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ABSTRACT Speech synthesis has been developed to the level of natural human-level speech synthesized
through an attention-based end-to-end text-to-speech synthesis (TTS) model. However, it is difficult to
generate attention when synthesizing a text longer than the trained length or document-level text. In this
paper, we propose a neural speech synthesis model that can synthesize more than 5 min of speech at once
using training data comprising a short speech of less than 10 s. This model can be used for tasks that need to
synthesize document-level speech at a time, such as a singing voice synthesis (SVS) system or a book reading
system. First, through curriculum learning, ourmodel automatically increases the length of the speech trained
for each epoch, while reducing the batch size so that long sentences can be trained with a limited graphics
processing unit (GPU) capacity. During synthesis, the document-level text is synthesized using only the
necessary contexts of the current time step and masking the rest through an attention-masking mechanism.
The Tacotron2-based speech synthesis model and duration predictor were used in the experiment, and the
results showed that proposed method can synthesize document-level speech with overwhelmingly lower
character error rate, and attention error rates, and higher quality than those obtained using the existing model.

INDEX TERMS Speech synthesis, document-level neural TTS, curriculum learning, attention masking,
Tacotron2, MelGAN, DeepVoice3, ParaNet, MultiSpeech.

I. INTRODUCTION
Speech synthesis (text-to-speech synthesis, TTS), which pro-
duces natural speech from text, is an active research area.
With the advent of an end-to-end speech synthesis model
based on a deep neural network (DNN), the quality of syn-
thesized speech has significantly improved compared with
that generated using the previous concatenative synthesis
model [1], [2] and statistical parametric speech synthesis
model [3]–[6]. Tacotron [7] is a representative end-to-end
speech synthesis model based on DNN that simplifies the
complex structure used to generate linguistic and acoustical
features in the previous model; it is achieved by generating
a mel spectrogram from the text sequence through a single
neural network and synthesizing speech using the Griffin and
Lim [8] algorithm as a vocoder. The result of speech synthe-
sis through Tacotron2 [9], an enhanced Tacotron model [7],
has improved to a level substantially similar to the level of
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natural human speech. However, this model cannot synthe-
size sentences longer than the trained speech length, and
various problems such as missing or repeated words and
incomplete synthesis occur when attempting document-level
speech synthesis.

The current end-to-end natural speech synthesis system
uses a sequence-to-sequence model comprising two struc-
tures: an encoder and a decoder. In the encoder, the input
sequence is compressed into a fixed-size vector, and in the
decoder, the output sequence is generated using the context
vector output from the encoder. When the encoder tries to
compress all information into a fixed-sized vector, infor-
mation loss occurs, and an attention mechanism is used to
solve this problem. The attention mechanism is one of the
most important factors in enabling document-level speech
synthesis. In the original Tacotron [7] system, the content-
based attention mechanism introduced in [10] is used to align
the target text and output a spectrogram. However, with this
mechanism, it is difficult to synthesize speech longer than the
trained text length. In the Tacotron2 [9] system, it is possible

8954 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-2610-2323
https://orcid.org/0000-0003-0261-4068


S.-W. Hwang, J.-H. Chang: document-level Neural TTS Using Curriculum Learning and Attention Masking

to synthesize sentences longer than the length of the trained
text by applying location-sensitive attention [11], an atten-
tion mechanism that generates alignment using not only the
encoder and decoder information but also the information of
the previous time step. However, this approach is still insuffi-
cient to synthesize text. Recently, in [12], a new mechanism
was proposed that can synthesize long sentences by train-
ing only short sentences by modifying the previously used
attention mechanism. The study proposed GMMv2 attention
and a deep convolution attention model by modifying the
location-sensitive attention used in Tacotron2 and the pure
location-based GMM attention introduced in [13]. Through
this approach, it is possible to synthesize natural speech of
approximately 80 s by training with a speech of 10 s or less;
however, it is still insufficient to synthesize document-level
text into speech.

