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1. Introduction

In 1940, Ulam [32] raised a question concerning the stability of homomorphisms: Given a group
G1, a metric group G2 with the metric d(·, ·), and a nonnegative real number ε, does there exist a δ > 0
such that if a mapping f : G1 → G2 satisfies the inequality

d ( f (xy), f (x) f (y)) < δ

for all x, y ∈ G1 then there exists a homomorphism F : G1 → G2 with

d ( f (x), F(x)) < ε

for all x ∈ G1? As mentioned above, when this problem has a solution, we say that the homomorphisms
from G1 to G2 are stable.

In 1941, Hyers [12] gave a partial solution of Ulam’s problem for the case of approximately additive
mappings f : X → Y , where X and Y are Banach spaces and f satisfies Hyers inequality

‖ f (x + y) − f (x) − f (y)‖ ≤ ε
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for all x, y ∈ X. The limit

A(x) = lim
n→∞

f (2nx)
2n

exists for all x ∈ X and the mapping A : X → Y is a unique additive mapping which satisfies

‖ f (x) − A(x)‖ ≤ ε

for all x ∈ X.
The outcome declared that the Cauchy functional equation is stable for any pair of Banach space.

The technique which was providing through Hyers, forming the additive function A(x), is called direct
method. This is called as Ulam stability for the Cauchy additive functional equation. We refer the
interested readers for more information on such problems to the articles [6, 9, 11, 13, 15, 16, 18, 26, 33].

Hyers’ result was generalized by Aoki [1] for additive mappings and Rassias [25] for linear
mappings by considering the stability problem with unbounded Cauchy differences. Furthermore, in
1994, a generalization of Rassias’ theorem was obtained by Gavruta [10] by replacing the bound
ε (‖x‖p + ‖y‖p) by a general control function ϕ(x, y).

In 2008, Mihet and Radu [19] applied fixed point alternative method to prove the stability theorems
of the Cauchy functional equation:

f (x + y) − f (x) − f (y) = 0

in random normed spaces. In 2008, Najati and Moghimi [22] obtained a stability of the functional
equation deriving from quadratic and additive function:

f (2x + y) + f (2x − y) + 2 f (x) − f (x + y) − f (x − y) − 2 f (2x) = 0 (1.1)

by using the direct method. After that, Jin and Lee [14] proved the stability of the above mentioned
functional equation in random normed spaces.

In 2011, Saadati et al. [24] proved the nonlinear stability of the quartic functional equation of the
form

16 f (x + 4y) + f (4x − y) = 306
[
9 f

(
x +

y
3

)
+ f (x + 2y)

]
+ 136 f (x − y)

−1394 f (x + y) + 425 f (y) − 1530 f (x)

in the setting of random normed spaces. Furthermore, the interdisciplinary relation among the theory
of random spaces, the theory of non-Archimedean spaces, the fixed point theory, the theory of
intuitionistic spaces and the theory of functional equations were also presented. Azadi Kenary [4]
investigated the Ulam stability of the following nonlinear function equation

f ( f (x) − f (y)) + f (x) + f (y) = f (x + y) + f (x − y),

in random normed spaces. Recently, the stability problems of several functional equations in various
spaces such as random normed spaces, intuitionistic random normed spaces, quasi-Banach spaces,
fuzzy normed spaces have been extensively investigated by a number of mathematicians such as Azadi
Kenary [2, 3], Chang et al. [5], Eshaghi Gordji et al. [7, 8], Mihet et al. [20], Saadati et al. [21, 27, 28]
and Tamilvanan et al. [23, 31].

AIMS Mathematics Volume 6, Issue 1, 908–924.



910

In this paper, we introduce a new mixed type quadratic-additive functional equation of the form

φ

 ∑
1≤a≤m

asa

 +
∑

1≤a≤m

φ

−asa +

m∑
b=1;a,b

bsb

 = (m − 3)
∑

1≤a<b≤m

φ (asa + bsb) (1.2)

−
(
m2 − 5m + 2

) ∑
1≤a≤m

a2
[
φ(sa) + φ(−sa)

2

]
−

(
m2 − 5m + 4

) ∑
1≤a≤m

a
[
φ(sa) − φ(−sa)

2

]
,

where φ(0) = 0 and m is an integer greater than 4. The main aim of this work is to obtain its general
solution and to investigate the Ulam stability by using the Hyers method in random normed spaces. It
is easy to see that the mapping φ(s) = as2 + bs is a solution of the functional equation (1.2). Every
solution of the functional equation deriving from quadratic and additive function (1.2) is said to be a
general quadratic mapping.

2. Preliminaries

In this section, we state the usual terminology, notions and conventions of the theory of random
normed spaces as in [29].

Let Γ+ denote the set of all probability distribution functions F : R ∪ [−∞,+∞] → [0, 1] such
that F is left-continuous and nondecreasing on R and F(0) = 0, F(+∞) = 1. It is clear that the set
D+ = {F ∈ Γ+ : l−F(−∞) = 1}, where l− f (x) = limt→x− f (t), is a subset of Γ+. The set Γ+ is partially
ordered by the usual pointwise ordering of functions, that is, F ≤ G if and only if F(t) ≤ G(t) for all
t ∈ R. For any a ≥ 0, the element Ha(t) of D+ is defined by

Ha(t) =

0, if t ≤ a,

1, if t > a.

We can easily show that the maximal element in Γ+ is the distribution function H0(t).

Definition 2.1. [29] A function T : [0, 1]2 → [0, 1] is a continuous triangular norm (briefly, a t-norm)
if T satisfies the following conditions:

(a) T is commutative and associative;
(b) T is continuous;
(c) T (x, 1) = x for all x ∈ [0, 1];
(d) T (x, y) ≤ T (z,w) whenever x ≤ z and y ≤ w for all x, y, z,w ∈ [0, 1].

