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ABSTRACT To train deep learning models for vision-based action recognition of elders’ daily activities,
we need large-scale activity datasets acquired under various daily living environments and conditions.
However, most public datasets used in human action recognition either differ from or have limited coverage
of elders’ activities in many aspects, making it challenging to recognize elders’ daily activities well by only
utilizing existing datasets. Recently, such limitations of available datasets have actively been compensated
by generating synthetic data from realistic simulation environments and using those data to train deep
learning models. In this paper, based on these ideas we develop ElderSim, an action simulation platform
that can generate synthetic data on elders’ daily activities. For 55 kinds of frequent daily activities of the
elders, ElderSim generates realistic motions of synthetic characters with various adjustable data-generating
options and provides different output modalities including RGB videos, two- and three-dimensional skeleton
trajectories. We then generate KIST SynADL, a large-scale synthetic dataset of elders’ activities of daily
living, from ElderSim and use the data in addition to real datasets to train three state-of-the-art human action
recognition models. From the experiments following several newly proposed scenarios that assume different
real and synthetic dataset configurations for training, we observe a noticeable performance improvement by
augmenting our synthetic data. We also offer guidance with insights for the effective utilization of synthetic
data to help recognize elders’ daily activities.

INDEX TERMS Classification algorithms, computer graphics, computer simulation, computer vision,
supervised learning

I. INTRODUCTION
The need and importance of vision-based human action
recognition (HAR) are growing in a wide range of eldercare
services [1], including care robots [2], [3], smart surveillance
[4], and health monitoring [5], [6]. Recently, the performance
of vision-based HAR has been dramatically improved by
deep learning methods [7]–[17], which require large-scale
training datasets for accurate action recognition [7], [19]–
[24] as mentioned in [18]. Accordingly, to train deep learning
models to recognize elders’ activities of daily living (ADL),
we need large-scale datasets that contain activities acquired
under various environments and conditions that we encounter
in daily life.

However, most public datasets used in HAR, including

the NTU RGB+D dataset [21], which is frequently used as
a benchmark, either differ from or have limited coverage of
elders’ daily activities in many aspects. Even if they have a
large number of samples with various action classes, only
a few action classes of such datasets match elders’ ADL.
Moreover, they are usually acquired from laboratory environ-
ments that deviate from the places of daily living. The way or
speed of actions may also differ from the elders’ since they
mostly consist of relatively young subjects’ actions. These
differences can induce inaccurate action recognition results
when a model trained on such datasets is tested on data of
elders’ ADL [24].

Recently, some datasets of elders’ ADL have been publicly
available [24], [25]. However, due to the limited data acqui-
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sition conditions, they often lack diversity in aspects such as
background, camera viewpoint, and lighting condition. The
low variations in a dataset can cause overfitting of deep learn-
ing models, especially for RGB-based HAR methods that are
sensitive to the conditions above. An overfitted model will
not generalize well and result in low recognition accuracy
when applied to data obtained under conditions significantly
different from the training datasets.

A naive approach to this problem is to build a dataset
that reflects all the conditions that arise in diverse real-world
household environments. However, given the diversity in
data acquisition conditions such as camera view, lighting,
background, and the type of actions, it is expensive and
laborious to acquire such a dataset due to the combinato-
rial explosion [26], i.e., the number of data can increase
exponentially. There also exist other difficulties in acquiring
real data. For example, viewpoints are often restricted due to
spatial limitations such as small-sized bathrooms or complex
indoor environments. Personal privacy issues and physical
limitations of the elders also make it more challenging to
obtain a large-scale training dataset of good quality.

To compensate for the limitations of available datasets and
the difficulties of acquiring real data, recent studies endeavor
to generate automatically-labeled synthetic data from virtual
environments [27]–[29], [51]–[53] and further use those data
to train deep learning models and enhance action recognition
performance [29], [52]. In such virtual environments, we
can freely adjust aspects such as backgrounds, subjects (or
synthetic characters), camera viewpoints, and lighting condi-
tions. Therefore, it becomes possible to customize the dataset
that contains a large number of realistic data as needed. If
such synthetic data are appropriately utilized for training
deep learning models, we can expect those data to help fill
the holes that reside in real-world datasets, e.g., the limited
coverage in camera viewpoints and lighting conditions or
the severe gap from the target data in subjects’ ages and
backgrounds.

In this paper, based on the above ideas we develop El-
derSim, an action simulation platform that can generate syn-
thetic data on elders’ daily activities. We visualize the daily
living environment and the characters of ElderSim to be as
close as possible to those of the real-world using a recent
three-dimensional rendering and modeling software. Target-
ing the actual application to eldercare services, we model
movements for 55 kinds of frequent daily activities of the
elders and offer variability in data acquiring options such as
camera viewpoints and lighting conditions that change over
time, to name a few. To summarize, ElderSim generates real-
istic daily living activities of synthetic characters with several
adjustable data-generating options and provides different out-
put modalities including RGB videos, two-dimensional (2D)
and three-dimensional (3D) skeleton trajectories to increase
applicability further. As an illustrating dataset generated from
ElderSim, we release KIST SynADL, a large-scale simulated
synthetic dataset of elders’ activities.

We use KIST SynADL in addition to real datasets to train

state-of-the-art HAR models, and validate the effectiveness
of augmenting synthetic data. Unlike previous data augmen-
tation studies focusing primarily on some limited benchmark
datasets and experimental scenarios, we propose several
new scenarios to examine various aspects that arise from
recognizing elders’ ADL. Specifically, in addition to cross-
view and cross-subject train/test splits, widely considered in
the literature, we newly introduce cross-lighting, cross-age,
and cross-dataset splits that assume the real and synthetic
training datasets of different configurations. Here, the last
two settings are focused more on the application to the elders.
We also examine synthetic data augmentation for each of
the three data modalities provided, namely RGB video, 2D
and 3D skeleton. From the extensive experiments held with
three action recognition models on four different real-world
datasets, we show that augmenting our synthetic data for
training increases recognition performance for most of the
considered methods in various settings. We also offer some
guidance with insights on utilizing synthetic data to help
recognize elders’ daily activities effectively. These points
are of great importance since they can be easily combined
with additional improvements in both deep learning models
and objective functions for training to gain enhanced action
recognition performance. The main pipeline of our work is
described in Fig. 1.

In summary, the contributions in this paper are three-fold:

1) We propose a novel action simulation platform (El-
derSim) that generates realistic motions of elders’ ac-
tivities of daily living based on user-adjustable data
generation parameters.

2) With ElderSim, we generate a large-scale synthetic
dataset (KIST SynADL) that covers 55 activity classes
performed by synthetic elder characters in diverse
backgrounds, viewpoints, and light conditions. Elder-
Sim and KIST SynADL are publicly available in
https://ai4robot.github.io/ElderSim.

3) We leverage KIST SynADL to train three human ac-
tion recognition methods on several experimental splits
using four real-world activity datasets and present re-
markable performance improvement in action recog-
nition. In addition, we provide some guidance with
insights for the effective usage of synthetic data in
action recognition.

The paper is organized as follows. Section II presents
related works, and we elaborate on ElderSim along with the
synthetic dataset generated from ElderSim in Section III.
Section IV presents action recognition experiments augment-
ing our synthetic data. We conclude in Section V.