In this paper, we propose a document-level neural
TTS model that synthesizes document-level text into speech
using curriculum learning [14] and attention masking. First,
through curriculum learning, whenever the epoch increases,
the longer sentence is trained to make the proposed model
robust to the document-level text, and then attention masking
is used when synthesizing. In [15]–[17], attention masking
was used to overcome attention errors such as repetition and
pronunciation errors in speech synthesis; however, in our
model, we aim to use it to synthesize document-level text
into speech. Reference [15] used the method that involved
measuring which part of the context is given the highest atten-
tionweight when generating the currentmel spectrogram, and
then masking the rest except the certain window behind that
part. In [16], the part tomask is determined by an approximate
ratio of the mel spectrogram to the alignment length. After
determining which part of the alignment is to be used to
generate themel spectrogram at the current time step based on
the ratio, the method masks the rest of the alignment, except
for a certain part. In [17], a method similar to that of [15]
was used; however when the part with the highest attention
weight moves to the next context three times, the reference
point is changed and the remaining parts, except for the first
one and the last four, are masked. In the existing models,
two methods have been used to determine a reference point
for attention masking. The first method is to use the highest
attention weight as a reference point [15], [17], and the sec-
ond method is to determine the approximate ratio of the mel
spectrogram length and the alignment length in advance, and
then determine the reference point for attention masking by
dividing the length of the mel spectrogram generated so far
when synthesizing speech by this ratio [16]. At this time,
since the entire mel spectrogram length of the synthesized
sentence cannot be known in advance, the exact ratio cannot
be known and the accuracy of attention masking is degraded.
To improve the accuracy of attention masking used in the sec-
ond method, we do not simply arbitrarily specify the ratio
of the length of the mel spectrogram and the alignment.
Instead, by training the duration for each character of the text
through the duration predictor used in the non-autoregressive

model [16], [18], the length of the entire mel spectrogram
can be predicted by using the input text only. Through this,
the exact length ratio of the mel spectrogram to the align-
ment can be known, and more accurate attention masking is
possible.

II. MODEL
As depicted in Fig. 1, the proposed system includes a model
that trains long texts through curriculum learning by com-
bining the input sentences whenever the epoch increases.
As shown in Fig. 2, our model prevents synthesis failure even
if the length of the text to be synthesized is longer, while
using only the alignment of the essential part for generating
the mel spectrogram in the current time step with attention
masking during synthesis. The accuracy of attention masking
is increased by predicting the length of the mel spectrogram
with the text to be synthesized using the duration predictor.

FIGURE 1. Block diagram of document-level neural TTS system. In the
training part of the proposed model, we start from short sentences and
train longer sentences through curriculum learning, and through the
duration predictor, we are able to predict the length of the output mel
spectrogram by using the input text only (left side of figure). Also,
the inference part uses a duration predictor to mask the attention of
unnecessary parts and synthesize document-level speech (right side of
figure).

FIGURE 2. System architecture of attention masking. The synthesis of
document-level text fails when a mel spectrogram is generated
considering the entire alignment. Predicting the length of the entire mel
spectrogram through the duration predictor and dividing it by the
alignment length is equivalent to dividing the length of the mel
spectrogram generated up to the current time step (L1) by the position of
the alignment needed to generate the mel spectrogram of the current
time step (L2). Through this process, the L2 value, which is the position of
the required alignment, can be known, and the speech is synthesized by
referring only to the alignment within the range of an arbitrary k value
(25 used in this study).

A. CURRICULUM LEARNING
Curriculum learning is a deep learning method first proposed
in [14]; it starts with simple data and then the difficulty
of learning increases with increasingly complex data. For
example, in a shape-recognition task, curriculum learning
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FIGURE 3. Block diagram of the curriculum learning.

is performed using accurately shaped circles, squares, etc.,
as simple data and rectangles and ellipses as complex data.
In the speech task, learning complexity typically increases
from less noisy to more noisy data.

Because our purpose is to synthesize document-level text
into speech, we begin trainingwith short sentences and gradu-
ally adopt long sentences based on curriculum learning. In the
first epoch, the model is trained using the original training
data, and in the second epoch, the input data are randomly
combined by two sentences so that a longer sentence can
be used for training. Both the text to be trained and the
true mel spectrogram must be combined; however if they are
simply joined, an unnatural voice is generated in the joining
step. To prevent this, we insert a t-token (text token) and
an m-token (mel spectrogram token) between each text and
the mel spectrogram. The t-token plays the role of distin-
guishing between texts, and at the same time, it learns the
m-token, which allows the speech to lead naturally between
mel spectrograms. Therefore, a new character that is not used
in learning is used for the t-token. Them-token is structured to
allow for a gap in speech for approximately a second because
sentences must be naturally linked. The longer the input text,
the greater the capacity of the GPU required for training, and
therefore the batch size automatically decreases in proportion
to the longer input so that it can be trained within the limited
GPU capacity. Similarly, in the third epoch, we arbitrarily
combine three input sentences and mel spectrograms in the
training data, use t-tokens andm-tokens to maintain the natu-
ralness of the speech, and reduce the batch size over the length
to enable curriculum learning with a limited GPU capacity.
The process of training by combining text and mel spectro-
grams while considering their GPU capacity is repeated, and
when themaximum capacity is reached, it is possible to return
to the process of training a pair of texts andmel spectrograms.
For example, in the third epoch, if the batch size becomes too
small or the GPU capacity is exceeded, then from the fourth
epoch, one can train the data one sentence at a time and repeat
the process.