Three typical examples of continuous t-norms are TP(x, y) = xy, Tmax(x, y) = max{a + b − 1, 0},
TM(x, y) = min{a, b}.

Recall that, if T is a t-norm and {xn} is a sequence in [0, 1], then T n
i=1xi is defined recursively by

T 1
i=1xi = x1 and T n

i=1xi = T
(
T n−1

i=1 xi, xn

)
for all n ≥ 2. T∞i=nxi is defined by T∞i=1xn+i.

Definition 2.2. [30] A random normed space (briefly, RNS) is a triple (X, µ,T ), where X is a vector
space, T is a continuous t-norm and µ : X → D+ is a mapping such that the following conditions hold:
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(RN1) µx(t) = H0(t) for all x ∈ X and t > 0 if and only if x = 0;
(RN2) µαx(t) = µx

(
t
|α|

)
for all α ∈ R with α , 0, x ∈ X and t ≥ 0;

(RN3) µx+y(t + s) ≥ T
(
µx(t), µy(t)

)
for all x, y ∈ X and t, s ≥ 0.

Every normed space (X, ‖ · ‖) defines a random normed space (X, µ,TM), where µu(t) = t
t+‖u‖ for all

t > 0 and TM is the minimum t-norm. This space X is called the induced random normed space. If the
t-norm T is such that sup0<a<1 T (a, a) = 1, then every random normed space (X, µ,T ) is a metrizable
linear topological space with the topology τ (called the µ-topology or the (ε, δ)-topology, where ε > 0
and λ ∈ (0, 1)) induced by the base {U(ε, λ)} of neighbourhoods of θ, where U(ε, λ) = {x ∈ X : Ψx(ε) >
1 − λ}.

Definition 2.3. Let (X, µ,T ) be a random normed space.

(i) A sequence {xn} in X is said to be convergent to a point x ∈ X (write xn → x as n → ∞) if
limn→∞ µxn−x(t) = 1 for all t > 0.

(ii) A sequence {xn} in X is called a Cauchy sequence in X if limn→∞ µxn−xm(t) = 1 for all t > 0.
(iii) The random normed space (X, µ,T ) is said to be complete if every Cauchy sequence in X is

convergent.

Theorem 2.4. [29] If (X, µ,T ) is a random normed space and {xn} is a sequence such that xn → x,
then limn→∞ µxn(t) = µx(t).

3. Solution of the functional equation (1.2)

Throughout this section, assume that E and F are real vector spaces.

Theorem 3.1. If φ : E → F is an odd mapping which satisfies the functional equation (1.2) for all
s1, s2, · · · , sm ∈ E, then φ is additive.

Proof. In the sense of oddness of φ, φ(−s) = −φ(s) for all s ∈ E. Then (1.2) turns into

φ

 ∑
1≤a≤m

asa

 +
∑

1≤a≤m

φ

−asa +

m∑
b=1;a,b

bsb

 = (m − 3)
∑

1≤a<b≤m

φ (asa + bsb)

−
(
m2 − 5m + 4

) ∑
1≤a≤m

aφ(sa) (3.1)

for all s1, s2, · · · , sm ∈ E. Now, setting s1 = s2 = · · · = sm = 0 in (3.1), we obtain that φ(0) = 0.
Replacing (s1, s2, · · · , sm) by (0, s, 0, · · · ) in (3.1), we obtain that

φ(2s) = 2φ(s) (3.2)

for all s ∈ E. Again replacing s by 2s in (3.2), we get

φ(22s) = 22φ(s) (3.3)

for all s ∈ E. Also, changing s by 2s in (3.3), we have

φ(23s) = 23φ(s) (3.4)
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for all s ∈ E. From (3.2)–(3.4), we conclude, for a positive integer m,

φ(2ms) = 2mφ(s)

for all s ∈ E. Now, replacing (s1, s2, · · · , sm) by (u, v
2 , 0, · · · , 0) in (3.1), we get

φ(u + v) = φ(u) + φ(v)

for all u, v ∈ E. Therefore, the mapping φ is additive. �

Theorem 3.2. If φ : E → F is an even mapping which satisfies the functional equation (1.2) for all
s1, s2, · · · , sm ∈ E, then φ is quadratic.

Proof. In the sense of evenness of φ, φ(−s) = φ(s) for all s ∈ E. Then (1.2) becomes

φ

 ∑
1≤a≤m

asa

 +
∑

1≤a≤m

φ

−asa +

m∑
b=1;a,b

bsb

 = (m − 3)
∑

1≤a<b≤m

φ (asa + bsb)

−
(
m2 − 5m + 2

) ∑
1≤a≤m

a2φ(sa) (3.5)

for all s1, s2, · · · , sm ∈ E. Now, setting s1 = s2 = · · · = sm = 0 in (3.5), we get φ(0) = 0. Letting
(s1, s2, · · · , sm) = (0, s, 0, · · · ) in (3.5), we have

φ(2s) = 22φ(s) (3.6)

for all s ∈ E. Replacing s by 2s in (3.6), we obtain

φ(22s) = 24φ(s) (3.7)

for all s ∈ E. Replacing s by 2s in (3.7), we get

φ(23s) = 26φ(s) (3.8)

for all s ∈ E. From (3.6)–(3.8), we conclude, for a positive integer m,

φ(2ms) = 22mφ(s)

for all s ∈ E. Now, replacing (s1, s2, · · · , sm) by (u, v
2 , 0, · · · , 0) in (3.5), we get

φ(u + v) + φ(u − v) = 2φ(u) + 2φ(v)

for all u, v ∈ E. Therefore, the mapping φ is quadratic. �

Theorem 3.3. A mapping φ : E → F satisfies φ(0) = 0 and (1.2) for all s1, s2, · · · , sm ∈ E if and only
if there exist a symmetric bi-additive mapping Q : E × E → F and an additive mapping A : E → F
such that φ(s) = Q(s, s) + A(s) for all s ∈ E.