II. RELATED WORK
In this section, we introduce several HAR methods with
various human activity datasets utilized in the literature. We
also mention previous studies that exploit synthetic data to
improve action recognition.
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FIGURE 1. The synthetic data generation process of ElderSim and the main pipeline of our proposed work. ElderSim generates synthetic RGB video, 2D, and 3D
skeleton data based on the data-generating options that are customized by the user. Here, we experimentally augment synthetic data on real ones and train three
different action recognition methods (Method I: Glimpse [11], Method II: ST-GCN [12], Method III: VA-CNN [13]) to scrutinize the effects of using our generated data.

A. HUMAN ACTION RECOGNITION

Considering the temporal dimension along with the spatial
dimension is essential for video understanding. Convention-
ally, these features were extracted by hand-crafted descrip-
tors, including Histogram of Oriented Gradients (HOG) [30],
Motion Boundary Histogram (MBH) [31], and Histograms of
Optical Flow (HOF) [32], which are followed by a classifier
such as Support Vector Machines (SVMs) for classification.
Other methods used dense trajectories that track densely-
sampled feature points and extract appearance and motion
information with the previously mentioned descriptors along
the trajectories [33], [34].

With the development of powerful computation hardware
and large-scale activity datasets, deep learning methods
achieved profound performance in action recognition. As
being one of the convolutional neural network (CNN)-based
methods [7]–[9], [35], [36], [35] computes spatial informa-
tion from a still frame and samples temporal motion from
multiple-frame dense optical flow. The information is then in-
serted into a two-stream network that consists of a spatial and
temporal CNN for better training. [36] first introduced 3D
convolution for action recognition, which extracts features
from both the spatial and temporal dimensions with a 3D
kernel. [7] tested varying architectures on their own dataset,
Sports-1M, showing that the Slow Fusion model outperforms
other structures with different connectivity in time and also
proposed an architectural method using lowered-resolution
inputs to speed up training without any performance loss.
[8] built a C3D (Convolutional 3D) network with 3D kernels
and empirically showed the optimal kernel size and network
architecture for improved action recognition performance in

large-scale video datasets. Unlike [8], [9] inflated the filters
and pooling kernels of deep 2D image classification mod-
els (e.g., Inception-v1 with batch normalization [37]) into
3D to gain from the advantages of ImageNet pre-training.
They marked up performance with an additional optical-flow
stream which is trained separately and tested with averaged-
predictions. Without the support of multimodal inputs, [10]
computes a single modality of raw RGB to a two-stream
design by passing each pathway with a different frame rate.
Spatial meanings are captured through one stream with a
higher frame rate while the temporal information is learned
through the other stream with a lower frame rate. The ar-
chitecture in [11] learns to predict the attention windows
in the feature space; extracted from a global model. A set
of recurrent architectures are used to track the unstructured
windows and classify actions from RGB video inputs.

Skeleton-based HAR methods [12]–[16] have been studied
to avoid various interference of RGB appearance while using
simpler data that are coordinates of several joints and their
derived forms. These methods mainly obtain the human
skeletal structure utilizing depth sensors [38] or human pose
estimation algorithms [39], [40]. [16] uses the main LSTM
network with a spatial attention module and a temporal
attention module that holds different attention levels to select
discriminative joint inputs and frame outputs, respectively.
The three networks are jointly trained for optimization as
an end-to-end training method. More recently, initiated by
[12], graph convolutional network-based action recognition
studies tried to understand the skeletal information as a graph
and extract features using CNNs. [14] represented the tree-
based natural human body structure as a directed acyclic
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graph for a better interpretation. They also adopt the two-
stream method by feeding a graph that contains information
of joints and bones to one network and another graph that
contains the motion of joints and deformation of bones to the
other network. [15] used temporally different-sized kernels
instead of fixed ones as in [12] and added an additional
spatial graph convolution layer branch to form a parallel
structure. They further improved performance by using six
modalities of input features including relative positions of
joints and bones. Other multimodal fusion methods enhance
performance by handling data of different domains, such as
RGB and 3D skeleton [17].

B. REAL-WORLD ACTIVITY DATASETS
Diverse real-world human activity datasets have been pub-
licly available with the emerging importance of robust hu-
man action recognition. Initial human activity datasets were
relatively small-scale, having a small number of subjects
and activity categories, until the early 2010s [41]–[44]. KTH
[41], being one of the earliest databases, contains a single
RGB modality of six action categories with simple motions
such as walk, run, and clap. Depth map information was
firstly provided with RGB in MSR Action3D [42], which
focused on game console interaction-based motions, includ-
ing draw circle, forward kick, tennis swing. As an extension
of [42], MSR Daily Activity3D [43] covers living room
daily activities, most containing human-object interaction
captured by a Kinect sensor. RGBD HuDaAct [44] also deals
with 12 daily activities of 30 students with RGB and depth
modalities maintaining under 1,200 samples. Most of the
early datasets contain only a few thousands of video samples
and under 20 class categories, which allowed studies for
hand-crafted methods without the support of deep learning.
Large-scale activity datasets emerged along with the advance
of data-hungry action recognition methods [7], [19]–[24].
The initial version of Kinetics [19], obtained from YouTube,
included 400 activity classes having more than 300K sam-
ples in total. The dataset is now extended to contain 700
classes with approximately 650K video clips. PKU-MMD
[20] provides untrimmed daily activity video sequences in
four modalities of RGB, depth, infrared (IR), and skeleton
for the research field of action detection. A more recent
multimodal dataset, MMAct [23], was released with seven
modalities: RGB, skeleton, acceleration, and other sensor
signals. NTU RGB+D [21] and its updated version [22] are
extensively used as a benchmark dataset in recent human
action recognition literature. They respectively captured 60
and 120 action categories, including daily actions, medical
situations, and human-human interactions. Both versions are
provided with RGB, depth, 3D skeletons, and IR data, having
almost 115K samples for the updated version.

Some datasets are acquired under more varied settings
to better reflect the conditions that are likely to occur in
real-world applications. Multi-view human activity datasets
were obtained from various camera viewpoints by simul-
taneously using several cameras or changing the camera

viewpoints in a different trial [21], [22], [45], [46]. UESTC
[46] considered human-robot interaction (HRI) applications
for action recognition from arbitrary viewpoints. The dataset
includes eight fixed viewpoints with arbitrary viewpoints
sampled from the entire 360° horizontal directions. There
also exist other datasets that target action recognition for
specific applications, such as eldercare [24], [25]. ETRI-
Activity3D [24] captured elders’ activities of daily living
(ADL) from several viewpoints considering mobile robots’
heights for care robotic services. Toyota Smarthome [25] is
another dataset on elders’ ADL that possesses severe class
imbalance and intraclass variation by capturing unscripted
daily activity videos of the elderly.

C. SYNTHETIC DATA EXPLOITATION
To provide abundant training data for deep learning meth-
ods to avoid overfitting, some studies focused on utilizing
synthetic data. Synthetic data generation is considered cost-
effective and customizable since users can manipulate data
reflecting one’s needs without any additional data capturing
middleware or subjects. Some studies generate synthetic data
using generative adversarial networks (GANs) [47], [48] or
composite methods based on existing real data [49], [50].
Another group of studies uses computer graphics and game
engine techniques to simulate data and exploit them for deep
learning tasks [27]–[29], [51], [52].

