

Acceleration and Lane-Keeping 242
Acceleration and Lane-Changing 230
Deceleration and Lane-Keeping 231

Deceleration and Lane-Changing 229

5.3. Trajectory Prediction Model
5.3.1. Lane Change Prediction Model

We used an RF algorithm that ensembles multiple decision trees to predict the lane
change intention of SV. RF has the advantage of not being sensitive to hyperparameters,
but it has a disadvantage of low accuracy in the case of complex classification because it
is an ensemble of decision trees. For example, the coordinate value of the bounding box
for SV obtained through the camera sensor clearly shows the characteristic of moving to
the center. In addition, the steering angle, which is part of the BSM information obtained
through V2V communication, is an important feature value that SV uses to distinguish
between lane-keeping and lane-changing. As can be seen in Figure 16, using the learning
curve, we analyzed whether overfitting or underfitting was occurring.
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5.3.2. Trajectory Prediction Model

We used the LSTM encoder-decoder architecture to predict the trajectory of the SV. The
input vectors defined in Section 4.1 were embedded with a 256 unit fully connected (FC)
layer prior to being input to the RNN cell of encoder architecture. Each fully connected layer
used rectified linear unit (ReLU) as an activation function. The RNN cells of the encoder
architecture used a two stacked LSTM of width 256, batch size of 100. Symmetrically, we
also used two stacked LSTMs in the decoder architecture. Then, the output value from the
LSTM was fed to 256 FC layers to calculate the final output vector. We defined both the
observation time and prediction time as 2 s. Since the sampling period of the dataset is
100 ms, the sequence lengths of both the input vector and the output vector are 20 steps.
To compare the results of the path prediction model using the LSTM encoder-decoder
architecture, we used the path prediction results using only the stacked LSTM model and
the CTRV model.

As shown in Figure 17a,b, the performance of the trajectory prediction model is excel-
lent when driving straight ahead with constant acceleration and deceleration. However,
when the SV attempts to change lanes while increasing velocity, the path prediction accu-
racy falls off as shown in Figure 17c. In Figure 17, the marker plots the trajectory of 2 s at
intervals of 0.5 s, and the coordinate system is the x-axis in the vertical direction and the
y-axis in the horizontal direction. Table 3 shows the Mean Absolute Error (MAE) of the
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LSTM encoder-decoder architecture used in this paper, and the MAE of the CTRV model
and the stacked LSTM model for comparison.

MAE =
1
N

N

∑
i=1
|(x, y)t − (x̂, ŷ)t| (13)

where (x, y) is the actual driving trajectory of the SV, (x̂, ŷ) is the driving trajectory pre-
dicted through three models and t is each timestep within the prediction horizon.
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Table 3. Trajectory prediction accuracy (MAE).

Prediction Horizon
(s)

Trajectory Prediction Model

CTRV
(m)

LSTM
(m)

LSTM
Encoder-Decoder

(m)

0.5 0.21 0.62 0.58
1 0.52 1.19 0.82

1.5 1.84 1.42 1.23
2 2.11 1.81 1.47

5.3.3. Grid Prediction Model

The horizontal direction of the grid is predicted through the lane changing prediction
model, which is the method we propose in this paper, and the trajectory prediction mode
is used for vertical prediction. The length of the grid varies depending on the relative
speed of SV and EV. For example, if the relative speed differs by 1 m/s, the width of the
grid is defined as 1 m. The width of the grid was defined as 3 m, the width of the lane
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of the experimental test bed. Using RF, the lateral position of the grid was determined
by predicting whether or not the lane change of the SV in the adjacent lane occurred. In
addition, the longitudinal position of the grid was determined by the predicted longitudinal
distance from the LSTM encoder-decoder architecture. Figure 18 shows the predicted grid
where the SV will be located after 2 s.
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Table 4 shows the probability that a true trajectory is included in the predicted grid
compared with other models. As shown in Equation (14), we used the accuracy to express
this probability.

