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Secure and Differentially Private Logistic
Regression for Horizontally Distributed Data

Miran Kim , Junghye Lee , Lucila Ohno-Machado, and Xiaoqian Jiang

Abstract— Scientific collaborations benefit from sharing infor-
mation and data from distributed sources, but protecting privacy
is a major concern. Researchers, funders, and the public in
general are getting increasingly worried about the potential
leakage of private data. Advanced security methods have been
developed to protect the storage and computation of sensitive
data in a distributed setting. However, they do not protect
against information leakage from the outcomes of data analyses.
To address this aspect, studies on differential privacy (a state-of-
the-art privacy protection framework) demonstrated encouraging
results, but most of them do not apply to distributed scenarios.
Combining security and privacy methodologies is a natural
way to tackle the problem, but naive solutions may lead to
poor analytical performance. In this paper, we introduce a
novel strategy that combines differential privacy methods and
homomorphic encryption techniques to achieve the best of both
worlds. Using logistic regression (a popular model in biomedi-
cine), we demonstrated the practicability of building secure and
privacy-preserving models with high efficiency (less than 3 min)
and good accuracy [<1% of difference in the area under the
receiver operating characteristic curve (AUC) against the global
model] using a few real-world datasets.

Index Terms— Logistic regression, differential privacy, homo-
morphic encryption.

I. INTRODUCTION

B IOMEDICINE collaborations between biologists and
researchers often require data sharing. For example,

researchers might want to learn the impact of certain variants
for some rare diseases, but an institution may not have enough
samples to support the intended data analysis. They want to
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collaborate, but due to institutional policies or other reasons,
it may not be feasible to move data from one institution to
another.

Big data networks, such as Electronic Medical Records
and Genomics (eMERGE) Network [1], the patient-
centered SCAlable National Network for Effectiveness
Research (pSCANNER) clinical data research network
(CDRN) [2], the Scalable Architecture for Federated
Translational Inquiries Network (SAFTINet) [3] have been
established to accelerate discovery, promote personalized
medicine, and improve public health. However, biomedical
data integration and sharing raise public concerns that
information exchange (e.g. demographics, diagnostic codes,
medication, genome sequences) or distributed data analysis
can put sensitive patient information at risk. A breach may
have serious implications for research participants such as
discrimination for employment, for certain types of insurance,
or even for education [4].

Differential Privacy (DP) has emerged as one of the
strongest privacy guarantees for statistical information
release [5]. Many recent studies developed differentially pri-
vate algorithms for interactive query answering, histogram and
synthetic data publication [6]–[10]. Most of these methods
deal with centralized datasets. In reality, data are often distrib-
uted geographically across institutions. In addition, there does
not always exist a trusted authority in ad-hoc cross-institutional
collaborations. To promote efficient yet privacy-preserving
collaboration, it is imperative to develop methods that “bring
computation to data", rather than “bringing data to the compu-
tation". In fact, we need to consider security as well as privacy
in distributed data analyses. Note that privacy and security are
different: the former ensures the output of data analysis does
not leak information about a private dataset while the latter
guarantees the confidentiality during information exchange
or “at rest”. These two objectives do not always work well
together and naive solutions might suffer from low efficiency
and poor performance. An alternative cryptographic primitive
for secure computation is Homomorphic Encryption (HE),
which allows to perform arithmetic operations on encrypted
data without the need for decryption. It is ideal for secure
outsourcing but it needs to be carefully designed to avoid
execution of deep circuits, otherwise the computation can be
formidable.