[48] uses two adversarial generative networks to train
instance-level pairwise cross-view connection knowledge
and performs robust action recognition with additional train-
ing data generated for deficient views. [49] composites realis-
tic images to overcome the laborious manual labeling process
for the 3D skeleton, depth, and motion. The human motion
is extracted based on motion capture (MoCap) recordings,
randomized textures, viewpoints, and lighting conditions are
added on top of a static real-world background image to gen-
erate data; such data are applied to human depth estimation
and human part segmentation tasks. The subsequent study
[50] extracts 3D human dynamics using a 3D human shape
estimation method and synthesizes other randomized compo-
nents to render complementary training data to improve the
action recognition from unseen viewpoints.

Here, we focus on game engine techniques to synthesize
data without any reference RGB data and generate realistic
videos by considering various factors, including the context
of the background, physics, and object interaction. Various
game engine-based data generation studies were conducted
in fields where data acquisition in various environments is
highly expensive, such as autonomous systems [51], [52] and
robotics [27], [28]. For human action recognition, Souza et al.
[29] initially generated abundant synthetic training data un-
der a variety of conditions with the Unity® game engine and
enhanced action recognition performance by training with a
mixture of real-world and generated data. However, most ac-
tivity categories are not indoor activities of daily living hence
not applicable to train models for eldercare applications.
[53] introduced a simulation platform, developed in Unreal
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Engine 4® (UE4), to procedurally produce photorealistic
synthetic videos of household activities in various modalities,
but fails to provide details of the synthetic data augmentation
effect in action recognition. [52] developed a simulation
framework to automatically generate annotated training data
from the Unity® game engine. They show outstanding action
recognition accuracy in classifying five activities by training
a shallow skeleton-based action recognition algorithm with
their generated data. In this paper, we further explore the
benefits of training synthetic data based on three state-of-the-
art deep action recognition algorithms (fed with different data
modalities containing RGB, 2D, and 3D skeleton) to classify
55 action classes.

III. ELDERSIM DEVELOPMENT
We now elaborate on how our elders’ activity simulation
platform, denoted as ElderSim, has been developed in detail.
In the development, we focus on the following two aspects:
1) to visualize the virtual environment as close as possible
to the real-world and 2) to reflect various situations that can
be captured in actual applications. To fulfill our first aim, we
utilize a real-time photorealistic rendering platform Unreal
Engine 4® (UE4) and a three-dimensional (3D) computer
animation and modeling software called Autodesk Maya®
(Maya). Using the two software, we construct the simulation
environment of elders’ daily living that resembles the real
household backgrounds. We then model appearances and
movements of synthetic characters based on the motion cap-
ture (MoCap) data obtained from the elders. To achieve the
second objective, we consider 55 activity classes that suffi-
ciently include the most frequent ADL of the elders. We also
make it available to customize various camera viewpoints and
lighting conditions, regarding care robot and smart surveil-
lance applications. The following sections explain further
development details and distinctive features of ElderSim. We
then introduce KIST SynADL, a large-scale synthetic dataset
generated from ElderSim.

A. BACKGROUND
To provide realistic simulation backgrounds for elders’ daily
living in ElderSim, we have modeled four residential houses
based on their indoor measurements and photographs. House
models can be added if necessary. When implementing the
house models in ElderSim, the household background has
become visually more realistic by using physics-based ma-
terials and the Post-Process Volume function in UE4. Each
of the four house models contains four areas (living room,
bedroom, kitchen, and bathroom) as shown in Fig. 2. In
each area, we only simulate activities that are plausible to be
performed (e.g., wash face is simulated only in the bathroom
while play with a mobile phone is simulated in all four areas).

B. CHARACTER
We have modeled synthetic characters that imitate thirteen
elder subjects (seven females and six males with average
age and standard deviation as 69.92 and 3.36, respectively)

Living room Bedroom Kitchen Bathroom

FIGURE 2. The top view of four different residential household backgrounds
implemented in ElderSim. Each household consists of four areas where daily
activities are frequently occurred.

(a) (b) (c) (d)

FIGURE 3. Body shapes are captured from a depth sensor in the real-world
(a). Depth information is used to model the synthetic character (b) and
appropriate textures are applied (c) to reflect the various appearances (d).

and two relatively young subjects (a female and a male) in
ElderSim. These subjects have been recruited to sufficiently
represent a variety of body shapes and appearances. Their
body shapes have been captured from Kinect depth sensors
and utilized to design the body shape of synthetic characters
in Maya. The faces of characters have been randomly created
due to legal issues on portrait rights. In addition, different
age-appropriate clothes have been applied to each character
to enhance their appearance diversity. As a result, ElderSim
can generate action data from fifteen synthetic characters
possessing individual face, body shape, and appearance (see
Fig. 3). The number of synthetic characters can be increased
by implementing body shape transformation techniques in
computer graphics, which are left for future work.

C. MOTION
Following [24], we provide motions for 55 activity classes
considered to be the most frequent ADL of the elders in
ElderSim. To generate realistic motions for these activities,
we utilize MoCap data obtained from the subjects recruited in
Section III-B. Sixteen digital MoCap cameras have captured
the subject motions using 40 markers attached to the subjects’
body. When acquiring data, there have not been any specific
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Top view Front view

FIGURE 4. An example of the virtual camera setups based on the available
viewpoints. Top and front views are chosen for a better interpretation. Here, 20
cameras represent robot-viewpoints and eight cameras on each corner of the
room represent surveillance-viewpoints. The user can easily manage the
number of viewpoints by adjusting the angle interval and a set of heights.

instructions for subjects to perform ADL to increase realism
and diversity of motions. The obtained MoCap data have
been rigged in Maya, i.e., skeletal templates and their move-
ments that best fit the data are constructed. From the rigged
data, the motions for synthetic characters are generated by
adjusting the template’s kinematic parameters to those of
each character and playing the constructed movements. To
provide motion data in 3D skeleton modality, we define
skeleton joints by attaching the sockets of UE4 to each char-
acter’s 25 joints following two types of joint format labels
used in OpenPose [40] and Kinect v2. Two-dimensional (2D)
joint motions are obtained by projecting those in 3D to the
image plane of each camera viewpoint using a transformation
function in UE4.

