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ABSTRACT The purpose of this study is to develop an autonomous lane change control system that adapts to
variable surrounding conditions, to ensure vehicle safety and traffic flow stability. In this paper, we propose
decision-making and control procedures for realizing autonomous lane changing; to this end, we consider not
only behaviors for changing lanes but also those involved in approaching the lane changing state, with a focus
on the controller design. A decoupled control structure and longitudinal trajectory-free control approach
are suggested. We design a novel inter-vehicle spacing policy and a 3DOF lateral error vehicle dynamics
model. To verify the effectiveness of our system, simulation experiments are performed for 12 scenarios,
and system assessments are conducted based on four evaluation perspectives. The results confirm that our
system can safely control the vehicle amidst various surrounding vehicle conditions and can also ensure
vehicle motion stability. Furthermore, we solve the existing dynamic instability problem of lateral control,
which arises through longitudinal acceleration variability. Another significant advantage of this model is that
the controlled vehicle does not interfere with the target-lane traffic flow and smoothly synchronizes with the
flow during lane changing.

INDEX TERMS Lane changing, intelligent vehicle, vehicle dynamics, control, traffic flow.

I. INTRODUCTION
According to the National Highway Transportation Safety
Administration, approximately 90% of traffic accidents are
caused by human error; among these, more than 10%
of severe accidents occur during lane changing [1], [2].
Lane changing is one of the most conventional yet riski-
est maneuvers that drivers perform on a highway. In par-
ticular, in complex traffic flows, drivers must obtain a
large quantity of environmental information, including the
velocities and distances relative to surrounding vehicles
and the facilities-related traffic environment information.
Immediate and proper decision-making and maneuvering
are also required for safe lane changing [3], [4]. Thus,
the driving difficulty varies according to the conditions,
and expertise and increased concentration are required.
To reduce human errors and labor, many advanced driver
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assist systems (ADASs) have been developed to commercial-
ization stages, and Level 3 autonomous driving systems are
emerging [5], [6]. Nevertheless, autonomous lane changing
technologies that can adapt to variable surrounding condi-
tions remain underdeveloped.

Lane changing involves a diverse range of motions and can
be perceived as challenging because it requires changes in
both longitudinal and lateral velocities as well as movement
in proximity to other moving vehicles [7]–[11]. It should
be noted that lane changing includes multi-stage behaviors,
such as transferring the vehicle from the current lane to the
adjacent one (i.e., lateral motion), searching for an acceptable
empty space [i.e., acceptable lane change space (ALCS)], and
aligning with this space to enter the lane (i.e., longitudinal
motion) [9], [10]. Furthermore, the longitudinal behavior
involved in lane changing is a critical issue in traffic flow sta-
bility. It is widely known that indiscreet lane changing (e.g.,
sudden cut-ins) can interfere with the traffic flow and cause
severe traffic accidents, traffic oscillations, shockwaves, and
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flow breakdowns under heavy traffic conditions [4]. These
phenomena have been found to correspond closely to the
inter-vehicle spacing distance [1], [3]. Adequate spacing pro-
visions between nearby vehicles facilitate safe lane changes.
However, because the traffic flow capacity is inversely pro-
portional to the spacing size, methods of determining a rea-
sonable spacing policy must be considered. Several types of
spacing policy [e.g., constant time gap (CTG) or variable
time gap] have been studied as solutions for adaptive cruise
control (ACC) and vehicle platooning control (VPC) sys-
tems [12]–[16]. However, almost all policies use the subject-
vehicle’s speed or acceleration to make determinations; thus,
they are deemed inadequate to determine a desirable spacing
for lane changing. In particular, some lane changes require
the subject-vehicle to enter an inter-vehicle space; here, both
the subject-vehicle velocity and its velocity relative to the
surrounding vehicles become critical factors. In this study,
we design a novel spacing policy and apply it to a longitu-
dinal control system, to enable a vehicle to reach the lane
changeable state (LCS) and ensure safe distances during lane
changes.

Lane changes have been extensively investigated. In trans-
portation research, various studies have sought to identify
the lane change process, the size of the acceptance gap,
and the longitudinal interaction behaviors with surrounding
vehicles [17]–[26]. However, severe limitations arise when
applying the models directly to an autonomous driving
controller, owing to a lack of feedback control laws and
vehicle dynamics information. Meanwhile, in automotive
control research, various driving controllers have been stud-
ied through the approach of separating the longitudinal and
lateral dynamics; generally, lane changes have been tackled in
lateral dynamics by neglecting variability of the longitudinal
behaviors (i.e., longitudinal velocity is assumed to be con-
stant) [27]–[33]. Because longitudinal motion variations have
an adverse effect on the lateral-dynamics-based controls,
numerous attempts have been made to reflect these longitudi-
nal dynamics in lane changing procedures; this has primarily
been studied to design collision avoidance [34]–[36] and
overtaking [37] techniques. Furthermore, research into lane
change trajectory tracking procedures that couple longitudi-
nal and lateral dynamics has recently been conducted [38],
[39]. Despite their efforts, these studies have limited applica-
bility to randomly varying surroundings.

To implement autonomous lane changing control, it is
necessary to combine the perspectives of each research
field; several attempts have recently been made to this
end [40]–[43]. These efforts indicate that lane changing is
possible in a variety of traffic scenarios; however, these
systems suffer from several limitations, including limited
longitudinal trajectory control, a lack of decision-making
processes, and restricted hypothesis-based scenario testing.
More details are presented in the next section.

The purpose of this study is to develop an autonomous
lane change control system that adapts to the variable sur-
rounding conditions, to ensure vehicle safety and traffic

flow stability. First, we propose decision-making and control
procedures for autonomous lane changing; these consider
behaviors for not only changing lanes but also reaching
the LCS. We focus on a controller design that can reach
the ALCS robustly, regardless of whether this ALCS is
selected via the decision-making procedure. For improved
multi-motion control and organic control with a pre-applied
ACC and lane keep assist system (LKAS), we adopt a
decoupled control structure and a longitudinal-trajectory-free
control approach. We design a novel inter-vehicle spacing
policy and apply it to sliding mode control (SMC)-based
longitudinal controllers. To ensure robustness against the
highly variable longitudinal movements that occur during
lateral control, a three degrees-of-freedom (DOF) lateral error
vehicle dynamics model is designed, and adaptive model
predictive control (AMPC) [which constantly predicts new
operating conditions through time-varying parameters (i.e.,
vehicle velocity)] is adopted. To facilitate near-future real-
ization, this system is designed to control only the subject-
vehicle that intends to change lanes, instead of employing a
cooperative control function with surrounding vehicles.

The remainder of this paper is organized as follows: in
Section II, the literature review is presented; in Section III,
we describe the procedure and control strategies used for
autonomous lane changing; in Section IV, the SMC and
AMPC-based controllers are designed; in Section V, we eval-
uate our system for various types of surrounding condition
scenarios; and in Section VI, we summarize the conclusions
of the study.

II. LITERATURE REVIEW
Over the past decades, numerous studies have been conducted
regarding lane changes. Most lane changing models are
applicable to a variety of traffic and transportation research,
including transportation planning and traffic-management
policy development. Recently, lane change research has pri-
marily focused on vehicle control. As described above, it is
necessary to integrate both aspects to implement an improved
autonomous lane change system. In this section, we summa-
rize previous research into two aspect categories: behavioral
and control.

A. LANE CHANGE BEHAVIOR RESEARCH
Since the 1980s, numerous transportation researchers have
attempted to model lane changing behaviors, using three
broad modeling categories: stimulus response, discrete
choice, and psychological models [8]. Discrete choicemodels
are well-established and operate on a three step process:
lane change-necessity checking, target-lane selection, and
gap acceptance decision [17]–[26]. These model are also
designed to represent various types of lane changing behav-
iors, including mandatory lane changing, discretionary lane
changing, and forced lane changing. Because these mod-
els employ a deterministic process using simple regression
functions or if-then-rules, they offer fast computing speeds.
To implement autonomous lane changing in complex traffic
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situations, models describing the lane change process and
acceptance gap size appear to be essential. However, because
they do not reflect the behaviors specific to vehicle control,
these models are typically only used for simulating traffic
flows and analyzing their effects (e.g., congestion, shock
waves, and collisions).

Researchers have focused not only on identifying the pro-
cedures but also on clarifying the motion characteristics of
lane change behaviors [8]. As in-vehicle and environment
sensing technologies [e.g., GPS, micro-electromechanical
systems (MEMSs), Gyro, vision, radar, Lidar, etc.] have
been improved, various dynamic vehicle-motion character-
istics (e.g., trajectory, velocity, acceleration, heading, and
yaw angle) and interactions between the subject-vehicle and
surrounding ones have become monitorable [8], [9]. By ana-
lyzing these data, several researchers have attempted to for-
mulate the factor correlations associated with lane changes
(e.g., lane time durations and distances, distances and veloc-
ities relative to surrounding vehicles, sizes of acceptable
spacing margins, boundary conditions, etc. [17]–[26]). From
this research, numerous multi-stage motions involved in lane
changing have been clearly identified. Refs. [8], [9] define
lane changing as a multi-stage motion; that is, it involves
not only transferring the vehicle from the current lane to the
adjacent one but also searching for an ALCS and aligning
with it to facilitate the change. Here, an important activity
required for autonomous lane changing in various traffic
situations is implementing longitudinal motion to reach the
LCS.