A. Our Contributions
We focus on a horizontally partitioned setting, where

multiple institutions holding sensitive data of sub-population
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want to collaboratively learn a model from their data without
compromising their privacy. The major contributions of this
work can be summarized as follows:
• We present a hybrid approach to conduct distributed

logistic regression in a secure and privacy-preserving
manner, which combines DP and HE. We explore an
iterative learning algorithm with objective perturbation,
where a semi-honest server learns a differential private
model from homomorphically encrypted local summary
statistics at each iteration. Therefore, our approach allows
privacy protection of both data and analysis outcomes
during the learning process.
• We propose two protocols that are based on differ-

ent diagonal approximations of the Hessian matrix in
the Newton-Raphson method. Firstly, we adapt the
fixed diagonal Hessian approximation, which is securely
pre-computed in a distributed manner across institutions.
Therefore, a server securely updates a model estima-
tor from locally perturbed encrypted gradients at each
iteration. The updated estimator is decrypted by the
secret-key owner and re-distributed to local institutions
for the next iteration. Secondly, we explore the diag-
onal updating approach via quasi-Cauchy relation in
a distributed learning setting. At each iteration, local
institutions need to compute additional summary statistics
to ensure positive definiteness of the diagonally approx-
imated Hessian matrix and send their encryptions to the
server.
• We present theoretical computational complexity of the

proposed methods and conduct extensive empirical eval-
uation to show their scalability on real data. The
results show that our methods can produce secure and
privacy-preserving predictive models with high efficiency
and good accuracy.

II. RELATED WORK

Chaudhuri and Monteleoni [11] proposed differentially
private logistic regression models under two different mech-
anisms: (1) output perturbation that introduces noises on
the learned parameters, and (2) objective perturbation that
introduces an additional noisy term on the objective func-
tion to ensure the final results are differentially private. The
following studies [12], [13] are a generalized version of the
objective perturbation in [11] for regularized empirical risk
minimization algorithms. In particular, the latter was devel-
oped for improving the objective perturbation technique to
use a smaller noise than the former and to be compati-
ble with hard constraints and non-differentiable regularizers.
Awan and A. Slavković [14] extended their objective per-
turbation mechanisms to K -norm mechanisms while opti-
mizing the finite-sample performance. These models work
under a centralized setting in which the private dataset is
hosted and trained. Yu et al. [15] studied the penalty para-
meter selection problem using the objective perturbation
method to provide an end-to-end differentially private logistic
regression solution for detecting multiple-SNP association
in GWAS databases. Ji et al. [16] developed a differentially
private Newton-Raphson algorithm to optimize the logistic

regression model that only adds noise to gradient (it uses
the Hessian matrix obtained from a public dataset). The
improvement of this method relies on the existence and
availability of a public dataset that has similar distribution
with the private dataset. Furthermore, both of above-mentioned
methods are also developed for a centralized setting, and
thus they are not directly applicable to distributed modeling.
Recently, Hegedus and Jelasity [17] performed an empirical
study of using distributed differentially private stochastic
gradient descent (SGD) to train a logistic regression model.
Unfortunately, the model requires a large number of iterations
to converge and there is a noticeable gap between the accuracy
of SGD and its non-differentially private counterpart (even
when a large privacy budget is allocated).

A different approach makes use of multi-party computa-
tion (MPC), where two or more parties jointly compute a
function on their inputs without revealing their data. Pre-
vious studies [18]–[22] showed the feasibility of building a
secure distributed logistic regression across multiple institu-
tions, but their methods suffer from scalability due to the
complexity of the underlying secure computation primitives.
Mohassel and Zhang proposed SecureML [23], a two-party
secure framework for scalable privacy-preserving machine
learning based on a server-aided secure MPC framework. Their
work utilizes secret sharing protocols, which require collabo-
rators to distribute their inputs to servers that will not collude,
in order to develop efficient approximation algorithms. The
computation of MPC is interactive and the communication cost
grows quickly as the sample size and/or feature dimensionality
increase(s). Recently, Snoke et al. [24] developed a method
to perform maximum likelihood estimation of the parameters
in a distributed setting. These approaches can guarantee the
privacy of training data during the learning process, but not
of the estimated model.