D. VIEWPOINT

Camera viewpoints in ElderSim contain robot- and
surveillance-viewpoints, considering eldercare applications.
Robot-viewpoints simulate video acquisition from care
robots, and corresponding cameras are located on a circle
to surround a target character with the circle radius appro-
priately defined from the range of the character’s motion.
The cameras have equal spacing on the circle with an angle
interval φ and located at heights specified by a set of h height
values δ = {δ1, δ2, ..., δh}, where δi denotes the i-th height
value. The angle interval φ and the set of height values δ are
set to be user-adjustable parameters. Given these parameter
values, the number of viewpoints (Vcircle) can be expressed
as

Vcircle = h× floor(360◦/φ). (1)

Such a circular camera layout may not be available occa-
sionally due to obstacles in some backgrounds (e.g., when
the character is sitting on a sofa, a wall behind the sofa
hinders the rear robot-viewpoints); we then form viewpoints
to cover a semicircle instead of a circle (see Fig. 4). In
this semicircular camera layout, the number of viewpoints is

FIGURE 5. Representative lighting conditions modeled in ElderSim (clockwise
from top left: dawn, noon, night, and sunset). Controllable lighting conditions
appropriately reflect the real-world with the usage of indoor light sources and
the Post-Process Volume effect.

given as

Vsemicircle = h× (floor(180◦/φ) + 1). (2)

To implement these camera layouts for robot-viewpoints
in ElderSim, we define UE4 splines that contain multiple
cameras vertically and position these splines according to
the parameter settings. Meanwhile, surveillance-viewpoints
simulate video acquisition from surveillance cameras such
as closed-circuit televisions (CCTV). They are located at the
height of 1.5m and 2.2m in four corners of each area to
reflect the realistic camera installation, hence resulting in
eight surveillance-viewpoints.

E. LIGHTING
Lighting conditions in ElderSim are affected by both sunlight
and indoor light sources modeled in UE4. To simulate the ef-
fect of sunlight over time, we utilize the SkySphere Blueprint
function of UE4 and provide an adjustable time parameter in
100 levels to vary sunlight. Indoor light sources are placed
according to lighting layouts of actual houses considered in
Section III-A and controlled to resemble our daily life better,
e.g., turned off during the daytime and turned on during the
evening as shown in Fig. 5. Rendering effects, which are
significantly affected by lighting conditions, become finer by
applying the Post-Process Volume effect of UE4.

F. OBJECT
Among the 55 activity classes considered in ElderSim, 35
activities contain human-object interaction. We model ob-
jects that are required to simulate these activities in UE4.
The types of objects range from a single rigid body (for
28 classes) such as a cup to articulated objects such as a
vacuum cleaner (for the vacuum the floor class) or even
deformable objects such as a jacket (for the take off jacket
class). All the objects are modeled in three different ways to
increase diversity. When objects are used in ElderSim, they
are attached to the contacting body parts’ mesh and move
along with the body parts to look natural.
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FIGURE 6. A snapshot of ElderSim showing the user interface to generate
action data (a male elder character performing hang out laundry). The intuitive
user interface allows the user to generate customized data by providing
several data-generating options.

G. USER INTERFACE
An intuitive graphical user interface (GUI) is provided in
ElderSim to select data-generating options as needed. The
user can easily choose the desired subset of activities, char-
acters, and backgrounds from the provided sets in order
(see Fig. 6). The camera viewpoints can then be selected
among the robot- and surveillance-viewpoints, while prefer-
able robot-viewpoints are adjusted by an angle interval φ
and a set of heights δ as mentioned in Section III-D. The
lighting conditions are determined by choosing a subset of
the hundred time-levels to vary sunlight, from 0 to 1. For the
activities containing object interactions, the user can choose
whether to use an object and which object model to use.
In addition, for the activities containing repetitive motion,
we provide three different types of motion duration to in-
clude one iteration (succinct), multiple iterations (iterative),
and sequential movements (combined); the average motion
duration for each activity class in ElderSim is illustrated in
Fig. 7. Once the data-generating options are determined, the
data are automatically generated and recorded according to
all possible combinations of options in ElderSim. ElderSim
provides adjustable video resolutions and frame rates of up to
1920 × 1080 and 60 frames per second (FPS), respectively.
Furthermore, three kinds of output data modalities are pro-
vided: RGB video, 2D, and 3D skeleton. For skeleton data,
we provide both OpenPose- and Kinect v2-based skeletal
formats. Parallel processing allows faster data generation.

H. KIST SYNADL
Based on the developmental features of ElderSim, we gener-
ate KIST SynADL, a large-scale synthetic dataset of elders’
daily activities considering care robot and smart surveil-
lance applications. All 55 activities, 15 characters, and four
backgrounds modeled in ElderSim are utilized to generate
KIST SynADL. We further customize parameters for camera
viewpoints as follows. To provide robot-viewpoints, we set
the angle interval and height parameters (introduced in Sec-
tion III-D) to {φ = 36◦, δ = (0.7m, 1.2m)} for semicircular
camera layout respectively, where the height parameters are
set based on several real-world care robots. These parameter
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FIGURE 7. We provide three duration types in ElderSim to enhance
applicability. The average video duration for each activity class provided in
ElderSim is represented in different colors based on the duration types.
Actions with a Succinct duration type contain a single trial of an action. Iterative
duration-typed actions are performed repeatedly, but in a different way. Trivial
motions are added to the Iterative duration type to form a Combined duration.

settings result in ten horizontal camera locations, each having
two different heights, thus providing 20 robot-viewpoints.
Including eight more surveillance-viewpoints introduced in
Section III-D, KIST SynADL contains 28 camera view-
points. For the lighting conditions, we divide a day into five
parts by setting the time parameter to 0 (dawn), 0.25 (noon),
0.5 (evening), 0.75 (sunset), and 1 (night), with noon being
the default lighting condition.

In the case of activities involving human-object interac-
tions, we utilize only one kind of object model for each
activity to generate data. RGB videos in the KIST SynADL
dataset are recorded with a 640 × 360 resolution at 20 FPS,
and corresponding 2D and 3D skeleton data are saved in both
OpenPose- and Kinect v2-based formats. As a result, KIST
SynADL provides 462k RGB videos, 2D, and 3D skeleton
data, covering 55 action classes, 28 camera viewpoints, 15
characters, five lighting conditions, and four backgrounds.

IV. EXPERIMENTS
In this section, we experimentally validate and discuss the
effect of augmenting our synthetic data, KIST SynADL
(KIST), to train the models to recognize elders’ ADL. We
begin by introducing four real-world datasets for the ex-
periments and address how insufficient the existing public
dataset (NTU RGB+D 120) is to cover the elders’ ADL.
We then describe three state-of-the-art HAR methods used
in the experiments as well as several experimental scenarios
to examine the various aspects arising from the recognition
of the elders’ ADL. Within each experimental scenario, we
investigate how our synthetic data can help recognize elders’
daily activities and offer some guidance and insights for
effective synthetic data utilization.

A. DATASETS
We now introduce real datasets used in the experiments and
explain how their activity classes are selected to match the
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1. eat

2. drink

13. phone call

14. use computer

KIST (Ours) ETRIE [24] ETRIY [24] LIVA (Ours) NTU [22] TOYS [25]

FIGURE 8. Sample RGB snapshots and 2D skeleton coordinates of the datasets used in the experiments. The border color of each sample indicates both data
type and age group (purple: synthetic-elderly data, pink: real-elderly data, cyan: real-young data).

elders’ ADL. Samples of the datasets are visualized in Fig. 8.

1) ETRI-Activity3D Dataset
As introduced in Section II, the ETRI-Activity3D (ETRI)
[24] dataset has been recently released for care robot ap-
plications to recognize the ADL of the elders’. This dataset
contains 55 activity classes performed by a hundred subjects
(composed of 50 elder and 50 young subjects) and captured
from eight robot-viewpoints (installed in four locations each
having two different heights) under constant lighting condi-
tions. Since the dataset contains a large number of data with
112,564 samples, we utilize the ETRI dataset as our primary
real-world dataset to train and evaluate three HAR models on
elders’ ADL. However, due to the limited lighting conditions,
the model trained only on this dataset may fail to perform
well on other lighting conditions that might appear in the
real-world. Further details are addressed in the cross-lighting
split defined in Section IV-B.