B. ATTENTION MASKING USING THE DURATION
PREDICTOR
If we apply attention masking as shown in Fig. 2, it is possible
to mask the alignment of parts that are not needed when
generating the output at the current time step, thus improving

the efficiency of the synthesis and reducing the attention error.
If the synthesized text becomes longer, the length of the align-
ment to be referenced when generating the mel spectrogram
at a specific time step increases, and it becomes difficult to
accurately determine where to focus attention. We attempt to
overcome this problem through attention masking, and then
we implement a model that synthesizes document-level text
into speech well.

Tacotron2 [9], which is used as the base speech synthesis
model in our study, generates mel spectrograms autoregres-
sively; therefore, a part of the alignment required to generate
the mel spectrogram is different for each time step. Owing
to the characteristics of speech synthesis, monotonous align-
ment is generated because the order of the output sequence
corresponding to each input sequence is the same. In other
words, when the mel spectrogram is generated at the begin-
ning of a sentence, the front part of the alignment is important,
and therefore, by masking the back part, one can discard the
unnecessary parts and can emphasize the front part by adding
weight. Conversely, when generating the backward part of the
mel spectrogram, one can mask the front of the alignment.
We use the ratio of the total length of the mel spectrogram
to the length of the alignment to find the location of the
alignment necessary to generate the mel spectrogram at a
specific time step. First, the duration predictor proposed by
FastSpeech [18] is used to estimate the length of the output
sequence of the mel spectrogram using only the input text.

The original purpose of the duration predictor is to bet-
ter predict the output of the decoder by predicting the
length of the mel spectrogram and changing it to the
input of the decoder through the length regulator in the
non-autoregressive speech synthesis model [16], [18]. How-
ever, in this study, we used the duration predictor to determine
which part of the alignment considered in generating the mel
spectrogram of the current time step. First, the alignment is
extracted from the Tacotron2 model previously trained as a
teacher model, and the duration of the alignment is extracted
through a duration extractor. Teacher alignment includes
information about the number of frames generated by each
sequence of characters extracted from the text. As shown
in [18], the character sequence, Hchar can be expressed as
follows:

Hchar = [h1, h2, . . . , hn] (1)

The output from the duration extractor, D can be expressed
as:

D = [d1, d2, . . . , dn] (2)

Thus, the length of the mel spectrogram is obtained as:

m =

n∑
i=1

di (3)

When training the proposed model, we pass the encoder
output through two 1D convolutional layers and one lin-
ear layer to predict the duration of the character sequence.
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FIGURE 4. Block diagram of the duration predictor.

We train the predicted duration with the true duration
obtained through teacher alignment, and predict the length
of the mel spectrogram when synthesizing.

By following the approach described above, we can obtain
the ratio of the mel spectrogram length to the alignment
length, which is equal to the ratio of the length of the
mel spectrogram generated for the current time step, shown
in Fig. 2 (L1), to the part of the alignment that we should
consider (L2). Through this, the mel spectrogram of the
current time step is generated while considering only the
alignment of a specific length 2k , centered on the obtained
L2, and the remaining alignment is masked. When attention
masking is applied to an input text that is too short, sufficient
alignment cannot be considered when synthesizing speech,
and therefore, a threshold value is needed so that attention
masking can be applied only to texts of at least a certain
length.