ACC =
TP + TN

FP + FN + TP + TN
(14)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
We defined nine grid cells defined in advance as labels, and defined as true if the actual
trajectory and the predicted trajectory of SV exist in the same cell, otherwise false. The
horizontal length of the cell is the same as the lane width, and the vertical length is
determined according to the relative speed of EV and SV. If the relative speed is 1 m/s, the
vertical length of the cell is defined as 1 m. The result of trajectory prediction using the
grid is rather worse for short prediction times such as 0.5 or 1 s because the lateral grid is
determined by predicting the intention to change lanes before the lane change is completed.
However, the accuracy of prediction after 1 s is far higher than that of other models.
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Table 4. Trajectory prediction accuracy.

Prediction Horizon (s)
Trajectory Prediction Model

CTRV
(%)

LSTM
(%)

LSTM Encoder-Decoder
(%)

0.5 87.21 86.74 87.18
1 88.32 88.81 89.46

1.5 82.24 87.01 91.83
2 80.93 86.84 90.87

6. Conclusions

In this paper, we presented grid prediction model using RF and LSTM encoder-
decoder architecture. This model uses RF to predict the lane change intention of SV
and determines the horizontal position of the grid. Then, the LSTM encoder-decoder
architecture is used to predict the trajectory of the SV and determine the vertical position
of the grid. In order to record the dataset to be used for training the proposed prediction
model, we used a vehicle equipped with a V2V communication device, camera sensor and
LIDAR. In this experiment, 932 trajectories were collected in the testbed, an environment
similar to a highway, and the training data and test data were divided into 70 to 30. As
a result of the experiment, the positional accuracy of the proposed model was high even
after 1 s. Conversely, it showed relatively low position accuracy before 1 s because the
horizontal position of the grid was determined by predicting lane changes before the SV
crosses the lane.

The proposed method assumes that the bounding box of the SV is accurately acquired
through image processing. It also calculates the exact location of SV using V2V communi-
cation and LIDAR. However, there is a limitation in that it is not possible to recognize SV
in areas where V2V communication is not possible. Therefore, it is necessary to improve
the recognition system by using only the LIDAR or through fusion of the LIDAR and
camera sensors so that the SV can be recognized even in an area where V2V communication
is impossible or a delay occurs. Since our test vehicle is equipped with only Velodyne
LIDAR-VLP 16, we are planning a study to fuse camera sensors and LIDAR to improve the
perception system [52,53]. As a future study, we plan to compare the accuracy of trajectory
prediction for the surrounding vehicles by gradually increasing the number of SVs. In
the case of object detection using a camera sensor in an actual road environment, there is
also a disadvantage that objects not of interest are also detected. For example, the vehicle
is detected not only for vehicles traveling in the same direction as the EV, but also for
vehicles approaching from opposite lanes. Therefore, we are planning a study to increase
the accuracy of the SV’s bounding box and the algorithm for selecting the target vehicle.

It is very important to ensure real-time performance of CWS, which predicts the path
of surrounding vehicles and warns in advance. We used a laptop equipped with a GTX
2070 graphic card and conducted an experiment in a driving environment with only one
SV. In order to increase the maximum computing performance, video processing was
performed using NVIDIA’s CUDA, and research was conducted in the ROS environment.
As a result of the experiment, there was no delay caused by a large amount of computation.
As a future study, we plan to gradually increase the number of surrounding vehicles
and compare the delay problems caused by the accuracy of trajectory prediction and the
processing speed of the SVs.

The proposed model that predicts the trajectory of SV using the grid determined
in this way is utilized as an advantage in CWS. The performance of CWS depends on
the prediction accuracy of the lateral position. The proposed prediction model performs
robustly in prediction accuracy for the lateral position. For future work, we are planning
to create a system that predicts the trajectory of EV and sounds a prewarning to prevent
collision when the SV and EV grids overlap.
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