2) KIST Living Lab Activity Dataset
KIST Living Lab Activity (LIVA) dataset is a newly acquired
real-world elder activity dataset in this work to include
different lighting conditions. It is composed of 23 activities
performed by ten elder subjects (average age of 67.6) in
a laboratory designed to imitate a household environment.
Here, the selected 23 activity classes correspond to the inter-
section of those in ETRI and NTU RGB+D 120 datasets as
shown in Table 1. 5,520 video sequences are captured from
four to eight camera viewpoints considering care robot and

smart surveillance applications under three lighting condi-
tions (bright, dim, and dark). We mainly utilize the LIVA
dataset as a test set in the cross-lighting split.

3) NTU RGB+D 120 Dataset
The NTU RGB+D 120 [22] dataset consists of 120 kinds
of activities performed by relatively young subjects in a
laboratory environment. This dataset includes multiple trials
of actions captured from five camera viewpoints installed at
a constant height and under a constant lighting condition.
Among 120 activities of [22], we construct the NTU dataset
by selecting only 25 activities with 23,436 samples that
match the 55 frequent ADL considered in the ETRI dataset.
Such activities of the NTU dataset are mapped to the 23
activities of the ETRI dataset as shown in Table 1. Even
though [22] is one of the most widely investigated datasets in
the HAR literature due to its large scale and diverse activity
classes, there is still a severe gap in the subjects’ ages,
backgrounds, and activity classes compared to the elders’
ADL held in households. Therefore models trained on this
dataset may not generalize well to the elders’ ADL; we
discuss such a point in the cross-dataset split with further
details in Section IV-B.

4) Toyota Smarthome Dataset
The Toyota Smarthome [25] dataset consists of 31 kinds
of activities performed by eighteen elder subjects in an
apartment. This dataset is collected from Kinect v1 at seven
surveillance viewpoints under a constant lighting condition.
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TABLE 1. Combined activity categories of the KIST, ETRI, LIVA, NTU, and TOYS datasets for the cross-dataset and cross-lighting splits. In some cases, more than
two classes from NTU and TOYS datasets are merged to match a single class label in other datasets.

Dataset

Combined Label KIST (Ours), ETRI [24] LIVA (Ours) NTU [22] TOYS [25]

1. eat eat food with a fork eat food with a fork eat meal eat (at table+snack)

2. drink drink water drink water drink water drink (from cup+from bottle
+from can+from glass)

3. brush teeth brush teeth brush teeth brush teeth -
4. wash hands wash hands wash hands rub two hands -
5. brush hair brush hair brush hair brush hair -
6. wear clothes put on jacket wear jacket put on jacket -
7. take off clothes take off jacket take off jacket take off jacket -
8. put on/take off shoes put on/take off shoes put on/take off shoes put on a shoe+take off a shoe -
9. put on/take off glasses put on/take off glasses put on/take off glasses put on glasses+take off glasses -
10. read read a book read a book read read a book
11. write handwrite write write -
12. phone call talk on the phone phone call phone call use telephone
13. play with phone play with a mobile phone play with phone play with phone/tablet use tablet
14. use computer use a computer use a laptop type on a keyboard use laptop
15. clap clap clap clap -
16. rub face rub face with hands rub face with hands wipe face -
17. bow take a bow bow nod head/bow -
18. handshake handshake handshake shake hands -
19. hug hug each other hug hug -
20. fight fight each other fight punch/slap -
21. hand wave wave a hand wave hand hand wave -
22. point finger point with a finger point a finger point to something -
23. fall down fallen on the floor fall down fall down -

Among 31 activity classes, we select ten activities included
in the NTU dataset as shown in Table 1 to form the TOYS
dataset. Due to a relatively smaller number of action classes
and smaller dataset size than ETRI, we find that this dataset
alone may not be sufficient to be used as a training dataset to
recognize elders’ ADL. We utilize the combined six activities
of the TOYS dataset as a test set in the cross-dataset split.

B. EXPERIMENTAL SCENARIOS
We now introduce several experimental scenarios considered
in the experiments. We begin by explaining cross-subject
and cross-view splits which are widely considered in the
literature, and then introduce newly suggested cross-age,
cross-dataset, and cross-lighting splits that assume the real
and synthetic training datasets of different configurations.

In the cross-subject or cross-view splits, it is assumed that
the real-world training dataset has limitations on available
camera subjects or viewpoints. We train models using data
acquired from only a part of the available subjects or view-
points of a dataset and leave the remaining data as the test
set. In the cross-subject split, we train the models on data
for 24 subjects of the ETRI dataset and test on the other 76
subjects. In our cross-view split, we train on data for the two
viewpoints (the seventh and eighth viewpoints of [24]) of the
ETRI dataset and test on the other six viewpoints.

As an extension of the cross-subject split, we assume the
situation in which the training data are only limited to one
age group while having the other age group for evaluation.
In such cross-age splits, we divide the ETRI dataset into two
subject groups of different ages, 50 younger subjects with
the average age of 23.6 (ETRIY ) and 50 elder subjects with

the average age of 77.1 (ETRIE). We then train the models
on ETRIY and test on ETRIE and vice versa. From such a
split, we investigate if there are some differences according
to the age groups in the recognition performance as well as
the effect of utilizing our synthetic data.

We further assume an extreme scenario of training a model
to recognize ADL of the elders, while available data are far
from those in several aspects. For example, data may be ob-
tained only from young subjects in laboratory environments
(e.g., the NTU dataset). In the cross-dataset split assuming
this scenario, we train models on the NTU dataset and test on
the ETRI, TOYS, and LIVA datasets, all of which correspond
to the dataset on elder’s ADL. We then examine whether
the models trained on the NTU dataset can be generalized
well to the others and see if augmenting our synthetic data
during training can help the generalization. Since the class
composition of the datasets does not completely match each
other, we define 23 combined classes based on the ETRI
dataset and consider only 25 activity classes out of 120 for
the NTU dataset and ten out of 31 for the TOYS dataset to
match the classes as explained in Section IV-A (see Table 1).

On the other hand, considering recognition models applied
in real household environments, we do not know the lighting
condition in advance in which the recognition should be
performed (or from which the test data would be obtained).
In our newly proposed cross-lighting split, we assume that
the recognition model is trained from data of limited lighting
conditions and tested on other lighting conditions. To simu-
late this scenario, we train models on the ETRI dataset, which
is acquired in a constant lighting condition, and test them on
the LIVA dataset which contains various lighting conditions.

VOLUME 4, 2020 9



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3051842, IEEE Access

Hwang et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2. The experimental scenarios and the factors that differ between
training and test datasets for each split.