AIMS Mathematics Volume 6, Issue 1, 908–924.



913

Proof. Let φ satisfy (1.2) and φ(0) = 0. We split φ into the odd part and even part as follows

φo(s) =
φ(s) − φ(−s)

2
, φe(s) =

φ(s) + φ(−s)
2

for all s ∈ E, respectively. It is clear that φ(s) = φe(s) + φo(s) for all s ∈ E. It is easy to show that the
mappings φo and φe satisfy (1.2). Hence by Theorems 3.1 and 3.2, we have that φo and φe are additive
and quadratic, respectively. So there exist a symmetric bi-additive mapping Q : E × E → F such that
φe(s) = Q(s, s) and an additive mapping A : E → F such that φo(s) = A(s) for all s ∈ E. Hence
φ(s) = Q(s, s) + A(s) for all s ∈ E.

Conversely, assume that there exist a symmetric bi-additive mapping Q : E × E → F and an
additive mapping A : E → F such that φ(s) = Q(s, s) + A(s) for all s ∈ E. One can easily show that the
mappings s 7→ Q(s, s) and the mapping A : E → F satisfy the functional equation (1.2). Therefore,
the mapping φ : E → F satisfies the functional equation (1.2). �

For our notational handiness, for a mapping φ : E → F, we define

Dφ(s1, s2, · · · , sm) = φ

 ∑
1≤a≤m

asa

 +
∑

1≤a≤m

φ

−asa +

m∑
b=1;a,b

bsb


− (m − 3)

∑
1≤a<b≤m

φ (asa + bsb)

+
(
m2 − 5m + 2

) ∑
1≤a≤m

a2
[
φ(sa) + φ(−sa)

2

]
+

(
m2 − 5m + 4

) ∑
1≤a≤m

a
[
φ(sa) − φ(−sa)

2

]
for all s1, s2, · · · , sm ∈ E.

4. Main results for odd case

In this section, we investigate the Ulam stability of the finite variable functional equation (1.2) for
odd case in random normed spaces by using the Hyers method.

Theorem 4.1. Let E be a real linear space,
(
Z, µ

′

,min
)

be a random normed space and ϕ : Em → Z
be a function such that there exists 0 < ρ < 1

2 such that

µ
′

ϕ( s1
2 ,

s2
2 ,··· ,

sm
2 ) (t) ≥ µ

′

ρϕ(s1,s2,··· ,sm) (t) (4.1)

for all s1, s2, · · · , sm ∈ E and t > 0 and limm→∞ µ
′

ϕ( s1
2m ,

s2
2m ,··· ,

sm
2m )

(
t

2m

)
= 1 for all s1, s2, · · · , sm ∈ E and

t > 0. Let (F, µ,min) be a complete random normed space. If φ : E → F is a mapping such that

µDφ(s1,s2,··· ,sm) (t) ≥ µ
′

ϕ(s1,s2,··· ,sm)(t) (4.2)

for all s1, s2, · · · , sm ∈ E and t > 0, then the limit A1(s) = limm→∞ 2mφ
(

s
2m

)
exists for all s ∈ E and

defines a unique additive mapping A1 : E → F such that

µφ(s)−A1(s) (t) ≥ µ
′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 4)

(
1 − 2ρ
ρ

)
t
)

(4.3)
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for all s ∈ E and t > 0.

Proof. Replacing (s1, s2, · · · , sm) by (0, s, 0, · · · , 0) in (4.2), we get

µ(m2−5m+4)φ(2s)−2(m2−5m+4)φ(s)(t) ≥ µ
′

ϕ(0,s,0,··· ,0)(t) (4.4)

for all s ∈ E. From (4.4), we get

µφ(2s)−2φ(s)(t) ≥ µ
′

ϕ(0,s,0,··· ,0)((m
2 − 5m + 4)t) (4.5)

for all s ∈ E. Again, replacing s by s
2 in (4.5), we have

µ2φ( s
2 )−φ(s)(t) ≥ µ

′

ϕ(0, s
2 ,0,··· ,0)((m

2 − 5m + 4)t) (4.6)

for all s ∈ E. Replacing s by s
2n in (4.6) and using (4.1), we obtain

µ2n+1φ
(

s
2n+1

)
−2nφ( s

2n )(t) ≥ µ
′

ϕ(0, s
2n+1 ,0,··· ,0)

(
(m2 − 5m + 4)

t
2n

)
≥ µ

′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 4)

t
2nρn+1

)
(4.7)

for all s ∈ E. We know that

2nφ
( s
2n

)
− φ (s) =

n−1∑
l=0

2l+1φ
( s
2l+1

)
− 2lφ

( s
2l

)
and so

µ2nφ( s
2n )−φ(s)

( ∑n−1
l=0 2lρl+1

(m2 − 5m + 4)
t
)

= µ∑n−1
l=0 2l+1φ

(
s

2l+1

)
−2lφ

(
s

2l

) ( ∑n−1
l=0 2lρl+1

(m2 − 5m + 4)
t
)

≥ T n−1
l=0

(
µ2l+1φ

(
s

2l+1

)
−2lφ

(
s

2l

) ( 2lρl+1

(m2 − 5m + 4)
t
))

≥ T n−1
l=0

(
µ
′

ϕ(0,s,0,··· ,0)(t)
)

≥ µ
′

ϕ(0,s,0,··· ,0)(t)

⇒ µ2nφ( s
2n )−φ(s)(t) ≥ µ

′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 4)∑n−1

l=0 2lρl+1
t
)