As the factors associated with lane changing have become
more diverse and complex, the lane changing behavior mod-
els have been improved by applying advanced methodologies
and algorithms, including cellular automata, hidden Markov
models, Gaussian mixture models, fuzzy logic, and artificial
neural networks [7]–[11]. Though these models describe the
interactions with the surroundings and effectively capture
the aforementioned characteristics, their direct application to
autonomous driving controllers seems to be severely limited
by a lack of feedback control laws and vehicle dynamics
information.

B. LANE CHANGE CONTROL RESEARCH
In automotive control research, various vehicle driving con-
trols have been studied from the perspective of decoupled
longitudinal and lateral dynamics [14]–[16], [27]–[32]; lane
changes have primarily been dealt with using lateral con-
trols [27]–[32]. Generally, lateral controllers are designed to
first plan a control reference (e.g., lateral offset or trajectory)
and then implement a steering controller to track this refer-
ence. Most vehicle controllers classify using a two-layer hier-
archical architecture composed of upper-level and lower-level
controllers. Then, the simplified 2DOF (i.e., lateral dis-
placement, yaw angle) lateral vehicle dynamics or kinematic
lateral vehicle models are processed by the upper-level con-
trollers. Here, various closed-loop feedback-control theories

have been employed to calculate the control inputs that min-
imize the tracking errors of the control references.

Initially, because lane changing depends strongly on road
geometry and the stability of vehicle dynamics, the steering
curvature, lane changing time duration, and distance accord-
ing to the driving state (i.e., vehicle speed and acceleration)
has primarily been dealt with to design the lane change
trajectory models [27]. Unlike lane change behavior models,
most research has aimed to shift the vehicle to an adjacent
lane using only the steering control, neglecting the variability
of the longitudinal behaviors (i.e., the longitudinal velocity is
generally assumed to be constant) [28]–[33]. Thus, the mod-
els are guaranteed only in comparatively simple free-flow
conditions that do not require any interactions with surround-
ing vehicles. Moreover, the longitudinal motion variations
adversely affect these lateral dynamics-based controls, hence
some attempts have been made to reflect longitudinal dynam-
ics for lane changing.

As active safety vehicle systems have emerged, several
lane change control systems have begun to consider lon-
gitudinal dynamics for emergency lane changing [34]–[36]
and overtaking [37]. These systems are designed to prevent
forward collisions by steering when the vehicle is unable
to stop behind the forward vehicle or obstacle, even though
ACC or pre-brake control has already been initiated. Further-
more, research into lane change trajectory tracking, which
couples the longitudinal and lateral dynamics, has been con-
ducted [38], [39]. These efforts facilitate the implementa-
tion of comparatively variable longitudinal movements with
lateral control, though they are limited to specific scenar-
ios and do not reflect the variability of the surroundings.
In [38], [39], MPC, a powerful solution for multi-objective
coordination systems, was applied to calculate multi-control
inputs (i.e., acceleration and steering angle) simultaneously,
to track the control reference. However, this single coupled
controller structure required a single, combined high-DOF
vehicle model and subsequently a high computational com-
plexity. Furthermore, this structure is liable to controller
switching problems, which are caused by the shutdown of
the other ADAS in operation. One solution to overcome
these limitations is to decouple the longitudinal and lateral
controls; such systems have included systems for Highway
Driving Assist (HDA) and VPC [13], [44]. These systems
employ ACC for longitudinal control and LKAS for lateral
control, with each motion control operating simultaneously
and independently.

Recently, several attempts have been made to consider
longitudinal interaction behaviors with surrounding vehi-
cles, to develop autonomous lane change systems [40]–[43].
These systems also feature a decoupled control structure.
In lane-change-trajectory-based systems [40], [41], longitu-
dinal and lateral trajectories are generated separately and
combined for control reference, and the virtual trajectories
that can be safely tolerated in the acceptable space are
estimated using pre-designed constraints (i.e., safety dis-
tance margins or boundary conditions with surroundings).
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FIGURE 1. The five motion stages for autonomous lane changing.

Because they must determine an optimal trajectory in real-
time, this approach cannot prevent computational overload-
ing and tracking control error problems from arising in
high- or variable-speed driving. One solution to these
problems is to adopt a longitudinal-trajectory-free control
approach such as ACC. In [42], [43], self-developed ACC
systems were operated using lateral-based lane change con-
trols. These efforts highlight the superiority of entirely
decoupled structures and longitudinal-trajectory-free control
approaches in a diverse range of traffic situations (e.g.,
forward-collision situations during lane changing). Even
though marginally varying accel/decelerations were consid-
ered in steering motion, it remained difficult to ensure reli-
ability in randomly varying surroundings, owing to a lack
of vehicle dynamics models capable of reflecting dynamic
directional forces. Furthermore, they applied a relatively
simple spacing policy and neglected the decision-making
process and vehicle dynamics. Moreover, the majority
of aforementioned studies verify their system in fairly
restricted hypothesis-based scenarios (e.g., immediate LCS
scenarios), and procedures for ALCS searching or LCS
reaching—important motions for lane changing—remain
underresearched.

As the popularity of deep learning has increased,
deep learning-based autonomous vehicle research has been
conducted; most of these have focused on developing the
recognition or decision processes. Several recent attempts
have been made to develop vehicle control [44], [45]. These
studies generated vehicle control values either through apply-
ing training maneuvers according to the driving environ-
ment (i.e., supervised learning) or through numerous trial
and error virtual maneuvers in a self-designed environment
(i.e., reinforced learning). Although this approach may offer
advantages over the rule-based approach for recognition and
decision processing, it is likely to cause inappropriate con-
trol performances because of its lack of dynamic models,
the limitations of various environment designs, and long
learning times. In particular, in highly variable driving sce-
narios (e.g., lane changing), if an abnormal action occurs even
once, no matter how much data are used for training, the
dynamic-model-free control can cause a very serious traffic
accident. Thus, we suggest that a deep-learning-based deci-
sion and dynamic-model-based control configuration is more
appropriate for implementing human-like ALCS selection
and robust autonomous lane change control.

III. SYSTEM CONFIGUTATION
A. LANE CHANGING PROCEDURE
As described above, multi-stage behaviors (e.g., transferring
the vehicle from the current lane to the adjacent one but also
locating an acceptable empty space and aligning with it) are
required for lane changing. In this respect, we categorize lane
changing into a five-stage procedure (Figure 1) as follows:

Stage 1) HDA control.
If the subject-vehicle does not intend or is unable to change

lanes, it maintains the current driving state and current lane
using ACC and LKAS.

Stage 2) LCS check.
If a lane change is intended, the subject-vehicle determines

whether lane changing is immediately possible.
Stage 3) ALCS selection.
If not in the LCS, the subject-vehicle searches for an

optimal empty space that it can enter.
Stage 4) LCSR control.
After the ALCS is selected, the vehicle is instructed to

reach a position from which it can enter the selected ALCS.
Stage 5) LC control.
Upon reaching the LCS, the vehicle performs steering

control to change lanes.
If the subject-vehicle has already reached the LCS through

Stage 2, lane changing can be conducted immediately (i.e.,
Stages 3 and 4 can be neglected). During Stage 5, the subject
-vehicle must also conduct consecutive longitudinal controls
(e.g., LCSR control) to secure a safe space that does not
interfere with surrounding vehicles. After changing lanes, the
subject-vehicle maintains the safe driving behavior appropri-
ate to the new lane (i.e., return to Stage 1).

It is important to reflect such human driving behaviors in
autonomous vehicle-control systems. According to psychol-
ogists, human driving is categorized into three activity levels:
strategic, tactical, and control [22]. These levels are ranked in
descending order of complexity, which implies that the higher
the complexity, the greater the computational burden, and the
less reactive the system. Generally, a human-behavior-based
control system that supports automated operation must be
constructed on the order of levels.

All decision-making and control procedures for
autonomous lane changing are summarized in Figure 2.
This system architecture is designed to replicate the hier-
archical driving behaviors of humans. First, the LC inten-
tion verification step corresponds to the strategic level.
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FIGURE 2. System procedures and hierarchy for autonomous lane changing.

The forward-collision check, LCS check, ALCS selection,
and lane change lateral offset (LCO) generation steps cor-
respond to the tactical level. For the control level, three
types of control modes (i.e., HDA, LCSR, and LC modes)
are organized to implement multi-motions in lane changing.
A control mode appropriate to the surroundings and driving
state is determined in real-time via the tactical level. Each
of the control modes consists of decoupled longitudinal and
lateral controls. To summarize, four types of longitudinal
controllers (i.e., cruise controller, front-spacing controller,
lag-spacing controller, and lead-spacing controller) and a
single lateral-error tracking controller (i.e., for lane keeping
and LCO tracking) manage all maneuvers for autonomous
lane changing.