Variation Factor Dataset Subject View Age Lighting

Cross-Subject 7 3 7 7 7

Cross-View 7 7 3 7 7

Cross-Age 7 3 7 3 7

Cross-Dataset 3 3 3 3 7

Cross-Lighting 3 3 3 7 3

We then discuss the effect of training our synthetic KIST
SynADL dataset for each scenario. From the baseline models
trained without the KIST SynADL dataset, we investigate
how action recognition performance varies when our syn-
thetic dataset is augmented in the model training process.
For the two widely used cross-subject and cross-view sce-
narios, we also examine the performance of fine-tuning the
models pre-trained on the KIST SynADL dataset. Further-
more, we vary the composition of the data used among the
KIST SynADL dataset according to the scenarios. For ex-
ample, since the ETRI dataset does not contain surveillance-
viewpoints and diverse lighting conditions, we may use only
robot-viewpoints and a default lighting condition of the KIST
SynADL dataset when it is known to be tested on the ETRI
dataset. For the later experiments, we use the abbreviation
KIST and KIST5 for the KIST SynADL dataset contain-
ing only the default lighting condition and all of the five
lighting conditions, respectively. The experimental scenarios
performed in this work is listed in Table 2 with the variation
factors that differ between training and test datasets.

C. TRAINING DETAILS OF HAR METHODS
This section provides training details for the HAR meth-
ods utilized in the experiments, namely Glimpse Clouds
(Glimpse) [11], Spatial Temporal Graph Convolution Net-
work (ST-GCN) [12], and View Adaptive Convolutional
Neural Network (VA-CNN) [13].

Glimpse [11] is an RGB-based model that uses a visual
attention module over the spatio-temporal cube to generate
a cloud of glimpse windows. These windows are then soft-
assigned to a set of gated recurrent units (GRUs) [54] that
track the windows and process classification. A loss function
to appropriately locate the windows is added to the original
cross-entropy loss. Here, we follow [11] and utilize the 2D
skeleton data corresponding to the RGB data to encourage the
training process with another loss term that helps the model
to perform pose regression. The Adam optimizer is used in
training with an initial learning rate of 1e-4. Training the
whole model took 13 hours for ten epochs with a minibatch
size of 32 using a single NVIDIA Tesla V100 PCIe GPU.
During test time, only RGB data resized to a 256 × 256
resolution is used as an input. We sample eight frames from
a video sequence as in [50] and extract three windows per
frame as inputs for the recurrent units.

ST-GCN [12] represents 2D or 3D skeleton joint trajec-

tories as a graph that connects nearby joints in a single
frame and identical joints between consecutive frames. It
then applies spatial temporal graph convolution on the con-
structed graph and captures the interaction between nearby
joint groups and the temporal motions to facilitate action
recognition. In this experiment, we apply ST-GCN on the
2D skeleton data. The 2D skeleton data of the real datasets
are estimated from RGB videos using OpenPose, and pixel
coordinates with the estimation confidence values of each
joint are used as an input. We use the stochastic gradient
descent to train ST-GCN models with batch size 64 for 50
epochs. The learning rates start at 0.1 and are reduced by
10 in epochs 20, 30, and 40. Moreover, when synthetic data
is augmented in training, we split the last fully connected
layer of the model so that the real and synthetic data can
pass through different classifiers (except for the cross-dataset
split). In this way the model empirically shows slightly better
performance.

VA-CNN [14] represents 3D skeleton joint trajectories as a
planar image by mapping joint index and time axes to height
and width axes respectively, and recognizes the image using
a convolutional neural network (CNN). The most distinctive
feature of the method is that it adapts the input data view to
enhance the recognition performance with a view adaptation
subnetwork. The subnetwork used to adapt the view is also
modeled using a CNN, and the whole model is trained in
an end-to-end fashion. We utilize Adam optimizer to train
VA-CNN with batch size 64 for 30 epochs. The learning rate
starts at 1e-4 and reduces by 10 for every ten epochs. We use
the Kinect v2-based format for the KIST SynADL dataset to
match real datasets.

For the experiments augmenting the KIST SynADL
dataset to train ST-GCN and VA-CNN, we balance mini-
batches to contain an equal amount of real and synthetic data.
Since the sizes of datasets differ, we randomly upsample the
dataset of a smaller amount (usually the real-world data) to
match the size. Twenty viewpoints of the KIST SynADL
dataset were utilized for both methods, while only eight
viewpoints were used for the Glimpse method to ensure
reasonable training time.

D. EXPERIMENTAL RESULTS

We now report the results of the experiments performed ac-
cording to the above settings. In the experiments, we trained
three recognition algorithms for the proposed experimental
splits and report the average video sequence-level top-1
classification accuracy for the five test trials as the action
recognition score. For the results obtained from augmenting
the KIST SynADL dataset, we designate the change in the
recognition score from that obtained without augmentation
in the parenthesis next to the score.

1) Cross-Subject

In the cross-subject split, 24 subjects (26,612 samples) from
the ETRI dataset are sampled for the training set and eval-
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Predicted Label

1. eat food with a fork
2. pour water into a cup

3. take medicine
4. drink water

5. put food in the fridge/take food from the fridge
6. trim vegetables

7. peel fruit
8. use a gas stove

9. cut vegetable on the cutting board
10. brush teeth
11. wash hands

12. wash face
13. wipe face with a towel

14. put on cosmetics
15. put on lipstick

16. brush hair
17. blow drying hair

18. put on a jacket
19. take off a jacket

20. put on/take off shoes
21. put on/take off glasses

22. wash the dishes
23. vacuum the floor

24. scrub the floor with a rag
25. wipe off the dinning table

26. rub up furniture
27. spread bedding/fold bedding

28. wash a towel by hands
29. hang out laundry

30. look around for something
31. use a remote control

32. read a book
33. read a newspaper

34. handwrite
35. talk on the phone

36. play with a mobile phone
37. use a computer

38. smoke
39. clap

40. rub face with hands
41. do freehand exercise
42. do neck roll exercise

43. massage a shoulder oneself
44. take a bow

45. talk to each other
46. handshake

47. hug each other
48. fight each other

49. wave a hand
50. flap a hand up and down (beckon)

51. point with a finger
52. open the door and walk in

53. fallen on the floor
54. sit up/stand up

55. lie down

G
ro

un
d 

T
ru

th

0.81

0.62

0.80

0.84

0.98

0.79

0.70

0.99

0.82

0.81

0.84

0.76 0.18

0.87

0.90

0.90

0.94

0.94

0.75

0.73

0.91

0.91

0.31 0.55

1.00

0.99

0.84

0.69 0.15

0.93

0.49 0.14 0.33

0.96

0.75

0.76

0.87

0.95

0.90

0.16 0.66

0.75

0.84

0.66

0.83

0.78

0.72

0.91

0.80

0.98

0.96

0.99

0.92

0.63

0.69 0.12

0.78

0.83

0.99

1.00

0.98

0.99

FIGURE 9. Normalized confusion matrix of the Glimpse method trained by augmenting synthetic data in the cross-subject split. Only the values over 0.1 are
displayed for better visualization.

TABLE 3. Accuracy comparison for the cross-subject split.

Setting Top-1 Accuracy (%)

Train Test Glimpse [11] ST-GCN [12] VA-CNN [13]

ETRI ETRI 80.22 83.36 81.98
ETRI+KIST ETRI 83.53 (+3.31) 84.04 (+0.68) 82.20 (+0.22)

uated by the remaining 76 subjects (85,912 samples) as
explained in Section IV-B.