(4.8)

for all s ∈ E. Replacing s by s
2q in (4.8), we have

µ2n+qφ
(

s
2n+q

)
−2qφ( s

2q )(t) ≥ µ
′

ϕ(0,s,0,··· ,0)

 (m2 − 5m + 4)∑n+q−1
l=q 2lρl+1

t

 (4.9)

for all s ∈ E. Since limq,n→∞ µ
′

ϕ(0,s,0,··· ,0)

(
(m2−5m+4)∑n+q−1

l=q 2lρl+1
t
)

= 1, it follows that {2nφ
(

s
2n

)
}∞n=1 is a Cauchy

sequence in a complete random normed space (F, µ,min) and so there exists a point A1(s) ∈ F such
that limn→∞ 2nφ

(
s

2n

)
= A1(s). Fix s ∈ E and put q = 0 in (4.9). Then we obtain

µ2nφ( s
2n )−φ(s)(t) ≥ µ

′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 4)∑n−1

l=0 2lρl+1
t
)
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and so, for any δ > 0,

µA1(s)±2nφ( s
2n )−φ(s)(t + δ) ≥ T

(
µA1(s)−2nφ( s

2n )(δ), µ2nφ( s
2n )−φ(s)(t)

)
(4.10)

≥ T
(
µA1(s)−2nφ( s

2n )(δ), µ
′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 4)∑n−1

l=0 2lρl+1
t
))

for all s ∈ E and t > 0. Taking n→ ∞ in (4.10), we have

µA1(s)−φ(s)(t + δ) ≥ µ
′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 4)

(
1 − 2ρ
ρ

)
t
)

(4.11)

for all s ∈ E. Since δ is arbitrary, by taking δ→ 0 in (4.11), we obtain

µA1(s)−φ(s)(t) ≥ µ
′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 4)

(
1 − 2ρ
ρ

)
t
)

for all s ∈ E. Now, replacing (s1, s2, · · · , sm) by
(

s1
2n ,

s2
2n , · · · ,

sm
2n

)
in (4.2), we have

µ2nDφ( s1
2n ,

s2
2n ,··· ,

sm
2n )(t) ≥ µ

′

ϕ( s1
2n ,

s2
2n ,··· ,

sm
2n )

( t
2n

)
for all s1, s2, · · · , sm ∈ E and t > 0. Since limn→∞ µ

′

ϕ( s1
2n ,

s2
2n ,··· ,

sm
2n )

(
t

2n

)
= 1, we conclude that A1 satisfies

the functional equation (1.2). On the other hand,

2A1

( s
2

)
− A1(s) = lim

n→∞
2n+1φ

( s
2n+1

)
− lim

n→∞
2nφ

( s
2n

)
= 0

for all s ∈ E. This implies that A1 : E → F is an additive mapping. To prove the uniqueness of the
additive mapping A1, assume that there exists another additive mapping A2 : E → F which satisfies
the inequality (4.3). Then we get

µA1(s)−A2(s)(t) = lim
n→∞

µ2nA1( s
2n )−2nA2( s

2n )(t)

≥ lim
n→∞

min
{
µ2nA1( s

2n )−2nφ( s
2n )

( t
2

)
, µ2nφ( s

2n )−2nA2( s
2n )

( t
2

) }
≥ lim

n→∞
µ
′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 4)

(
1 − 2ρ
2n+1ρn

)
t
)

for all s ∈ E and t > 0. Since limn→∞(m2 − 5m + 4)
(

1−2ρ
2n+1ρn

)
t = ∞, we have

lim
n→∞

µ
′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 4)

(
1 − 2ρ
2n+1ρn

)
t
)

= 1.

It follows that µA1(s)−A2(s)(t) = 1 for all t > 0 and so A1(s) = A2(s). This completes the proof. �

Corollary 4.2. Let E be a real normed linear space, (Z, µ
′

,min) be a random normed space and
(F, µ,min) be a complete random normed space. Let p be a positive real number with p > 1, z0 ∈ Z
and φ : E → F be a mapping satisfying

µDφ(s1,s2,··· ,sm)(t) ≥ µ
′(∑m

j=1 ‖s j‖p
)
z0

(t) (4.12)
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for all s1, s2, · · · , sm ∈ E and t > 0. Then the limit A1(s) = limn→∞ 2nφ
(

s
2n

)
exists for all s ∈ E and

defines a unique additive mapping A1 : E → F such that

µφ(s)−A1(s)(t) ≥ µ
′

‖s‖pz0

(
(m2 − 5m + 4)(2p − 2)t

)
,

for all s ∈ E and t > 0.

Proof. Let ρ = 2−p and ϕ : Em → Z be a mapping defined by ϕ(s1, s2, · · · , sm) =
(∑m

j=1 ‖s j‖
p
)

z0. Then,
from Theorem 4.1, the conclusion follows. �

Theorem 4.3. Let E be a real linear space,
(
Z, µ

′

,min
)

be a random normed space and ϕ : Em → Z
be a function for which t there exists 0 < ρ < 2 such that

µ
′

ϕ(2s1,2s2,··· ,2sm) (t) ≥ µ
′

ρϕ(s1,s2,··· ,sm) (t) (4.13)

for all s1, s2, · · · , sm ∈ E and t > 0 and limn→∞ µ
′

ϕ(2n s1,2n s2,··· ,2n sm) (2nt) = 1 for all s1, s2, · · · , sm ∈ E and
t > 0. Let (F, µ,min) be a complete random normed space. If φ : E → F is a mapping satisfying
(4.2), then the limit A1(s) = limn→∞

φ(2n s)
2n exists for all s ∈ E and defines a unique additive mapping

A1 : E → F such that
µφ(s)−A1(s) (t) ≥ µ

′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 4)(2 − ρ)t

)
for all s ∈ E and t > 0.