III. EXPERIMENTS & EVALUATION
A. EXPERIMENTAL CONDITIONS IN THE TTS EVALUATION
We used approximately 24 h of the LJSpeech dataset [19],
which contains 13,100 English audio clips recorded by a
female speaker. We used 12,700 random sentences for train-
ing and 400 sentences for evaluation. As we implemented and

tested various speech synthesis models, Tacotron2 yielded
the best sound quality and the highest accuracy of speech
synthesis. Thus, we used Tacotron2 [9] as a base model,
with the addition of a curriculum learning and an attention
maskingmodel, and a single Nvidia GeForce RTX2080GPU.
The batch size started at 12, and the model was set to
automatically reduce the batch size to 1/n when learning n
sentences combined to synthesize long sentences through cur-
riculum learning within a limited GPU capacity. In the case
of attention masking, the specific range k that did not perform
masking was set to 25, which was the character sequence
length of approximately half sentences, so that speech could
be synthesized by referring only to the alignment, which was
approximately a sentence long. A character sequence length
of 300was set as the threshold value of theminimum sentence
length to which attention masking was applied, so that the
input sequence could be judged as document-level text when
it exceeded approximately three sentences. MelGAN [20]
was trained and used as a vocoder for speech synthesis.

B. DOCUMENT-LEVEL NEURAL TTS
The main advantage of our proposed document-level neu-
ral TTS is that it can synthesize long sentences at once.
To verify this, we conducted a test using the script of a
Harry Potter novel and evaluated it according to the length
and time of the synthesized speech. As shown in Fig. 5(a),
to compare the length of the sentence that could be synthe-
sized with the existing model, we used a Tacotron model [7]
using content-based attention [10] and a Tacotron2 model [9]
using location-sensitive attention [11]. We also conducted a
performance comparison experiment of the existing model
according to the application of curriculum learning in the
proposed model. For this experiment, the synthesized speech
was converted to text through the Google Cloud Speech-to-
Text API service and compared it with the original text, and
the character error rate (CER) was measured. With the CER,
we used the attention error rate (AER) to assess the accuracy

FIGURE 5. Utterance length robustness of the proposed model. The document-level neural TTS model confirmed that the character error rate (CER)
remains low even when synthesizing long sentences and that it can synthesize more accurate speech than that synthesized using other models.
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FIGURE 6. Generation of the alignment and mel spectrograms according to the length of synthesized speech in the proposed model. (a) From the result
of the synthesis in the Tacotron2 model based on location-sensitive attention, we can see that long sentences to be synthesized generate poor alignment,
and the mel spectrogram is destroyed. (b) From the result of the synthesis in the document-level neural TTS model we propose, we can confirm that both
the alignment and the mel spectrogram are well generated.

of the generated speech. The AER is the ratio of speeches
with attention error such as repeating, skipping words or
mispronouncing among all generated speeches. Our model
did not exceed the initial 20%of the CERuntil we synthesized
5 min and 30 s of the speech (about 4400 characters); in
contrast, the content-based attention model was found to
exceed 20% in 10 s and the location-sensitive attention model
exceeded 20% in 30 s. When curriculum learning was not
applied (DLTTS1), or two sentences were added together
(DLTTS2), we confirmed that the CER rose to the 60% range
in the speech synthesis environment of more than 5 min;
however, but the CER fell to the lower 10% range when
curriculum learning was applied by adding three sentences
together (DLTTS3). Fig. 5(b) shows a comparison of the
performance in a document-level speech synthesis environ-
ment by applying it to a model that suggests alternative atten-
tion masking of previously used models. When the attention
masking used in MultiSpeech [17] was applied to a speech
synthesis environment of more than 5 min, the CER was
more than 50% and the speech was not synthesized properly.
In the model, the reference point for attention masking is the
part with the highest attention weight, and then the attention
weight of the following context is three times greater than the
weights of the previous context, passing the reference point
to the next. The delay that occurs at this time will not occur
in a document-level speech synthesis environment. On the
other hand, the application of attention masking used in
DeepVoice3 or ParaNet resulted in a similar level of CERs to
that of the proposed model. In addition, from the result of the
experiment where the window size of attention masking was
changed in the proposed model, it was confirmed that when
the sizewas 50, the lowest CER and attention error rate (AER)

were obtained and good performance was achieved. In addi-
tion, we compared the mel spectrogram and attention synthe-
sized from the document level to those of the existing model.
We found that in the existingmodel, for longer sentences, part
of the mel spectrogram was destroyed, and the attention was
not generated. In contrast, in the proposed model, the results
were generated without any problems, as shown in Fig. 6.