By augmenting synthetic data (26,400 samples for
Glimpse and 66,000 samples for ST-GCN and VA-CNN)
in training, each method’s performance increases by 3.31,
0.68, and 0.22 percent points as described in Table 3. While
Glimpse shows the largest improvement, the absolute classi-
fication accuracy score is still lower than ST-GCN, showing
confusion within some classes (e.g., data from wash a towel
by hands class was frequently misclassified as wash hands
class) as illustrated in Fig. 9.

One should note that ST-GCN outperforms other meth-

TABLE 4. Accuracy comparison for the cross-view split.

Setting Top-1 Accuracy (%)

Train Test Glimpse [11] ST-GCN [12] VA-CNN [13]

ETRI ETRI 79.97 77.88 79.72
ETRI+KIST ETRI 81.59 (+1.62) 80.84 (+2.96) 80.00 (+0.28)

ods in this cross-subject split of the ETRI dataset, while
it performs worse than other considered methods on the
NTU RGB+D [21] cross-subject split in the corresponding
literature [11]–[13].

2) Cross-View
For the cross-view split, the data obtained from two camera
viewpoints are used for training (26,757 samples) while
the remaining six viewpoints (85,807 samples) are used for
evaluation of the trained models. The cross-view results also
demonstrate the benefit of training additional synthetic data
for better performance as shown in Table 4.
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TABLE 5. Accuracy comparison between the synthetic data augmentation
training and fine-tuning for the cross-subject (C-S) and cross-view (C-V) splits.

Setting Top-1 Accuracy (%)

Split Train Test Glimpse [11] ST-GCN [12] VA-CNN [13]

C-S

 ETRI
ETRI+KIST
KIST→ETRI

ETRI 80.22 83.36 81.98
ETRI 83.53 84.04 82.20
ETRI 83.57 83.47 75.07

C-V

 ETRI
ETRI+KIST
KIST→ETRI

ETRI 79.97 77.88 79.72
ETRI 81.59 80.84 80.00
ETRI 83.77 80.38 71.60

While ST-GCN shows the largest increase, Glimpse out-
performs other methods, unlike the results of the baseline
studies [11]–[13]. This observation implies that the accuracy
rank among the three methods evaluated on a benchmark
dataset is not entirely consistent with that evaluated on other
datasets (e.g., ETRI).

3) Comparing Synthetic Data Augmentation Training and
Fine-Tuning

We further examine the action recognition performance of
fine-tuning the three models pre-trained with synthetic data
for the two widely used cross-subject (C-S) and cross-view
(C-V) splits. In pre-training, the models’ weights are trained
only with synthetic data hoping that some meaningful fea-
tures for the recognition are learned from the large amount
of data. We then fine-tune the model on real-world data to
allow the model to better adapt to the unseen real-world
data. We compare the recognition performance of this fine-
tuning approach with the previous synthetic data augmenta-
tion training in Table 5. The notation KIST→ETRI in Table 5
denotes the fine-tuning approach that pre-trains the models
with the synthetic data (KIST) and then fine-tunes the models
on the real-world data (ETRI). For the Glimpse method,
the fine-tuning approach surpasses the data augmentation
approach by 2.18 percent point for the cross-view split.
For the ST-GCN method, the fine-tuning approach shows
superior performance to the model trained without synthetic
data, but shows inferior performance to the model trained
by augmenting synthetic data. For the VA-CNN method, the
performance from the fine-tuning approach is rather reduced
compared with the model trained without synthetic data.
One possible explanation for this result is that pre-training
only with the synthetic data may have caused overfitting for
the VA-CNN method since the synthetic 3D skeleton data
have been essentially generated from a relatively small set of
MoCap data and may possess limited variations in the data on
its own. Since the results from the fine-tuning approach are
relatively inconsistent among different algorithms than the
synthetic data augmentation results, we focus on the synthetic
data augmentation approach for the following experimental
splits.

TABLE 6. Accuracy comparison for the cross-age split.

Setting Top-1 Accuracy (%)

Train Test Glimpse [11] ST-GCN [12] VA-CNN [13]

ETRIE ETRIY 74.96 77.52 77.52
ETRIE+KIST ETRIY 73.90 (-1.06) 78.12 (+0.60) 78.00 (+0.48)

ETRIY ETRIE 75.35 79.32 78.06
ETRIY +KIST ETRIE 77.74 (+2.41) 80.38 (+1.06) 78.18 (+0.12)

4) Cross-Age
In the cross-age split, we construct the training and test data
from the ETRI dataset by splitting the data according to the
subjects’ age as explained in Section IV-B, and examine if
augmenting our KIST SynADL dataset in training affects
the recognition performance differently according to the age
group. The action recognition performances for the cross-age
split experiments are shown in Table 6.

Similarly to the previous results, synthetic data augmenta-
tion enhances recognition performance in most of the cases.
By focusing on the performance change (the values placed
in parentheses) induced from augmenting synthetic data, we
observe that our synthetic data affect the recognition perfor-
mance in a somewhat age-specific way, i.e., the augmentation
seems more beneficial for the models trained on ETRIY
(and tested on ETRIE) rather than those trained on ETRIE
(and tested on ETRIY ). This effect is the most evident for
the Glimpse method, which has the highest performance
gain among the considered methods for the models trained
on ETRIY and even shows a performance decrease for the
models trained on ETRIE . Another interesting point to note
is that, as can be observed in Table 6, the actions in ETRIY
seem to be more challenging to classify than the actions in
ETRIE when the models are trained on the other data. This
tendency agrees with the observation that the actions of the
young subjects usually have larger motion differentials and
shorter durations than the motions performed by the elders
hence contain a wider variety [24]. Comparing the three HAR
methods, ST-GCN outperforms other methods in the cross-
age split.

5) Cross-Dataset
From the cross-dataset split, as explained in Section IV-B,
we examine whether a model trained on the NTU dataset
(data from the young subjects in a laboratory background)
can be generalized well to the others (the ETRI, TOYS,
and LIVA datasets obtained from the elder subjects in daily-
living environments) as well as the effect of augmenting our
synthetic data during training. Tables 7 and 8 show the results
from the cross-dataset split tested on the ETRI dataset and the
TOYS and LIVA datasets, respectively.

The recognition performances for the cross-dataset split
are lower than the results obtained from the former splits, in
which the (real) training and test data come from a common

1Since the lighting condition does not affect the skeleton data, the results
obtained from augmenting KIST and KIST5 for ST-GCN are identical.
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TABLE 7. Accuracy comparison for the cross-dataset split tested on the ETRI
dataset.

Setting Top-1 Accuracy (%)

Train Test Glimpse [11] ST-GCN [12] VA-CNN [13]

NTU ETRI 39.99 46.92 43.00
NTU+KIST ETRI 54.79 (+14.80) 49.76 (+2.84) 46.32 (+3.32)

NTU ETRIE 38.61 45.66 41.30
NTU+KIST ETRIE 55.00 (+16.39) 48.46 (+2.80) 45.00 (+3.70)

NTU ETRIY 41.18 48.08 44.58
NTU+KIST ETRIY 54.62 (+13.44) 50.92 (+2.84) 47.48 (+2.90)

TABLE 8. Accuracy comparison for the cross-dataset split tested on the
TOYS and LIVA dataset.