Proof. Replacing (s1, s2, · · · , sm) by (0, s, 0, · · · , 0) in (4.2), we get

µ(m2−5m+4)φ(2s)−2(m2−5m+4)φ(s)(t) ≥ µ
′

ϕ(0,s,0,··· ,0)(t) (4.14)

for all s ∈ E. From (4.14), we obtain

µ φ(2s)
2 −φ(s)(t) ≥ µ

′

ϕ(0,s,0,··· ,0)(2(m2 − 5m + 4)t)

for all s ∈ E. Replacing s by 2ns in (4) and using (4.13), we obtain

µ φ(2n+1 s)
2n+1 −

φ(2n s)
2n

(t) ≥ µ
′

ϕ(0,2n s,0,··· ,0)

(
2n+1(m2 − 5m + 4)t

)
≥ µ

′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 4)

2n+1

ρn t
)

for all s ∈ E. The rest of the proof is similar to the proof of Theorem 4.1. �

Corollary 4.4. Let E be a real normed linear space, (Z, µ
′

,min) be a random normed space and
(F, µ,min) be a complete random normed space. Let p be a positive real number with 0 < p < 1,
z0 ∈ Z and φ : E → F be a mapping satisfying (4.12). Then the limit A1(s) = limn→∞

φ(2n s)
2n exists for

all s ∈ E and defines a unique additive mapping A1 : E → F such that

µφ(s)−A1(s)(t) ≥ µ
′

‖s‖pz0

(
(m2 − 5m + 4)(2 − 2p)t

)
for all s ∈ E and t > 0.

Proof. Let ρ = 2p and ϕ : Em → Z be a mapping defined by ϕ(s1, s2, · · · , sm) =
(∑m

j=1 ‖s j‖
p
)

z0. Then,
from Theorem 4.3, the conclusion follows. �
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5. Main results for even case

In this section, we investigate the Ulam stability of the finite variable functional equation (1.2) for
even case in random normed spaces by using the Hyers method.

Theorem 5.1. Let E be a real linear space,
(
Z, µ

′

,min
)

be a random normed space and ϕ : Em → Z
be a function for which there exists 0 < ρ < 1

22 such that

µ
′

ϕ( s1
2 ,

s2
2 ,··· ,

sm
2 ) (t) ≥ µ

′

ρϕ(s1,s2,··· ,sm) (t) (5.1)

for all s1, s2, · · · , sm ∈ E and t > 0 and limn→∞ µ
′

ϕ( s1
2n ,

s2
2n ,··· ,

sm
2n )

(
t

22n

)
= 1 for all s1, s2, · · · , sm ∈ E and

t > 0. Let (F, µ,min) be a complete random normed space. If φ : E → F is a mapping with φ(0) = 0
such that

µDφ(s1,s2,··· ,sm) (t) ≥ µ
′

ϕ(s1,s2,··· ,sm)(t) (5.2)

for all s1, s2, · · · , sm ∈ E and t > 0, then the limit Q2(s) = limn→∞ 22nφ
(

s
2n

)
exists for all s ∈ E and

defines a unique quadratic mapping Q2 : E → F such that

µφ(s)−Q2(s) (t) ≥ µ
′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 2)

(
1 − 22ρ

ρ

)
t
)

(5.3)

for all s ∈ E and t > 0.

Proof. Replacing (s1, s2, · · · , sm) by (0, s, 0, · · · , 0) in (5.2), we obtain

µ(m2−5m+2)φ(2s)−22(m2−5m+2)φ(s)(t) ≥ µ
′

ϕ(0,s,0,··· ,0)(t) (5.4)

for all s ∈ E. From (5.4), we have

µφ(2s)−22φ(s)(t) ≥ µ
′

ϕ(0,s,0,··· ,0)((m
2 − 5m + 2)t) (5.5)

for all s ∈ E. Replacing s by s
2 in (5.5), we get

µ22φ( s
2 )−φ(s)(t) ≥ µ

′

ϕ(0, s
2 ,0,··· ,0)((m

2 − 5m + 2)t) (5.6)

for all s ∈ E. Again, replacing s by s
2n in (5.6) and using (5.1), we have

µ22(n+1)φ
(

s
2n+1

)
−22nφ( s

2n )(t) ≥ µ
′

ϕ(0, s
2n+1 ,0,··· ,0)

(
(m2 − 5m + 2)

t
22n

)
≥ µ

′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 2)

t
22nρn+1

)
for all s ∈ E. We know that

22nφ
( s
2n

)
− φ (s) =

n−1∑
l=0

22(l+1)φ
( s
2l+1

)
− 22lφ

( s
2l

)
AIMS Mathematics Volume 6, Issue 1, 908–924.
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and so

µ22nφ( s
2n )−φ(s)

( ∑n−1
l=0 22lρl+1

(m2 − 5m + 2)
t
)

= µ∑n−1
l=0 22(l+1)φ

(
s

2l+1

)
−22lφ

(
s

2l

) ( ∑n−1
l=0 22lρl+1

(m2 − 5m + 2)
t
)

≥ T n−1
l=0

(
µ22(l+1)φ

(
s

2l+1

)
−22lφ

(
s

2l

) ( 22lρl+1

(m2 − 5m + 2)
t
))

≥ T n−1
l=0

(
µ
′

ϕ(0,s,0,··· ,0)(t)
)

≥ µ
′

ϕ(0,s,0,··· ,0)(t)

⇒ µ22nφ( s
2n )−φ(s)(t) ≥ µ

′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 2)∑n−1

l=0 22lρl+1
t
)

(5.7)

for all s ∈ E. Replacing s by s
2q in (5.7), we get

µ22(n+q)φ
(

s
2n+q

)
−22qφ( s

2q )(t) ≥ µ
′

ϕ(0,s,0,··· ,0)