B. ASSUMPTIONS
In this paper, our research objective is to control lane chang-
ing in relatively normal traffic conditions (e.g., mandatory
or discretionary lane changing), with a specific focus on the
controller design. Our aforementioned system is designed to
cover all motions involved in lane changes; however, it is
difficult to include all the relevant aspects in one paper. Thus,
we focus on vehicle control for the HDA, LCSR, and LC
modes in steady state traffic flows, and we simplified the
system using the following assumptions:

Assumption 1) An algorithm is required for searching
and selecting an optimal ALCS from among several adjacent
empty inter-vehicle spaces in the target-lane. We solve this
problem by using deep learning models and training with
numerous empirical lane changing data; however, this is not
considered in this paper because we focus more on design-
ing a controller that can reach the ALCS robustly. We can
simply assume that an ALCS tends to be selected near the

subject-vehicle in steady state traffic flow, to simplify the
computing process; thus, in this study, we selected a specific
empty inter-vehicle space near to the subject-vehicle as the
ALCS. In addition, the controller should allow the vehicle to
approach the ALCS regardless of where the space is selected
because the selected ALCS can be varied according to the
change of the surroundings. The lane changing performance
with respect to ALCS selection is evaluated in Section V.

Assumption 2) We neglect forced lane changing. When
all empty spaces in the target-lane are small (i.e., no ALCS),
a cooperative control that applies a concession concept with
other surrounding vehicles is required, to implement a forced
lane change (e.g., cut-ins). In such cases, our system is
designed to execute HDA control.

Assumption 3) The procedure for the collision avoid-
ance (CA) mode is omitted. Our system is designed to reflect
the CA control procedure, to prevent severe forward or side
collisions during lane changing. This mode can be applied to
our system in the future by decoupling the longitudinal and
lateral dynamics and including the CA trajectory generation
step. We further assume that if the distances to both the
lag- and lead-vehicles are insufficient during the LC mode,
the lag-vehicle tries to increase the distance to the subject-
vehicle via its own spacing controls, to avoid collision.

C. CONTROL STRATEGY
1) LCS CHECKING AND ALCS SELECTION
As shown in Figure 2, when an intention to change lanes
is registered, the subject-vehicle verifies forward safety and
determines whether the current state is an LCS or not. The
LCS checking stage (Stage 2) determines whether a lane
change to the nearest inter-vehicle space is immediately
acceptable, by identifying the size of the space and its position
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FIGURE 3. Schematic diagram of ALCS configuration and LCS.

relative to the surrounding vehicles. This stage is critical
for determining whether to initiate steering control for lane
changing (LC mode) or not (LCSR mode).

Figure 3 presents a schematic diagram of the LCS. The
nearest inter-vehicle space exceeds the minimum size of the
ALCS. The distances between the subject-vehicle and lead-
and lag-vehicles are fundamental components of the desired
space Rdes, and the minimum size of the ALCS can be
determined using the sum of these spaces. The formula for
Rdes is described in Section IV (A). A larger inter-vehicle
space between the lead- and lag-vehicles seems to be more
advantageous for changing lanes; however, the positions rel-
ative to surrounding vehicles must be considered for the
LCS, to ensure safe driving and a stable traffic flow. Namely,
the subject-vehicle must be ahead of the lag-vehicle’s desired
space and behind the lead-vehicle’s one. Note that the forward
desired space in the current lane must also be secured (i.e.,
Rfront ≥ Rdesfront , where Rfront = xfront − xsub). The LCS
condition is defined as

Rlag > Rdeslag and Rlead > Rdeslead (1)

where Rlead = xlead − xsub and Rlag = xsub − xlag. If Con-
dition (1) is satisfied at time t (and there is an intention to
change lanes), a safe lane change is immediately possible
(i.e., Stage 5). However, in the opposite case, a procedure for
selecting the optimal ALCS (i.e., Stage 3) is required. Fol-
lowing Assumption 1, we select an empty inter-vehicle space
near to the subject-vehicle as the ALCS. Through analysis of
the empirical lane change data, we determined that ALCSs
generally tended to be selected near the subject-vehicle dur-
ing steady state traffic flow, although the current scenario is
not an LCS.

When the ALCS is selected, the vehicle in front of the
determined ALCS is regarded as the lead-vehicle, and the
one behind it is regarded as the lag-vehicle from among
the target-lane vehicles (i.e., the driving states are control
references for the longitudinal controllers). If no ALCS can
be selected (e.g., all inter-vehicle spaces in the target-lane are
too small), the subject-vehicle executes the HDA mode (i.e.,
Stage 1) to maintain the current lane following Assumption 2.

2) HDA CONTROL MODE
In Stage 1 (i.e., no LC intention or no LCS or ALCS),
the vehicle maintains the current driving state and lane by
performing ACC and LKAS. Typically, ACC is classified
into two control parts (i.e., cruise control and front-spacing

control). The control conditions are

RFront > RdesFront (2a)

RFront ≤ RdesFront (2b)

Cruise control is operated by Condition (2a), and front-
spacing control is operated by Condition (2b). In the HDA
mode, subject-vehicle can neglect any target-lane condition.

3) LCSR CONTROL MODE
In Stage 4 (i.e., LCS is not satisfied but ALCS is selected),
the LCSR mode, which is composed of two types of lon-
gitudinal controllers (i.e., lag- and lead-spacing controllers),
is performed.

Schematic diagrams of the LCSR mode are presented
in Figure 4. Figure 4a shows that the subject-vehicle reaches
the LCS using lag-spacing control over time α. Figure 4b
also shows the lead-spacing control over time β. As shown
in Figure 2, the procedures of forward-collision checking,
ALCS selection, and LCSR control are conducted iteratively
in real-time. At every step of the LCSR mode, one of the
longitudinal controllers is selected according to the following
conditions:

RLead > RdesLead and Rlag≤Rdeslag (3a)

RLead ≤ RdesLead and Rlag > Rdeslag (3b)

Lag- and lead-spacing controls are selected via Condi-
tions (3a) and (3b), respectively. During spacing control,
lateral controls are applied to maintain the current lane.

As mentioned above, the lag- and lead-vehicles are deter-
mined by the ALCS selection, and the ALCS can be varied
according to the change of surroundings (i.e., the control ref-
erences can vary according to the driving surroundings); this

FIGURE 4. Schematic diagrams of spacing controls in LCSR mode:
(a) lag-spacing control, (b) lead-spacing control, and (c) lag-spacing
control when ALCS is far from subject-vehicle.
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concept ensures that longitudinal control can be implemented
in the approach of any ALCS, regardless of the position of the
space. Figure 4c presents a schematic diagram for the case in
which an ALCS is not selected in close proximity. Even in
this case, the subject-vehicle should still reach the LCS during
time γ , by using the lag-spacing control.

When the subject-vehicle has satisfied the LCS [i.e., it
satisfies Condition (1)] via the iterative procedure, the LCSR
mode is completed and the LC mode can begin. Otherwise,
if no ALCS can be selected during the iterative procedure,
the HDA mode is executed until a new ALCS is found. Note
that the other conditions [i.e., Conditions (3a) and (3b)] have
already been filtered out by the previous steps (i.e., the LCS
checks or failure to select an ALCS).

4) LC CONTROL MODE
In Stage 5 [i.e., the LCS condition is satisfied at time t or
the LCSR mode completed satisfying Condition (1)], safe
lane changing is possible, as shown in Figure 3. To pro-
duce appropriate reactions during LC mode execution under
varying surrounding conditions, steps for forward and side
collision checks, LCO generation, and LC control modes are
conducted iteratively in real time.

Even though the LC mode has begun (i.e., the LCS was
already secure), the lag- and lead-spacing controls (which
are identical to the LCSR mode) must be performed under
the same conditions as the LCSR mode [i.e., Conditions (3a)
and (3b)] because of the variable surrounding states. Unlike
the LCSR mode, the cruise control system also maintains
the flow speed of the target-lane during lane changes, using
Condition (1). When the LC mode is performed after the
LCSP mode, we further apply a small extra distance ed to
Condition (1), to eliminate the chattering caused by control
switching between the spacing and cruise controls and ensure

smooth lane changing (i.e., Rlag − Rdeslag> −ed and Rlead −
Rdeslead> −ed). Moreover, even though the lag-vehicle is faster
than the subject-vehicle when Rlag ≤ Rdeslag and Rlead≤Rdeslead
during the LC mode, lead-spacing control is conducted pref-
erentially, following Assumption 3 (i.e., we assume that
the lag-vehicle will decelerate to secure the distance to the
subject-vehicle and avoid collision).

Using this iterative procedure, the LCO is generated in real-
time and applied to the reference of the lateral controller.
After completing the LC mode via the iterations, the HDA
mode control is executed to maintain speed in the new lane.
If any sudden possible collision situation occurs in front or to
the side of the subject-vehicle, the CA mode can be executed
to avoid the collision; however, following Assumption 3,
we omit this scenario here.