Setting Top-1 Accuracy (%)

Train Test Glimpse [11] ST-GCN [12]

NTU TOYS 16.06 29.58
NTU+KIST TOYS 35.87 (+19.81) 30.91 (+1.33)

NTU LIVA 35.94 36.68
NTU+ETRI LIVA 46.93 (+10.99) 47.16 (+10.48)
NTU+KIST LIVA 52.41 (+16.47) 39.62 (+2.94)

NTU+KIST5 LIVA 59.56 (+23.62) 39.62 (+2.94)1

dataset. These results imply that, for the eldercare services,
it may not be sufficient to utilize deep models trained only
on the NTU dataset, despite its large-scale. When synthetic
data are augmented in training, we observe a firm perfor-
mance increase for all the considered HAR methods for the
cross-data split. The improvement gap is in general larger
than the previous splits, with a remarkable boost for the
Glimpse method (even over 13 percent point when tested
on the ETRI dataset). Such a considerable increase in the
Glimpse method may be partially because meaningful back-
ground information contained in RGB videos, which might
be helpful to distinguish which activities are performed, is
provided to the model from our synthetic data. In contrast,
the NTU dataset alone might not provide much information
on the backgrounds due to its limited laboratory setting. In
Table 7, it is also interesting to observe that the recognition
performance tested on ETRIY is higher than that on ETRIE ;
this may result from the fact that the NTU dataset contains
actions of relatively young subjects.

When testing the TOYS and LIVA dataset, we exclude the
VA-CNN model since the datasets do not provide skeletal
data of the identical structure to the training (NTU) dataset.
In Table 8, the action recognition performance on TOYS is
lower; this may be partially due to the challenging features
of the dataset, such as viewpoints resembling surveillance
cameras, as described in [25]. Still, we observe a large
performance improvement for the Glimpse method similarly
to the results tested on the ETRI dataset.

For the LIVA dataset, we additionally compare the perfor-
mance of augmenting the (real) ETRI dataset during training,
which improves the performance for both Glimpse and ST-
GCN methods. Surprisingly, better recognition performance
is achieved by augmenting the synthetic KIST dataset with

TABLE 9. Accuracy comparison between the VA-CNN method and the
baseline model trained by augmenting synthetic data (odd rows for the former
and even rows for the latter).

Setting Top-1 Accuracy (%)

Split Train Test VA Module VA-CNN [13]

Cross-Subject
{

ETRI
ETRI+KIST

ETRI 3 81.98
ETRI 7 82.26 (+0.28)

Cross-View
{

ETRI
ETRI+KIST

ETRI 3 79.72 (+0.04)
ETRI 7 79.68

Cross-Age


ETRIE

ETRIE+KIST
ETRIY

ETRIY +KIST

ETRIY 3 77.52 (+0.10)
ETRIY 7 77.42
ETRIE 3 78.06 (+0.18)
ETRIE 7 77.88

Cross-Dataset



NTU
NTU+KIST

NTU
NTU+KIST

NTU
NTU+KIST

ETRI 3 43.00
ETRI 7 44.94 (+1.94)

ETRIE 3 41.30
ETRIE 7 43.70 (+2.40)
ETRIY 3 44.58
ETRIY 7 46.10 (+1.52)

only a single lighting condition rather than the ETRI dataset
for the Glimpse method. Even further gain is obtained when
using the KIST5 dataset, which includes all the five lighting
conditions. From these results, we can figure out that there
exist cases in which synthetic data could be more supportive
than real data when augmented in training. Based on the
fact that the KIST SynADL dataset contains a household-
like background modeled based on where the LIVA dataset is
acquired, we surmise that the synthetic data could effectively
help the model to generalize well on the LIVA dataset.

6) Comparing VA-CNN and a Simpler Model Trained by
Augmenting Synthetic Data
Using the dataset splits considered so far, we now propose
a simple experiment to compare the effect of synthetic data
augmentation to that of improving HAR neural network
models. For ease of comparison, we adopt the VA-CNN
model, in which the improvement of the neural network
model is represented by implementing the view adaptation
subnetwork (or VA module) [13]. Specifically, we compare
the recognition performance of the baseline model, i.e., the
VA-CNN without the VA module, trained by augmenting
synthetic data and the VA-CNN method (the improved model
from the baseline). According to the results in Table 9, the
recognition performances from both settings are comparable
to each other. In the cross-dataset split, augmenting synthetic
data is superior to the model improvement. These results
indicate that effective utilization of synthetic data during
training can be a viable option for better HAR performance,
as increasing the complexity of a neural network architecture.

7) Cross-Lighting
In the cross-lighting split, which has not been considered
much in the HAR literature, we examine if augmenting our
synthetic data can actually help recognize videos acquired
under various lighting conditions. Here we only consider the
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TABLE 10. Accuracy comparison for the cross-lighting split.

Setting Top-1 Accuracy (%)

Train Test Glimpse [11]

ETRI LIVA 35.60
ETRI+KIST5 LIVA 72.39 (+36.79)

ETRI LIVAbright 40.72
ETRI+KIST5 LIVAbright 75.85 (+35.13)

ETRI LIVAdim 35.88
ETRI+KIST5 LIVAdim 74.23 (+38.35)

ETRI LIVAdark 29.61
ETRI+KIST5 LIVAdark 66.85 (+37.24)

Glimpse method since the lighting matters only for the RGB
videos. We train the models on the ETRI dataset acquired
under a limited lighting condition (bright) and test the models
on the LIVA dataset. We further divide the LIVA dataset
into LIVAbright, LIVAdim, and LIVAdark, by collecting the
data acquired under bright, dim, and dark lighting conditions,
respectively; we then test the trained models on each of the
datasets.

As shown in Table 10, the recognition performance drops
as the lighting condition of the test data gets darker and
becomes farther from that of the training data. The recog-
nition performance is remarkably increased (even over 35
percent point) for all the test data by augmenting our KIST5

dataset, which contains five different lighting conditions.
These results strongly support that augmenting synthetic
data of various lighting conditions can help the models to
generalize to the lighting conditions that are not included in
real training data.

V. CONCLUSION
Considering eldercare applications, obtaining data of elders’
activities of daily living is necessary, but challenging. We
take advantage of modern realistic rendering and visualiza-
tion techniques to develop a platform named ElderSim and
simulate a variety of daily activities of the elderly. Based on
ElderSim, we generate a large-scale synthetic dataset of el-
ders’ activities, KIST SynADL dataset, considering possible
applications for care robots and smart surveillance systems.
We then demonstrate the effectiveness of augmenting the
KIST SynADL dataset in training from extensive experi-
ments involving three state-of-the-art HAR methods as well
as four different real-world human activity datasets. We show
noticeable improvements of action recognition performance
by augmenting our synthetic data. We also offer guidance and
insights for the effective utilization of our synthetic data in
human action recognition.

In the future, we plan to enlarge the subject diversity by
changing the body shape of the elderly and applying the
corresponding motion styles to actions. Furthermore, we will
extend our ElderSim platform by employing additional fea-
tures of UnrealCV [55] to apply to more various problems in
computer vision and robotics. Designing a domain-adaptive
learning framework for HAR to further utilize our synthetic

data would be another intriguing area of future research.
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