 (m2 − 5m + 2)∑n+q−1
l=q 22lρl+1

t

 (5.8)

for all s ∈ E. Since limq,n→∞ µ
′

ϕ(0,s,0,··· ,0)

(
(m2−5m+2)∑n+q−1
l=q 22lρl+1

t
)

= 1, it follows that {22nφ
(

s
2n

)
}∞n=1 is a Cauchy

sequence in a complete random normed space (F, µ,min) and so there exists a point Q2(s) ∈ F such
that limn→∞ 22nφ

(
s

2n

)
= Q2(s). Fix s ∈ E and put q = 0 in (5.8). Then we have

µ22nφ( s
2n )−φ(s)(t) ≥ µ

′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 2)∑n−1

l=0 22lρl+1
t
)

and so, for any δ > 0,

µQ2(s)±22nφ( s
2n )−φ(s)(t + δ) ≥ T

(
µQ2(s)−22nφ( s

2n )(δ), µ22nφ( s
2n )−φ(s)(t)

)
(5.9)

≥ T
(
µQ2(s)−22nφ( s

2n )(δ), µ
′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 2)∑n−1

l=0 22lρl+1
t
))

for all s ∈ E and t > 0. Passing the limit n→ ∞ in (5.9), we get

µQ2(s)−φ(s)(t + δ) ≥ µ
′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 2)

(1 − 22ρ)
ρ

t
)

(5.10)

for all s ∈ E. Since δ is arbitrary, by taking δ→ 0 in (5.10), we obtain

µQ2(s)−φ(s)(t) ≥ µ
′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 2)

(1 − 22ρ)
ρ

t
)

for all s ∈ E. Now, replacing (s1, s2, · · · , sm) by
(

s1
2n ,

s2
2n , · · · ,

sm
2n

)
in (5.2), we have

µ22nDφ( s1
2n ,

s2
2n ,··· ,

sm
2n )(t) ≥ µ

′

ϕ( s1
2n ,

s2
2n ,··· ,

sm
2n )

( t
22n

)
AIMS Mathematics Volume 6, Issue 1, 908–924.
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for all s1, s2, · · · , sm ∈ E and t > 0. Since limn→∞ µ
′

ϕ( s1
2n ,

s2
2n ,··· ,

sm
2n )

(
t

22n

)
= 1, we conclude that Q2 satisfies

the functional equation (1.2). On the other hand,

22Q2

( s
2

)
− Q2(s) = lim

n→∞
22(n+1)φ

( s
2n+1

)
− lim

n→∞
22nφ

( s
2n

)
= 0

for all s ∈ E. This implies that Q2 is a quadratic mapping. To prove the uniqueness of the quadratic
mapping Q2, assume that there exists another quadratic mapping Q

′

2 : E → F which satisfies (5.3).
Then we have

µQ2(s)−Q′2(s)(t) = lim
n→∞

µ22nQ2( s
2n )−22nQ′2( s

2n )(t)

≥ lim
n→∞

min
{
µ22nQ2( s

2n )−22nφ( s
2n )

( t
2

)
, µ22nφ( s

2n )−22nQ′2( s
2n )

( t
2

) }
≥ lim

n→∞
µ
′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 2)

(1 − 22ρ)
22(n+1)ρn t

)
for all s ∈ E and t > 0. Since limn→∞(m2 − 5m + 2) (1−22ρ)

22(n+1)ρn t = ∞, we have

lim
n→∞

µ
′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 2)

(1 − 22ρ)
22(n+1)ρn t

)
= 1.

It follows that µQ2(s)−Q′2(s)(t) = 1 for all t > 0 and so Q2(s) = Q
′

2(s). This completes the proof. �

Corollary 5.2. Let E be a real normed linear space, (Z, µ
′

,min) be a random normed space and
(F, µ,min) be a complete random normed space. Let p be a positive real number with p > 2, z0 ∈ Z
and φ : E → F be a mapping satisfying (4.12) for all s1, s2, · · · , sm ∈ E and t > 0. Then the limit
Q2(s) = limn→∞ 22nφ

(
s

2n

)
exists for all s ∈ E and defines a unique quadratic mapping Q2 : E → F

such that

µφ(s)−Q2(s)(t) ≥ µ
′

‖s‖pz0

(
(m2 − 5m + 2)(2p − 22)t

)
for all s ∈ E and t > 0.

Proof. Let ρ = 2−p and ϕ : Em → Z be a mapping defined by ϕ(s1, s2, · · · , sm) =
(∑m

j=1 ‖s j‖
p
)

z0. Then,
from Theorem 5.1, the conclusion follows. �

Theorem 5.3. Let E be a real linear space,
(
Z, µ

′

,min
)

be a random normed space and ϕ : Em → Z
be a function such that there exists 0 < ρ < 22 such that

µ
′

ϕ(2s1,2s2,··· ,2sm) (t) ≥ µ
′

ρϕ(s1,s2,··· ,sm) (t) (5.11)

for all s1, s2, · · · , sm ∈ E and t > 0 and limn→∞ µ
′

ϕ(2n s1,2n s2,··· ,2n sm)

(
22nt

)
= 1 for all s1, s2, · · · , sm ∈ E and

t > 0. Let (F, µ,min) be a complete random normed space. If φ : E → F is a mapping with φ(0) = 0
sstisfyinf (4.2), then the limit Q2(s) = limn→∞

φ(2n s)
22n exists for all s ∈ E and defines a unique quadratic

mapping Q2 : E → F such that

µφ(s)−Q2(s) (t) ≥ µ
′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 2)(22 − ρ)t

)
(5.12)

for all s ∈ E and t > 0.
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Proof. Replacing (s1, s2, · · · , sm) by (0, s, 0, · · · , 0) in (5.2), we obtain