IV. CONTROLLER DESIGN
As shown in Figure 5, the system process can be divided into
two components: a decision-making process and a control
process. The decision-making process applies three steps:
control mode selection, longitudinal controller selection, and
lateral offset selection. First, the appropriate control mode is
selected according to the surrounding conditions. Depending
on the selected control mode, one of the longitudinal con-
trollers in each mode (see Figure 2) is selected. As described
in Section III, the selections are based on the relationship
between R and Rdes. Meanwhile, a lateral controller, which is
based on lateral error states, is applied equally to all control
modes to perform lane keeping and lane changing operations;
however, the generated LCO is applied to control reference of
the LKAS in the LC mode.

The control process of our autonomous lane change system
is designed to decouple the longitudinal and lateral controls,
enabling better multi-motion control and facilitating organic

FIGURE 5. System process and decoupled longitudinal and lateral control configuration for autonomous lane changing.
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control with the ACC and LKAS already in use. Each control
is designed with separate upper and lower controllers. For
longitudinal control, the upper level of the cruise control is
designed using a simple proportional integral (PI) controller,
and the spacing controllers are designed using the SMC,
to reflect the desired nonlinear spacing policy (discussed in
the next section). Owing to the disadvantages of longitudinal-
trajectory-based control in variable surrounding conditions
(e.g., computational overload and tracking control error),
we adopt a longitudinal-trajectory-free control approach to
determine spacing. For the lateral controller, a 3DOF lateral
error vehicle dynamics model is designed, and an AMPC is
adopted for its robustness against highly variable longitudinal
movement (i.e., time-varying velocity). Lower controllers
calculate the final control inputs of throttle angle, brake pres-
sure, and steering torque, to implement each desired control
input calculated by the upper level controllers.

A. LONGITUDINAL CONTROL
1) NONLINEAR SPACING POLICY
Establishing a spacing policy that determines a proper desired
space is very important for LCS verification and spacing
controls. The subject-vehicle velocity and its velocity relative
to surrounding vehicles are critical parameters in determining
the spacing size. We establish a nonlinear spacing policy
combining the CTGpolicy andR-Ṙ diagram. The CTGpolicy
can be expressed as

Sdes = Th · ẋsub+dcl (4)

where Th is the time headway coefficient, ẋsub is the longitu-
dinal velocity of the subject-vehicle, and dcl is the standstill
distance. Likewise, the CTG-based desired space considers
only the subject-vehicle, and it does not reflect the rela-
tive velocities between the subject and surrounding vehicles.
In particular, these relative velocities are critical for lane
changing.

Extending the R-Ṙ diagram concept, which is widely used
to determine the switching point in ACC systems, to lane

changes, the relation can be expressed as

Rdes= −Tα · Ṙ+S0 (5)

where Ṙ is the relative velocity between the subject-vehicle
and the surrounding ones; it is expressed as ẋfw − ẋbw.
The fw and bw denote the forward and backward vehicles,
respectively (i.e., the front- and lead-vehicles are fwwhen the
subject-vehicle is bw, but the subject-vehicle is fw when the
lag-vehicle is bw). Tα is the slope of the control switching
line, and S0 is the desirable space when Ṙ is zero. According
to ẋbw, Tα and S0 must be variables rather than constants.
In this respect, Tα = α · ẋbw. Here, α is the slope determinant
coefficient, and S0 can be replaced with Sdes. Combining
Eqs. (4) and (5), Rdes can be derived as

Rdes

=

{{
Th − α

(
ẋfw − ẋbw

)}
ẋbw + dcl as Th ≥ α

(
ẋfw − ẋbw

)
dcl as Th < α

(
ẋfw − ẋbw

)
(6)

Eq. (6) is depicted in Figure 6, and we identified that this
spacing policy exhibits nonlinearity. As shown in Figure 6a,
Rdes is a quadratic function that depends on the varying slope
Th−α

(
ẋfw − ẋbw

)
w hen Ṙ is 0 and Rdes is identical to Sdes of

the CTG policy concept. However, if Ṙ is larger (or smaller)
than 0, Rdes is made smaller (or larger) than Sdes by reducing
(or increasing) the slope. The dashed lines in Figure 6b
also show the variation of Sdes and Tα with respect to ẋbw.
This nonlinear property of the spacing policy can explain
spacing behavior in lane changing and facilitates human-like
motions in autonomous driving. Following the conditions in
Section III, spacing control and cruise control are conducted
in the lower and upper regions of Rdes, respectively.

2) LONGITUDINAL UPPER CONTROLLERS
Four types of longitudinal controllers are considered in this
system. The cruise controller is designed based on PI control.

UCC = ẍdes= kp
(
ẋdessub − ẋsub

)
+ kI

∫ (
ẋdessub − ẋsub

)
(7)

FIGURE 6. Schematic diagrams of nonlinear spacing policy for lane changing, according to perspectives of (a) desired spacing and backward vehicle
velocity and (b) desired spacing and relative velocity.
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where ẍdes is the desired acceleration of the subject-vehicle
and used as a control input for cruise control. kp and ki
denote the proportional and integral gains, respectively. ẋdessub
is a desired velocity. In the HDA mode, ẋdessub is set to the
current driving speed, to maintain the current speed; however,
in the LC mode, it is set close to the lead-vehicle speed,
to harmonize with the target-lane flow.

The SMC is used for the front-, lead-, and lag-spacing
controls. The sliding surface depends on the tracking error
and the derivative thereof, as follows:

S(t) =
(
d
dt
+λ

)n−1
· ε (t) (8)

Here, n denotes the order of the uncontrolled system and is
set to 2. λ denotes the convergence rate of the sliding surface.
We employ a definition of compound range error ε(t) that
considers the vehicle acceleration:

ε = R− Rdes − ta·ẍbw (9)

Here, R = xfw − xbw is the relative distance, ta is the positive
control gain, and ẍbw is the acceleration of the backward vehi-
cle. Rdes can be rewritten as α·ẋ2bw+

(
Th − α · Vfw

)
ẋbw+ dcl

in Eq. (6). Differentiating Eq. (9), we obtain ε̇ = Ṙ−Ṙdes−ta ·...
x bw, where Ṙdes= (2α·ẋbw+Th−α·ẋfw)ẍbw and

...
x sub denotes

the jerk of the subject-vehicle. The dynamics of the subject-
vehicle can be regarded as a first-order system, as follows:

τ ·
...
x sub + ẍsub = ẍdes (10)

Here, τ denotes the time constant. Note that fw is set as the
front (or lead)-vehicle, and bw is the subject-vehicle for front
(or lead)-spacing control. Meanwhile, fw is set as the subject-
vehicle, and bw is the lag-vehicle in the lag-spacing control.
Here, we must take into account that the controlled vehicle
is the subject-vehicle. In this respect, the desired deceleration
(or desired acceleration) of the lag-vehicle can be replaced
by the acceleration (or deceleration) of the subject one for
lag-spacing control. Namely, ẍlag is replaced with −ẍsub for
lag-spacing control; hence, εlag = Rlag − Rdeslag + taẍsub and
Ṙdeslag= −(2α·ẋlag + Th − α·ẋsub)ẍsub.

By integrating Eqs. (8), (9), (10), and the equations above,
we design three spacing controllers to determine each control
command. The final control inputs of each spacing controller
are derived as

UFront =
τ

ta

(
Ṙfront + λεfront

)
−
τ

ta
Ṙdesfront + ẍsub − ηsgn (S)

(11)

ULead =
τ

ta

(
Ṙlead + λεlead

)
−
τ

ta
Ṙdeslead + ẍsub − ηsgn (S)

(12)

ULag = −
τ

ta

(
Ṙlag + λεlag

)
+
τ

ta
Ṙdeslag + ẍsub − ηsgn (S)

(13)

where η is the switching gain and sgn(S) denotes the signum
function of the sliding surface. The stability of these con-
trollers is ensured using Lyapunov’s direct method [16]. The

switching law is determined using a candidate Lyapunov
function, to guarantee stability such that the system’s state
trajectories in the phase plane are oriented toward the origin.
To reduce the chattering phenomenon caused by the dis-
continuous controller term, we adjust this term by applying
the time-varying boundary layer approach described in [47].
As mentioned in Section III, one of these controllers is
selected according to the surrounding conditions and control
mode, and it calculates the desired acceleration value as a
control input. The control conditions for each longitudinal
controller are summarized as follows:

ẍdes =


UCC at

condition (1) in LC mode
orcondition (2a) in HDAmode

UFront at condition (2b) in HDAmode
ULead at condition (3a) in LCSRorLCmode
ULag at condition (3b) in LCSRorLCmode

(14)

3) LONGITUDINAL LOWER CONTROLLERS
To implement the desired acceleration ẍdes, the lower con-
troller calculates the final longitudinal control inputs as the
engine throttle angle Ath or the brake pressure Pbr , as shown
in Figure 7. Because longitudinal controls can be performed
alongside steering operations, the lateral force and inertia
must be considered in the longitudinal dynamics calculations
for more accurate ẍdes implementation. As shown in Figure 8,
the longitudinal dynamics for a front-wheel drive and steering
vehicle are modeled as

m
(
ẍ − ẏψ̇

)
= Fxf − Fyf δf −W −

1
reff

Tbr (15)

where m is the vehicle mass, ψ̇ is the yaw rate, and δf is the
front-wheel steering angle. Fxf denotes the front-tire forces in
the rolling direction and Fyf is the vertical force of the front-
tire; that is,Fxf−Fyf δf denotes the total longitudinal tire force
of the front-wheel.W = Froll+Faero+Fslope denotes the sum
of the rolling resistance force, aerodynamic drag force, and
slope resistance, respectively. reff is the effective tire radius
and Tbr denotes the braking torque.