C. ROBUSTNESS
When document-level text is synthesized by speech, attention
errors such as repeated and skipped words occur if the atten-
tion is not established between the encoder and the decoder.
Table 1 shows that the proposed model has a very low AER at
the document-level compared with that of the existing model.
We tested 200 random documents for each sentence length
andmeasured the number of times an attention error occurred.
The Tacotron model using content-based attention had a high
AER when synthesizing sentences longer than 30 s, and the
Tacotron2 model using location-sensitive attention showed a
high error rate when the length of the synthesized sentences
exceeded 1 min.

Moreover, as shown in Table 2, the AER was measured
by applying the attention masking proposed in the existing
model. First, we found that the attention masking used in
MultiSpeech is not suitable for the document-level speech
synthesis model. In this model, when attention masking is
used, the reference point is set as the point with the highest
attention weight, and when this reference point is passed
to the next, the weight of the next reference point must be
three times higher than that of the previous reference point.
This delay is not well applied when synthesizing document-
level speech. In fact, from the result of the experiment with
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TABLE 1. Comparison of the proposed model (DLTTS) by applying the
attention masking used in each model.

TABLE 2. Comparison of the proposed model with the existing model by
applying curriculum learning.

this delay removed, it was confirmed that the document-level
speech was synthesized well with a very low AER. It can be
seen that the attention masking model used in DeepVoice3 or
ParaNet shows a sufficiently low error rate when the proposed
model was applied. However, our proposed document-level
neural TTS model showed a relatively lower error rate even
when synthesizing sentences longer than 5 min. This means
that our model could stably synthesize document-level texts
into speech.

In Table 3, we show the AER measured by changing the
window size of the attention masking. The result showed that
when the window size is 50, document-level speech can be
synthesized with the lowest error rate. If the window size
is too large, the length of the attention to be referred to
while synthesizing the speech will be too long to be properly
synthesized. Conversely, if the window size is too small, loss
of information occurs because it does not refer to the required
attention. Therefore, it can be seen that it is important to
synthesize the speech by applying the appropriate window
size to the attention masking.

D. SYNTHESIS QUALITY
To evaluate the synthesis quality, we conducted a listening
test with 12 participants to measure the mean opinion score
(MOS). We measured the MOS by applying the attention
of the models in Table 4 to the proposed model. Because
Tacotron and Tacotron2 do not synthesize document-level

TABLE 3. Comparison of our model by changing the window size of
attention masking.

TABLE 4. Comparison of the MOSs by applying the attention used in
other models to the proposed model.

TABLE 5. Comparison of the MOSs for the window size of attention
masking in the proposed model.

TABLE 6. Hyperparameters used for proposed document-level neural TTS
model.

speech, the sound quality was measured for sentences of 10 s
or less, and the rest for speech of 5 min. All models used
MelGAN as a vocoder. It was confirmed that the sound
quality of ParaNet was better than the masking used in Multi-
Speech, and that the sound quality of the DeepVoice3 mask-
ing model was better than that of ParaNet. In addition,
as shown in Table 5, from the result of measuring the MOS
measured while changing the window size in the proposed
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masking, it was confirmed that the MOS measured was the
highest at a size of 50, whereas the AER and CER were the
lowest. Hence, it was confirmed that the proposed model can
synthesize with high accuracy and sound quality similar to
those of the Tacotron2 model when synthesizing document-
level speech longer than 5 min.

IV. CONCLUSION
In this paper, we proposed a document-level neu-
ral TTS model that synthesizes document-level text
into speech. Recently in [12], GMM attention and
location-sensitive attention, which were previously used,
were modified to create a model capable of synthesizing
speech of 80 s by training only about 10 s of speech. However,
we achieved better results in a slightly different way through
the proposed model. First, short sentences were trained
through curriculum learning, and then the proposed model
learned longer sentences to become robust with document-
level text. If the sentence to be synthesized exceeded a
certain length, attention masking was used to generate the
mel spectrogram while considering only the essential parts
of the alignment. From the experiments, we found the exact
part of the alignment needed to generate the mel spectro-
gram in a given time step by taking the teacher alignment
from the pre-trained Tacotron2 model so that the length of
the mel spectrogram could be estimated by looking only
at the text. Moreover, a result of the experiment using the
LJSpeech dataset, we confirmed that the proposed document-
level neural TTS model could synthesize a much longer
sentence (more than 5 min) with lower attention error, and
character error rates and higher quality than that achieved
using the existing model. The proposed model took about
50 s to generate a speech over 5 min. To overcome this
limitation, we will study a model that synthesizes document-
level speech in real-time by applying the proposed model to
a non-autoregressive model.
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