µ(m2−5m+2)φ(2s)−22(m2−5m+2)φ(s)(t) ≥ µ
′

ϕ(0,s,0,··· ,0)(t) (5.13)

for all s ∈ E. From (5.13), we have

µ φ(2s)
22 −φ(s)(t) ≥ µ

′

ϕ(0,s,0,··· ,0)(2
2(m2 − 5m + 2)t) (5.14)

for all s ∈ E. Replacing s by 2ns in (5.14) and using (5.11), we get

µ φ(2n+1 s)
22(n+1) −

φ(2n s)
22n

(t) ≥ µ
′

ϕ(0,2n s,0,··· ,0)

(
22(n+1)(m2 − 5m + 2)t

)
≥ µ

′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 2)

22(n+1)

ρn t
)

for all s ∈ E. The rest of the proof is similar to the proof of Theorem 5.1. �

Corollary 5.4. Let E be a real normed linear space, (Z, µ
′

,min) be a random normed space and
(F, µ,min) be a complete random normed space. Let p be a positive real number with 0 < p < 2,
z0 ∈ Z and φ : E → F be a mapping satisfying (4.12). Then the limit Q2(s) = limn→∞

φ(2n s)
22n exists for

all s ∈ E and defines a unique quadratic mapping Q2 : E → F such that

µφ(s)−Q2(s)(t) ≥ µ
′

‖s‖pz0

(
(m2 − 5m + 2)(22 − 2p)t

)
for all s ∈ E and t > 0.

Proof. Let ρ = 2p and ϕ : Em → Z be a mapping defined by ϕ(s1, s2, · · · , sm) =
(∑m

j=1 ‖s j‖
p
)

z0. Then,
from Theorem 5.3, the conclusion follows. �

6. Main results for mixed case

In this section, we investigate the Ulam stability of the finite variable functional equation (1.2) for
mixed case in random normed spaces by using the Hyers method.

Theorem 6.1. Let E be a real linear space,
(
Z, µ

′

,min
)

be a random normed space and ϕ : Em → Z

be a function for which there exists 0 < ρ < 1
22 such that (4.1) and limn→∞ µ

′

ϕ( s1
2n ,

s2
2n ,··· ,

sm
2n )

(
t

2n

)
= 1

and limn→∞ µ
′

ϕ( s1
2n ,

s2
2n ,··· ,

sm
2n )

(
t

22n

)
= 1 for all s1, s2, · · · , sm ∈ E and t > 0. Let (F, µ,min) be a complete

random normed space. If φ : E → F is a mapping with φ(0) = 0 satisfying (4.2), then the limits
Q2(s) = limn→∞ 22nφ

(
s

2n

)
and A1(s) = limn→∞ 2nφ

(
s

2n

)
exist for all s ∈ E and define a unique quadratic

mapping Q2 : E → F and a unique additive mapping A1 : E → F such that

µφ(s)−Q2(s)−A1(s) (t) ≥ µ
′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 2)

(1 − 22ρ)
ρ

t + (m2 − 5m + 4)
(1 − 2ρ)

ρ
t
)

for all s ∈ E and t > 0.
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Proof. By Theorem 3.3, φ(s) = φe(s) + φo(s), where

φe(s) =
φ(s) + φ(−s)

2
, φo(s) =

φ(s) − φ(−s)
2

for all s ∈ E, respectively. So

µDφe(s1,s2,··· ,sm)(t) ≥
1
2

[
µDφ(s1,s2,··· ,sm)(t) + µDφ(−s1,−s2,··· ,−sm)(t)

]
and

µDφo(s1,s2,··· ,sm)(t) ≥
1
2

[
µDφ(s1,s2,··· ,sm)(t) − µDφ(−s1,−s2,··· ,−sm)(t)

]
for all s1, s2, · · · , sm ∈ E. Now,

µφ(s)−Q2(s)−A1(s) (t) = µφe(s)+φo(s)−Q2(s)−A1(s) (t) ≥ µφe(s)−Q2(s)(t) + µφo(s)−A1(s)(t)

for all s ∈ E and t > 0. Using Theorems 4.1 and 5.1, we can complete the remaining proof of the
theorem. �

Corollary 6.2. Let E be a real normed linear space, (Z, µ
′

,min) be a random normed space and
(F, µ,min) be a complete random normed space. Let p be a positive real number with p > 2, z0 ∈ Z
and φ : E → F be a mapping with φ(0) = 0 satisfying (4.12) for all s1, s2, · · · , sm ∈ E and t > 0. Then
the limits Q2(s) = limn→∞ 22nφ

(
s

2n

)
and A1(s) = limn→∞ 2nφ

(
s

2n

)
exist for all s ∈ E and define a unique

quadratic mapping Q2 : E → F and a unique additive mapping A1 : E → F such that

µφ(s)−Q2(s)−A1(s)(t) ≥ µ
′

‖s‖pz0

(
(m2 − 5m + 2)(2p − 22)t + (m2 − 5m + 4)(2p − 2)t

)
for all s ∈ E and t > 0.