The simple driveline dynamics are modeled using Eq. (15).
In this study, we assume the longitudinal slip between the tires
and road to be zero. To summarize the velocity properties, ẏ
and ẋ are the lateral and longitudinal velocities of the subject-
vehicle at its center of gravity, respectively. Furthermore, ẋ is

FIGURE 7. Control input calculation process in longitudinal lower
controller.
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FIGURE 8. Schematic 3DOF bicycle diagram of longitudinal and lateral
vehicle dynamics.

approximated as Vwf cos δf , where Vwf = reff · ωw denotes
the front-wheel velocity. ωw is the rotational wheel speed,
which is proportional to the engine speed ωe and relates to
the gear ratio G (i.e., ωw = G · ωe). Here, the G value is set
between 1 and 0. Hence, the longitudinal acceleration is as
follows:

ẍ = reff · G · ω̇e · cos δf (16)

Moreover, this model assumes that the vehicle’s torque
converter is locked and the transmission is in a steady state.
Accordingly, the wheel’s rotational dynamics are Iwω̇w =
Tw − reff · Fxf and its transmission dynamics are It ω̇t =
Tt −G · Twheel , where I denotes each inertial momenta, ωt is
the transmission speed, and Tw and Tt denote the wheel and
turbine torques, respectively. The engine’s rotational dynam-
ics can be defined as Ieω̇e = Tnet − Tp, where Tp is the pump
torque. Because ωt = ωe and Tt = Tp, we have

ω̇e =
1
Je

{
Tnet − GreffW − GTbr − Greff

(
Fyf δf − mẏψ̇

)}
(17)

where Je = Ie + It + G2Iw + mG2r2eff cos δf is the
effective inertia term. Because the value of Fyf δf − mẏψ̇
(which denotes the difference in additional longitudinal
forces between the front-wheel and center of gravity) is gen-
erally very small, this term can be neglected. Substituting
Eq. (16) into Eq. (17), Tnet and Tbr can be derived as

Tnet =
Je

reff · G · cosδf
× ẍdes+ + GreffW (18a)

Tbr = −
Je

reff ·G2 · cos δf
×ẍdes− − reffW (18b)

where ẍsub is equal to ẍdes (defined by the upper controllers).
ẍdes+ and ẍdes− are the positive and negative values of ẍdes,
respectively. To prevent overlap, only one actuator can be
operated; thus, Tbr is neglected when ẍdes ≥ 0 for Tnet , and
Tnet is also neglected when ẍdes< 0 for Tbr . To determine
Ath, we use a lookup table for the engine map, which is com-
posed of experimental data for Ath, Tnet , and engine RPM.
In addition, Pbr can be approximately defined as Tbr/cb,
where cb is the positive gain. In this study, because the vehicle

plant is substituted into the CarSim model, other parame-
ters (including δf ) are directly measured by the simulator in
real-time. Moreover, we present only the calculation process
of the lower controller and omit the detailed values of the
parameters and lookup table, because the lower controller
can vary as the vehicle plant changes, and we focus only
on the implementation of the desired acceleration, which is
determined by the upper level controllers.

B. LATERAL CONTROL
1) LATERAL ERROR DYNAMICS VEHICLE MODEL
For steering control, a 3DOF lateral error dynamics vehicle
model is designed. The vehicle model, as shown in Figure 8,
calculates the lateral vehicle dynamics by considering the
longitudinal force. The expression for the lateral movement
of the vehicle is as follows:

m (ẏ+ ẋψ) = Fyf+Fxf · δf + Fyr (19a)

Izψ̈ = lf ·Fyf + lf · Fxf · δf − lrFyr (19b)

where Fyf and Fxf are the lateral and longitudinal tire forces
of the front-wheel, respectively. Fyr is the lateral tire force
of the rear wheel , ψ̇ denotes the yaw rate of the vehicle,
Iz denotes the yaw moment of inertia of the vehicle, and lf
and lr are the mean longitudinal distances from the center of
gravity to the front- and rear-wheels, respectively. The three
tire forces can be defined as

Fyf = 2·Cαf · αf where αf = δf − θf (20a)

Fyr = 2·Cαr · αr where αr = −θr (20b)

Fxf = m · awf where awf = reff · ω̇w (20c)

where Cαf and Cαr denote the lateral cornering stiffnesses
of the front- and rear-tires, respectively. αf and αr denote
each side-slip angle of the tires. θf and θr denote the velocity
angles of the tires, which are expressed as θf ' (ẏ + lf ψ̇)/ẋ
and θr ' (ẏ − lr ψ̇)/ẋ using the small angle approximation.
As mentioned above, we neglect the longitudinal slip, pitch,
and roll motions of the vehicle body due to model com-
plexity. Thus, Fxf can be simply estimated as ω̇w, which is
the rotational wheel acceleration of the front-tire. Integrating
Eqs. (19) and (20), we deduce that

ÿ = a1ẏ+ a2ψ̇ + b1δf (21a)

ψ̈ = a3ẏ+ a4ψ̇ + b2δf (21b)

where

a1=
−2
(
Cαf +Cαr

)
mẋ

, a2= ẋ
{
−1−

2(Cαf lf −Cαr lr )

mẋ2

}
,

a3=
−2
(
Cαf lf −Cαr lr

)
Izẋ

, a4=
−2
(
Cαf l2f +Cαr l

2
r

)
Izẋ

,

b1=
2Cαf
m
+reff ω̇w, b2=

lf (2Cαf +mreff ω̇w)
Iz

(21c)

We expand Eq. (21) into the lateral error dynamics model
by considering the road model and look-ahead distance L.
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FIGURE 9. Schematic diagram of lateral error properties at the
look-ahead distance point.

The lateral relationship between the road and vehicle is
depicted in Figure 9. The lateral error state is set to ecenter =[
eyL ėyeψ ψ̇

]T . ėy = Vy − V des
y can be deduced as ẏ + ẋeψ ,

where eψ = ψ −ψdes. Considering the look-ahead distance,
we find that eyL = yL − ydesL = ey + Leψ and ėyL =
VyL − V des

yL = ėy + L ˙eψ + ẋ(eψL − eψ ). Applying these
to Eq. (21), the error state space model of the lateral vehicle
dynamics can be derived as

Ẋ = AX + BuU + BvV (22a)

Y = CX (22b)

where

X = ecenter ,U= δf ,V =

[
ψ̇des

eψL − eψ

]
,

A =


0 1 0 L
0 a1 −a1ẋ a2 + ẋ
0 0 0 1
0 a3 −a3ẋ a4

 ,

Bu =


0
b1
0
b2

 ,Bv =

−L ẋ
−ẋ 0
−1 0
0 0

 ,
C =

[
1 0 0 0
0 0 1 0

]

(22c)

2) LATERAL OFFSET MODEL
The local coordination of the lane-center model fL(x) is
defined as a third-order polynomial function of the longitudi-
nal distance x, as shown in Figure 9. The region-of-interest
images of the left- and right-hand lines are detected using
a vision sensor in the longitudinal direction. Using inverse
perspective projection, the polynomials of each line can be
estimated [28]. Then, fL(x) is obtained by taking the average

of the lines such that

fL (x) = c0 + c1x + c2x2 + c3x3 (23)

During driving, the coefficients c0∼4 are updated in real-
time. Each coefficient has a different meaning and is used to
estimate the lateral error states. When x= 0, c0 denotes the
lateral offset ey, c1 denotes the head angle error eψ , 2c2 is the
road curvature k , and 6c3 is the curvature rate k̇ . Accordingly,
the error states between the subject-vehicle and lane center
can be defined as

ecenter =


eyL
ėy
eψ
ψ̇

 =

c0 + c1L + c2L2 + c3L3

ẏ+ ẋc1
c1
ψ̇

 (24)

where ψ̇ is directly observed from the yaw rate in the
vehicle sensor, and ẏ is estimated from the change rate of
c0 or by integrating the ÿ value from the MEMS sensor.
By considering the curvature k, ψ̇des can be estimated as
2c2ẋ. From the derivative of Eq. (23), the desired heading
angle at the L point eψL is estimated as ḟL (L). Thus, the
measured disturbance vectors vk can also be estimated as
vk =

[
2c2ẋ 2c2L + 3c3L2

]T .
For lane keeping control, ecenter should converge to zero.

However, additional LCOs should be considered for lane
changing. In our system, the LCO is generated when the LC
mode is required. Because the lane change can be performed
simultaneously with the decoupled longitudinal spacing con-
trol, we extend the ramp sinusoid model [27] to consider
longitudinal acceleration. The LCO is deduced as

yLC = yd

[
xLC
xd
−

1
2π

sin
(
2πxLC
xd

)]
(25a)

where
xLCT = ẋsub,0t + 1

2 ẍsubt
2, xd = cx · VLC

√
yd
ayLC

,

VLC=ẋsub,0 + ẍsubt,
ayLC = (0.1− 0.0013ẋsub) g

(25b)

xd denotes the total longitudinal distance traveled during
a lane change, cx is the longitudinal distance determinant
coefficient, and yd is the total lateral distance. We can set one
of the lateral acceleration formulation cases ayLC and adopt
a normal single lane change case with relatively low lateral
acceleration. g is the gravitational acceleration. By combin-
ing yLC and eyL of ecenter , the new lateral error state eLC
(i.e., eLC =

[
eyL + yLC ėyeψ ψ̇

]T ) can be set, and the lateral
controller generates a control input δf to minimize eLC in the
LC mode.

3) LATERAL UPPER CONTROLLER
To implement the lateral control input δf , the lateral upper
controller that minimizes ecenter or eLC is designed by adopt-
ing an AMPC. MPC is a process control method that actively
uses the dynamical system model. The system is optimized
within a predefined time slot, for which the MPC estimates
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the future states and controls of the system. Using Eq. (22),
we discretize the model into a single-input, multi-output
model using the zero-order hold method. The discrete state–
space model can be expressed as

Xk+1 = AXk + BuUk + BvVk (26a)

Yk = CXk (26b)

where Vk is the measurement disturbance (MD). Due to rank
[Bu, ABu . . .An−1Bu] = 2n, the pair (A, B) is controllable.
The system matrices A, Bu, and Bv contain a time-varying
parameter (vehicle velocity ẋ); thus, the matrices are time-
varying. In this case, we can employ anAMPC that constantly
predicts the new operating conditions. AMPCs can be used in
linear-time-varying (LTV) systems that feature uncertainties,
where the controller parameters are tuned in a closed loop
employing real-time measurements. Since the model input is
the control increment1Uk of the control signal Uk , an incre-
mental state space model can be derived as follows:

X̃k+1︷ ︸︸ ︷[
Xk+1
Uk

]
=

Ã︷ ︸︸ ︷[
A Bu
0 I

] X̃k︷ ︸︸ ︷[
Xk
Uk−1

]

+

B̃u︷ ︸︸ ︷[
Bu
I

] 1Uk︷ ︸︸ ︷
(Uk − Uk−1)+

B̃v︷ ︸︸ ︷[
Bv
0

]
Vk (27a)

Yk =

C̃︷︸︸︷
[C0]

X̃k︷ ︸︸ ︷[
Xk
Uk−1

]
(27b)

Assuming that at sampling instant k (k > 0), the state
variable vector Xk represents the current vehicle. The future
control sequence is denoted as 1Uk , 1Uk+1, 1Uk+2, . . . ,
1Uk+Nc−1, where Nc is the so-called control horizon and
we denote the future state variables as X̃k+1, X̃k+2, X̃k+3,
. . . , X̃k+Np, where Np is the so-called prediction horizon.
We assume that the control input is held constant beyond Nc
steps (i.e., 1Uk+j= 0, j = Nc,Nc+1, . . . ,Np − 1). Thus,
the prediction input vector1Uak , disturbance vector Vak , and
output vector Yak can be defined as

1Uak =


1Uk
1Uk+1
...

1Uk+Nc−1


Nc×1

,Vak =



V
k
...

Vk+Nc−1
...

Vk+Np−1


Np×1

,

Yak =



Yk+1
...

Yk+Nc
...

Yk+Np


Np×1

(28)

Combining Eqs. (26), (27), and (28), the predictive state
variable at each future step can be deduced as

X̃ak+1 = fX̃ k + g1Uak + hVak (29a)

Yak = CI X̃ak+1 = FX̃ k + G1Uak + HVak (29b)

where

X̃ak+1=



X̃k+1
X̃k+2
X̃k+3
...

X̃k+Np

 , f =


Ã
Ã2

Ã3

...

ÃNp

 ,

g =



B̃u 0 0 · · · 0
ÃB̃u B̃u 0 · · · 0
Ã2B̃u ÃB̃u B̃u · · · 0
...

...
...

. . .
...

ÃNp−1B̃u ÃNp−2B̃u ÃNp−3B̃u · · · ÃNp−NcB̃u

 ,

h =



B̃v 0 0 · · · 0
ÃB̃v B̃v 0 · · · 0
Ã2B̃v ÃB̃v B̃v · · · 0
...

...
...

. . .
...

ÃNp−1B̃v ÃNp−2B̃v ÃNp−3B̃v · · · B̃v

 ,

CI =



C̃ 0 0 · · · 0
0 C̃ 0 · · · 0
0 0 C̃ · · · 0
...

...
...

. . .
...

0 0 0 · · · C̃

 ,
F = CI f, G = CIg, H = CIh

(29c)

The controller determines the sequence of control
moves that minimize the sum of squared deviations of
the predicted output from the lateral offset reference
[i.e., Eqs. (23) and (25)], to obtain the lateral stability. In this
study, the lateral vehicle dynamics were designed using the
lateral-error-based state model (i.e., ecenter and eLC ); hence,
the cost function can be determined as

Jk = Y TakQYak +1Uak
TR1Uak (30)

where Q and R are the weight matrices of the controlled
outputs and inputs, respectively. The constraints applied to
the controlled variables and imposed upon the output are
considered in the MPC upper controller, as follows:

1Umin ≤ 1Uak≤ 1Umax
Umin ≤ Uak ≤ Umax
Ymin ≤ Yak ≤ Ymax

(31a)
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where

Uak =


1
1
1
...

1

0
1
1
...

1

0
0
1
...

1

· · ·

· · ·

· · ·

. . .

· · ·

0
0
0
...

1


Nc×Nc

×1Uak +


Uk−1
Uk−1
Uk−1
...

Uk−1


Nc×Nc

(31b)

1Umin/max represent the minimum and maximum angular
increments of the front-wheel,Umin/max are the minimum and
maximum front-wheel angles, and Ymin /max are the minimum
and maximum outputs, respectively.

Quadratic programming (QP) is used to solve optimization
problems involving a quadratic objective function and con-
straints, and it is widely applied to optimize cost functions.
The AMPC solves the QP problem at each time interval.
The solution of the problem determines the so-called manipu-
lated variables; these are input variables that are dynamically
adjusted to keep the controlled variables at their set-points.
The cost function [Eq. (30)] can be re-expressed in a standard
quadratic form as

min
1Uak

(
Jk =

1
2
1UakT�1Uak+81Uak

)
(32)

where the Hessian matrix � = 2GTQG+R and the column
vectors 8 = 2(FX̃ k+HVak )QG. A series of optimal control
inputs are computed in the control horizon by solving Eq. (32)
subject to Eq. (31a). The sequence of the optimal control
input vector is 1U∗ak = [1U∗k ,1U

∗

k+1, . . . ,1U
∗

k+Nc−1]
T .

Because this is a receding horizon strategy, only the first
element of1U∗ak is used.We reject the rest and repeat the cal-
culations at the next sampling time. The front-wheel steering
angle for lane keeping or changing is determined as follows:

δdesf = Uk = Uk−1 + [I, 0, . . . , 0]1U∗ak (33)

To estimate this, the traditional MPC controller uses the
static Kalman filter (SKF). The SKF requires constant gain
matrices M and depends on the plant parameters and dis-
turbances characteristics. In AMPC, the controller uses an
LTV Kalman filter (LTVKF) instead of the SKF, to generate
consistent estimations with the updated plant dynamics. The
off-line construction of the estimator gain Mk is replaced by
a recursive on-line computation, defined through the update
and prediction phases:

Update phase:
X̃k|k = X̃k|k−1 +Mk

(
Yak−1 − CI ,k X̃ak|k−1

)
Mk = (Pk|k−1C

T
I ,k )

(
S + CI ,kPk|k−1CTI ,k

)−1
Pk|k =

(
I−MkCI ,k

)
Pk|k−1

(34a)

Prediction phase:{
X̃ak+1|k = fk X̃ k|k + gk1Uak + hkVak
Pk+1|k = fkPk|k fTk + Z

(34b)

Here, S and Z are constant covariance matrices defined in the
MPC state estimation. fk and CI ,k are state-space parameter

matrices for the entire controller state; these are defined as
for the traditional MPC but with the proportions determined
by the plant model updates at time k . Pk|k−1 is the state-
estimation-error covariance matrix at k , constructed using the
information from time k − 1. Unlike the constant structure of
the M matrix in the SKF, the LTVKF regularly updates the
matrix with the updated plant dynamics. This model-updating
strategy is a core issue when designing AMPC controllers.
The entire controller structure is designed using the MPC
Designer toolbox in MATLAB/Simulink.