Proof. Let ρ = 2−p and ϕ : Em → Z be a mapping defined by ϕ(s1, s2, · · · , sm) =
(∑m

j=1 ‖s j‖
p
)

z0. Then,
from Theorem 6.1, the conclusion follows. �

Theorem 6.3. Let E be a real linear space,
(
Z, µ

′

,min
)

be a random normed space and ϕ : Em → Z
be a function for which there exists 0 < ρ < 2 such that µ

′

ϕ(2s1,2s2,··· ,2sm) (t) ≥ µ
′

ρϕ(s1,s2,··· ,sm) (t) for all

s1, s2, · · · , sm ∈ E and t > 0 and limn→∞ µ
′

ϕ(2n s1,2n s2,··· ,2n sm)

(
22nt

)
= 1 and limn→∞ µ

′

ϕ(2n s1,2n s2,··· ,2n sm) (2nt) =

1 for all s1, s2, · · · , sm ∈ E and t > 0. Let (F, µ,min) be a complete random normed space. If φ :
E → F is a mapping with φ(0) = 0 satisfying (4.2), then the limits Q2(s) = limn→∞

φ(2n s)
22n and A1(s) =

limn→∞
φ(2n s)

2n exist for all s ∈ E and define a unique quadratic mapping Q2 : E → F and a unique
additive mapping A1 : E → F such that

µφ(s)−Q2(s)−A1(s) (t) ≥ µ
′

ϕ(0,s,0,··· ,0)

(
(m2 − 5m + 2)(22 − ρ)t + (m2 − 5m + 4)(2 − ρ)t

)
for all s ∈ E and t > 0.

Proof. Using Theorems 4.3 and 5.3, in a similar manner of Theorem 6.1, we can complete the proof
of the theorem. �
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Corollary 6.4. Let E be a real normed linear space, (Z, µ
′

,min) be a random normed space and
(F, µ,min) be a complete random normed space. Let p be a positive real number with 0 < p < 1, z0 ∈ Z
and φ : E → F be a mapping with φ(0) = 0 satisfying (4.12). Then the limits Q2(s) = limn→∞

φ(2n s)
22n

and A1(s) = limn→∞
φ(2n s)

2n exist for all s ∈ E and define a unique quadratic mapping Q2 : E → F and a
unique additive mapping A1 : E → F such that

µφ(s)−Q2(s)−A1(s)(t) ≥ µ
′

‖s‖pz0

(
(m2 − 5m + 2)(22 − 2p)t + (m2 − 5m + 4)(2 − 2p)t

)
for all s ∈ E and t > 0.

Proof. Let ρ = 2p and ϕ : Em → Z be a mapping defined by ϕ(s1, s2, · · · , sm) =
(∑m

j=1 ‖s j‖
p
)

z0. Then,
from Theorem 6.3, the conclusion follows. �

7. Conclusions

We have dealt with a new finite variable mixed type quadratic-additive functional equation (1.2) to
obtain its solution. We employed the algorithm of the powerful tool (direct method) devised by Hyers
to achieve our main results of Ulam stability of a finite variable mixed type functional equation (1.2).
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Birkhäuser, Basel, 1998.

14. S. Jin, Y. Lee, On the stability of the functional equation deriving from quadratic and additive
function in random normed spaces via fixed point method, J. Chungcheong Math. Soc., 25 (2012),
51–63.

15. S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis,
Hadronic Press, Palm Harbor, 2001.

16. S. Jung, D. Popa, T. M. Rassias, On the stability of the linear functional equation in a single variable
on complete metric spaces, J. Global Optim., 59 (2014), 1–7.

17. Y. Lee, S. Jung, Stability of an n-dimensional mixed type additive and quadratic functional equation
in random normed spaces, J. Appl. Math., 2012 (2012), 1–15.

18. Y. Lee, S. Jung, T. M. Rassias, Uniqueness theorems on functional inequalities concerning cubic-
quadratic-additive equation, J. Math. Inequal., 12 (2018), 43–61.

19. D. Mihet, V. Radu, On the stability of the additive Cauchy functional equation in random normed
spaces, J. Math. Anal. Appl., 343 (2008), 567–572.

20. D. Mihet, R. Saadati, S. M. Vaezpour, The stability of the quartic functional equation in random
normed spaces, Acta Appl. Math., 110 (2010), 797–803.

21. M. Mohamadi, Y. Cho, C. Park, P. Vetro, R. Saadati, Random stability of an additive-quadratic
functional equation, J. Inequal. Appl. , 2010 (2010), 1–18.

22. A. Najati, M. Moghimi, Stability of a functional equation deriving from quadratic and additive
functions in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2008), 399–415.

23. C. Park, K. Tamilvanan, G. Balasubramanian, B. Noori, A. Najati, On a functional equation that
has the quadratic-multiplicative property, Open Math., 18 (2020), 837–845.

AIMS Mathematics Volume 6, Issue 1, 908–924.



924

24. J. M. Rassias, R. Saadati, G. Sadeghi, J. Vahidi, On nonlinear stability in various random normed
spaces, J. Inequal. Appl., 2011 (2011), 1–17.

25. T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72
(1978), 297–300.

26. T. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers,
Dordrecht, 2003.

27. R. Saadati, M. Vaezpour, Y. Cho, A note to paper “On the stability of cubic mappings and quartic
mappings in random normed spaces”, J. Inequal. Appl., 2009 (2009), 1–6.

28. R. Saadati, M. M. Zohdi, S. M. Vaezpour, Nonlinear L-random stability of an ACQ functional
equation, J. Inequal. Appl., 2011 (2011), 1–23.

29. B. Schewizer, A. Sklar, Probabilistic Metric Spaces, North-Holland Series in Probability and
Applied Mathematics, North-Holland, New York, 1983.

30. A. N. Serstnev, On the motion of a random normed space, Dokl. Akad. Nauk SSSR, 149 (1963),
280–283.

31. K. Tamilvanan, J. Lee, C. Park, Hyers-Ulam stability of a finite variable mixed type quadratic-
additive functional equation in quasi-Banach spaces, AIMS Math., 5 (2020), 5993–6005.

32. S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.

33. J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues, Ulam-Hyers stabilities of
fractional functional differential equations, AIMS Math., 5 (2020), 1346–1358.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 1, 908–924.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Solution of the functional equation (??) 
	Main results for odd case
	Main results for even case
	Main results for mixed case
	Conclusions