4) LATERAL LOWER CONTROLLER
To implement δdesf , the lower controller determines the final
lateral control inputs as the steering torque Tstr , as shown
in Figure 10. This controller is designed based on the motor-
driven power steering (MDPS), which assists the driver’s
steering. Tstr is obtained as

Tstr = Ta + Td −
Ts
N
+ Tδf (35)

where Ta is the assist torque, Td is the driver torque, Ts is the
self-alignment torque, and Tδf is the steering control torque
for autonomous lane keeping and changing. Here, we neglect
Ta and Td because the driver’s maneuver does not interfere
with our system (i.e., Td= 0 and Ta= 0). N denotes the
steering gear ratio of theMDPS. Based on the servo controller
system, Tδf can be obtained as

Tδf = kp2
{
kp1

(
δdesf − δf

)
− δ̇f

}
+kI1

∫
{kp1

(
δdesf − δf

)
− δ̇f } (36)

where kp1,2 and kI1 are the gains of the controller. Ts is also
calculated as 2 · ξ · Cαf · αf .

V. SYSTEM EVALUATION
A. SIMULATION AND SCENARIO SETUP
To evaluate the proposed autonomous lane change control
system, a series of simulation experiments were car-
ried out using CarSim-Matlab/Simulink co-simulations. The
simulation was structured as shown in Figure 5. The
simulation sampling time was set to 0.01 s. A C-Class
hatchback vehicle model was used as the subject-vehicle,
and the vehicle parameters were set as m= 1300kg,
Iz= 2873kg·m2, lf= 1.1m, lr= 1.58m, Cαf= 49262N/rad ,
Cαr= 33408N/rad , reff= 0.3 m, and cb= 250. A double

FIGURE 10. Control input calculation procedure in lateral lower controller.

VOLUME 9, 2021 4327



J. Kim et al.: Decoupled Longitudinal and Lateral Vehicle Control Based Autonomous Lane Change System Adaptable

TABLE 1. Controller parameters and default set value.

straight lane on a zero curvature road and 3.8 m wide lanes
(yd ) were set in CarSim. The default values of the parameters
for the longitudinal and lateral upper controllers are listed
in Table 1; these were selected to model relatively typical
driving conditions. Lower controller parameter values were
directly imported from the CarSim model, and the control
gains were tuned by comparing the experimental and field
data through trial and error.

As described in Assumption 1, we selected a reasonable
empty inter-vehicle space near to the subject-vehicle as the
ALCS in this study. The lead- and lag-vehicles for lon-
gitudinal control were specified according to the selected
ALCS, and the scenarios were constructed according to
the driving velocities and relative positions of the vehicles.
In this respect, our controller is guaranteed to approach any
ALCS, regardless of where it is; we validate this in the next
section.

To validate the effect of our lane changing control system,
we tested various scenarios; the 12 representative scenarios

TABLE 2. Simulation scenarios in terms of initial velocity and relative
distances to the surrounding vehicles.

are summarized in Table 2. Various driving condition sce-
narios were set by adjusting the initial velocities and relative
distances of the vehicles at the time the LC intention was reg-
istered (i.e., initial time, t = 0). Excluding Scenarios (i) and
(j) (i.e., lead- or lag-vehicle deceleration), the surrounding
vehicles all maintained their initial velocities through HDA
control (i.e., cruise control and front-spacing control) until
the simulation was completed.

Even if the surrounding vehicles‘ velocities are constant,
the relationships between them and the subject-vehicle (i.e.,
the relative distances and relative velocities) can be regarded
as variable, because the driving state of the subject-vehicle
changes in real-time. The scenarios can be classified into
four evaluation perspectives: surrounding driving state-, driv-
ing tendency setting-, collision risk situation-, and ALCS
selection-based evaluations.

B. RESULTS
Table 3 summarizes ten types of control results with respect
to subject-vehicle’s movement (i.e., time period and distance
in LCSR and LC modes, minimum and maximum ax and ay,
cumulative absolute acceleration

∫
|ax |, and averaged lateral

error Aver. ye). Note that
∫
|ax | denotes the total longitudinal

energy expended in completing the lane change. Aver. ye is
the lateral difference between the LCO and lateral vehicle
position (yLC − ey) during lane changing control (i.e., the lat-
eral control error). The control mode process applied during
the simulation is also described.

To identify more detailed simulation results in each sce-
nario, we present three types of time-series plots, as shown
in Figures 11–13. Figure 11 shows the change in Rs (solid
lines) and Pdess (dashed lines). Here, Pdes indicates the
marginal position of Rdes relative to each surrounding vehi-
cle (i.e., Pdes = R − Rdes). This figure helps to identify
the relationship between the subject-vehicle position and the
Rdess. We can also determine whether the subject-vehicle
maintains a safe distance to the surrounding vehicles over
time. Figure 12 shows the velocity variation of the subject and
surrounding vehicles corresponding to each scenario. Longi-
tudinal and lateral acceleration plots of the subject-vehicle
are also presented in Figure 13. In this section, we evalu-
ate the system based on the four aforementioned evaluation
perspectives.

1) INITIAL SURROUNDING DRIVING STATE-BASED
EVALUATION
Scenarios (a), (b), (c), (d), (e), and (f) correspond to assess-
ments based on the initial surrounding driving state. As shown
in Scenarios (a), (b), and (c) in Table 2, when the LC intention
occurs, the relative distances are same, even though the vehi-
cles are driving at different velocities in each scenario. In Sce-
narios (a), (d), and (e), all vehicles drive at the same velocity
of 70 km/h, but their relative distances differ. In Scenario (f),
the vehicle speed in the target-lane is 80 km/h, slightly higher
than the subject-vehicle velocity, and the distance to the lead-
vehicle is relatively short.
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TABLE 3. Simulation results according to subject-vehicle movement in each scenario scenario.

The simulation results show that the subject-vehicle
changed lanes immediately in Scenarios (a) and (f). In Sce-
narios (b), (c), (d), and (e), however, it tried to reach the LCS
(i.e., the LCSR mode was applied) before initiating the LC
mode. Figures 11 and 13 (b–e) show that spacing controls—to
ensure the desired spacing to the lead- or lag-vehicles—
were conducted during both the LCSR and LC modes [i.e.,
lead-spacing control in Scenarios (b) and (d), and lag-spacing
control in Scenarios (c) and (e)].

In Scenario (f), although the subject-vehicle was relatively
near to the lead-vehicle (5 m away), immediate lane chang-
ing was possible because the velocity of the lead-vehicle
was 10 km/h higher than that of the subject-vehicle (i.e.,
sufficient LCS at t = 0). Figure 12(f) shows that in the
LC mode, cruise control was executed at the same speed
in the target-lane after lane changing, and a stable traffic
flow that did not interfere with the target-lane flow was
ensured.

FIGURE 11. Relative distances and marginal positions of desired spaces with respect to surrounding vehicles for each scenario.
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FIGURE 12. Velocity diagrams of the subject vehicle and surrounding vehicles for each scenario.

2) DRIVING TENDENCY SETTING-BASED EVALUATION
By comparing Scenarios (g) and (h), we assessed the lane
changing performance with respect to the driving tendency
parameter setting. In all scenarios except (g) and (h), iden-
tical parameter settings based on relatively normal driv-
ing conditions were given, as shown in Table 1; however,
in Scenarios (g) and (h), we adjusted several parameters relat-
ing to driving tendencies under the same initial states.

Among the longitudinal control parameters in Table 1, Th,
α, ed , and λ relate very closely to the driver’s lane chang-
ing tendencies. Th and α determine the size of the desired
safe spacing. As mentioned in Section IV (A.1), the desired
spacing is proportional to Thmultiplied by the subject-vehicle
velocity; however, it is inversely proportional to α multiplied
by the relative velocity (e.g., if the subject- and lead-vehicles
drive at 70 km/h and 80 km/h, respectively, the subject-vehicle
requires approximately a 4.8m spacing when Th = 0.5 and
α = 0.1, but a 2.9m spacing when Th = 0.4 and α = 0.1 and
a 2.1m spacing when Th = 0.5 and α = 0.15). ed is another
critical parameter that determines the size of the desired safe
spacing in the LC mode execution. Adjusting this parameter
can result in severe collisions in the LC mode, hence we
left it unchanged. λ is used to calculate the magnitude of
the desired acceleration, which ensures the desired spacing.
Namely, we implemented various human-like controls such
as cautious [Scenario (g)] and aggressive [Scenario (h)] driv-
ing by adjusting Th, α, and λ; we set the values of these
parameters to 0.6, 0.1, and 0.8 in Scenario (g), and 0.4, 0.2,
and 1.2 in Scenario (h), respectively.

By comparing these simulation results, we can see
that the LC mode was executed after lag-spacing con-
trol for LCSR in both scenarios, but it was initiated later
in Scenario (g) (10.3 s) than in Scenario (h) (2.0 s).

In Scenario (g), we determined that the ALCS was very
tight [as shown in Figure 11(g)], and longitudinal accelera-
tion chattering occurred due to repetitive lag-spacing, cruis-
ing, and lag-spacing controller switching, as shown in Fig-
ure 13(g). However, the magnitude of the chattered acceler-
ation was small (within ±0.5m/s2); thus, the vehicle motion
stability did not suffer any adverse impacts. However, we esti-
mated that some influence was exerted on driver comfort and
traffic flow.

In Scenario (h), we identified the subject-vehicle’s motion
to be more stable and smooth [Figure 13(h)]; however, the LC
mode was executed even though the relative distance to the
lag-vehicle was only secured at approximately 2m [as shown
in Figure 11(h)]. Thus, we estimate that a high-risk collision
might occur with the lag-vehicle. Moreover, comparing the
total energy of these scenarios, a lower value (3.62m/s2

lower) was measured in the aggressive driving setting
[Scenario (h)], but vehicle safety was more strongly ensured
in the cautious driving setting [Scenario (g)].

3) COLLISION RISK SITUATION-BASED EVALUATION
To assess whether our system avoids forward collisions,
consistent decelerations were applied at t = 0 to the ini-
tial velocity of the lead- and front-vehicle in Scenario (i)
(−0.48m/s2) and Scenario (j) (−0.38m/s2), respectively;
for this, we used the same initial surrounding states, which
required lag-spacing control. The surrounding conditions for
front-vehicle deceleration in Scenario (l) matched those of
Scenario (j); the results are discussed in the next section.

In Scenario (i), depending on the mode process (Table 2),
the subject-vehicle initially performed lag-spacing control
for LCSR; then, it executed minimal front-spacing controls
for a short period (approximately 1.0 s). Meanwhile, the
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FIGURE 13. Longitudinal and lateral acceleration plots of subject vehicle for each scenario.

vehicle reached the LCS and implemented the LC mode
(at 3.8 s). However, deceleration control was performed dur-
ing the LC to ensure a safe distance with the decelerating
lead-vehicle. Figure 11(i) shows that the desired distance to
the lead-vehicle increased over time (until 3.8 s) prior to
LC mode execution, owing to the deceleration of the lead-
vehicle; then, it was decreased by the lead-spacing control
in the LC mode. It is also shown in Figure 12(i) that—in
accordance with Assumption 3 in Section III (B)—the lag-
vehicle decelerated along with the decelerating forward vehi-
cles. In addition, owing to the simultaneous control of the
deceleration and steering during lane changes, the subject-
vehicle had a slightly larger lateral acceleration (as shown
in Table 3); however, the values were within±1m/s2 and did
not impede the stability of the vehicle.

The early phase of the subject-vehicle’s movement in
Scenario (j) was similar to that in Scenario (i), with some
lag-spacing control observed. Subsequently, the subject-
vehicle performed front-spacing control in the HDA mode
under the influence of front-vehicle deceleration; thus,
it failed to reach the LCS and maintained safe front-spacing
control within the current lane [Figures 11 and 12 (j)].
In this case, to enhance the realism of the scenario, another
ALCS search was required [addressed in Scenario (l)]; how-
ever, in this scenario, only the initially specified ALCS
was maintained without change, following Assumption 1 in
Section III (B). However, this scenario can occur in real driv-
ing situations, in which a ALCS cannot be selected because
of the high-density flow in the target lane; thus, this result is
significant and sufficiently descriptive.

4) ALCS SELECTION BASED EVALUATION
Our autonomous lane changing system is designed to per-
form decision-making and control separately, and it aims to
control the vehicle such that it can reach the ALCS, regard-
less of where the ALCS—selected in the decision-making

process—is situated. In this study, even though we specified
a reasonable ALCS for control [following Assumption 1 in
Section III (B)], Scenarios (d), (e), (k), and (l) allowed for
system assessment according to ALCS selection.

Consider the situation shared between Scenarios (d) and (e)
[i.e., there were three adjacent vehicles in target lane, these
vehicles and the subject-vehicle drove at the same veloc-
ity, and the sizes of the selected ALCSs and distances to
the subject-vehicle were identical. However, the ALCS was
selected to the subject-vehicle’s rear in Scenario (d) and to
its front in Scenario (e)]; here, it is difficult to determine
the nearest ALCS, but the situation is often encountered
in real driving. As a result, controls to reach the LCS and
change lanes were carried out smoothly in both scenarios.
As shown in Figure 11(d) and (e), the LC mode was executed
approximately at the same time in Scenario (d), but it can be
seen that Scenario (d) (where the ALCS was selected slightly
further back and deceleration was required for LCSR) was
more energy efficient (1.45m/s2 lower) and general.
In Scenario (k), the ALCSwas selected further ahead of the

subject-vehicle. This selection can occur in situations where
the empty adjacent spaces are very narrow and the distance to
the front-vehicle is sufficiently safe. As a result, we verified
that both LCS (through conducting lag- and lead-spacing
control) and lane changing were performed successfully
[as shown in Figure 11 (k)]. Notably, the subject-vehicle’s
movement was smoothly synchronized with the traffic flow,
even though the velocity of the vehicle had increased through
the acceleration required to reach the space [i.e., the velocities
of the subject-vehicle and target-lane vehicles approached
each other, as shown in Figure 12(k)]. In this respect, decel-
eration was inevitable; this caused a relatively large lateral
acceleration (−1.13m/s2) during the LC mode but did not
impede the stability of the vehicle motion.

In the aforementioned all scenarios, the specified ALCS
was maintained during the simulation, and it can be assumed
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that this setting sufficiently reflects a typical driver’s behavior
(i.e., the selected ALCS is set as a target and maintained con-
tinuously). In addition, excessively rapid changes to ALCS
selection may impair system performance and result in unsta-
ble driving. However, in some situations, ALCS switching
is required for effective driving. In this respect, the system
assessment in Scenario (l) was also conducted in situations
in which reasonable ALCS switching was required whilst
driving.

In Scenario (l), we used a simple condition to switch
the ALCS to an adjacent space (i.e., the lead- and lag-
vehicles were interchanged) if the space was sufficiently
empty whilst the subject-vehicle was not at the LCS. This
scenario implemented the same conditions as Scenario (j).
Scenario (j) showed that the subject-vehicle could not reach
the LCS, because the continuously computed ALCS was
inefficient; however, safe HDA was conducted, as previously
addressed. In Scenario (l), the mode process results for the
early phases of the subject-vehicle’s movement were simi-
lar to those of Scenario (j) (i.e., some lag-spacing control
and front-spacing control); however, after 3 s, the ALCS
was switched [as shown in Figure 11(l)] and the vehicles
used for control reference were re-selected (e.g., the lag-
vehicle (before 3 s) became the lead-vehicle and the vehicle
behind the lag-vehicle (before 3 s) became the lag-vehicle).
After 3s, the new ALCS was selected and maintained until
the simulation completed. At 2.4 seconds after the ALCS
switch [Figures 12 and 13, Scenario (l)], we confirmed
that controls to ensure a safe distance with the lead-vehicle
were performed to reach the LCS. After LCSR, accelera-
tion was applied through cruise control (in the LC mode),
to maintain the speed at 70 km/h. With this, we verify the
high security performance of our system in complex driving
processes.

Furthermore, we validated the system for the case of a
continuously varying ALCS selection. The results replicated
those found for Scenario (j) (i.e., failure to perform lane
change and repeated switching of HDA and LCSR modes).
We omit these scenarios from this paper.

In all scenarios, in addition, the differences between the
pre-designed LCO and controlled vehicle were observed
to be less than 0.09 m (on average) during lane changes.
In this respect, we verified that our system solves the existing
dynamic instability problem caused by longitudinal acceler-
ation variability in lateral control.

VI. CONCLUSION
This paper presented an autonomous lane change control
system that is capable of adapting to variable surrounding
conditions, thereby ensuring vehicle safety and traffic
flow stability. We suggest a system architecture that con-
sists of deep learning-based decision-making and dynam-
ics model-based control procedures for optimal human-like
ALCS selection and robust, autonomous lane change con-
trol. We designed a lane change procedure and focused on

constructing a controller that could reach the ALCS and
change the lanes robustly. For improved multi-motion and
organic control with other ADASs already in use, a decou-
pled control structure and longitudinal trajectory-free control
approach were suggested.

To validate the effectiveness of our system, simulated
experiments were performed for 12 scenarios; these suffi-
ciently considered situations that may arise in stable traffic
flow. A system assessment was conducted based on four eval-
uation perspectives. As a result, we confirmed that our system
ensures a high performance in both controlling the vehicle
safely (i.e., with respect to the variable surrounding vehicles)
and also ensuring the stability of vehicle motion. We also
verified that our controller solves the existing dynamic insta-
bility problem caused by longitudinal acceleration variabil-
ity in lateral control. Another significant advantage of this
research is that the controlled vehicle does not interfere with
the target-lane traffic flow and smoothly synchronizes with
the flow during lane changing.

Future work will concentrate on expanding the deep
learning-based ALCS-selection research, by training with
more empirical lane changing data and expanding the results
of this work therewith. More sophisticated parameters and
gain tuning (through updating with state-of-the-art driver
behavior analysis and reflecting the driving characteristics)
will be performed. Hardware-in-the-loop simulations and
actual vehicle-based tests will be conducted, and we plan to
apply our system to vehicle-to-vehicle communication. In the
future, we expect to tackle more complex autonomous lane
changing situations (e.g., forced lane changing) using our
system. 3.
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