A possible solution is to securely exchange intermediate
statistics of distributed logistic regression models and add
perturbations when necessary. Several prior studies have pro-
posed to combine DP and MPC for distributed learning.
Pathak et al. [25] proposed a protocol that securely aggregates
locally trained models using MPC and uses output perturbation
to achieve different privacy. However, their model is less
accurate due to the noise that is added before aggregations of
local models. Shokri and Shmatikov [26] proposed an iterative
updating method where the local gradients are perturbed and
revealed before the update. Recently, Jayaraman et al. [27]
improved on the best previous noise bounds of [25], [26] by
adding noise directly to the aggregated model parameters or
the aggregated local gradients in the MPC protocol. How-
ever, their approach has an inherent challenge such that the
secret-sharing MPC model can be vulnerable when parties
collude. In addition, the iterative learning scenario requires
one MPC protocol execution at each iteration, resulting in high
bandwidth usage.

Data analysis based on HE, which is another secure
computation mechanism, is a new area of research but
some recent solutions are still using hybrid approaches with
other cryptographic primitive (e.g. MPC) or leveraging inter-
active mechanisms between data owners and the server.
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Xie et al. [28] proposed a secure protocol to conduct a logistic
regression in a distributed manner. Their method is based
on Yao’s garbled circuit and an additive HE scheme, which
still gives rise to a heavy computation in computing some
intermediate statistics. Phong et al. [29] used an additive prop-
erty of HE to securely aggregate locally encrypted gradients,
but the updated parameters are decrypted by the secret-key
owner and their model cannot guarantee the privacy of the
parameters. Recently, HE-based secure outsourcing solutions
have demonstrated performance improvement in practical use
of machine learning; for example, Kim et al. [30], [31] pre-
sented secure outsourcing methods to train a logistic regression
model on encrypted data and showed their feasibility with real
data.

A similar study to our approach was done by
Aono et al. [32]. Their protocol securely aggregates the
local information by using an additive HE scheme (securely
computing a polynomial approximation of the objective
function) and achieves DP using output perturbation. Their
approach is computationally efficient; however, it can suffer
from accuracy degradation and scalability in high-dimensional
data.

III. PRELIMINARIES

A. Logistic Regression

Logistic regression is very popular in biomedical infor-
matics research and serves as the foundation of many risk
calculators [33]–[35]. The logistic function for binary-valued
outcomes can be written as follows: Pr(Y = y|z, β) =
1/(1+ exp(−yβT z)) where y and z represent the observed
outcome and the covariates (d-dimensional) of a sample
respectively, and each dimension corresponds to an attribute.
The parameters β measure the relationship between Y
(response variable) and the covariates Z , and they are the
target of the estimation. We can add a regularization term
λ
2 βT β to make the logistic regression objective a strong convex
function. The parameter λ balances the bias and variance
to avoid over-fitting, and it is commonly used in penalized
logistic regression [36] as follows:

l(β) = −
n∑

i=1

log(1+ exp(−yiβ
T zi ))− λ

2
βT β, (1)

where n is the number of samples, zi and yi stand for the
i -th sample and its binary class label, respectively. There is
no closed-form solution for β which maximizes the objective,
so the estimation requires iterative numerical methods to
obtain the final parameters using the maximum likelihood
estimation [37]. We can use the Newton-Raphson algorithm
to estimate parameters β, which can be achieved by calcu-
lating the first and second derivatives of the log-likelihood
function:

β t+1 = β t − (l ′′(β t))−1l ′(β t ) (2)

where t stands for the iteration. If data are centralized,
the derivatives can be calculated as follows:
l ′′(β t ) = −Z T Rt Z − λI, l ′(β t ) = Z T (y − μt )− λβ t , (3)

where Rt is an n× n diagonal matrix of weights with the i th
element Pr(Y = 1|zi , β

t ) · (1−Pr(Y = 1|zi , β
t )), and μt is an

n-dimensional vector with the i -th element Pr(Y = 1|zi , β
t ).

When data are distributed, necessary intermediary statistics
(i.e., Hessian and gradient) for maximum likelihood estimation
of logistic regression model can be linearly decomposed and
locally calculated at individual sites:

l ′′(β t ) = −
∑

k

(Z T
k Rt

k Zk + λ

K
I ),

l ′(β t ) =
∑

k

(Z T
k (yk − μt

k)−
λ

K
β t ), (4)

where k ∈ [1, K ] represents different collaborative sites [38].

B. Differential Privacy

DP has emerged as one of the strongest privacy-preserving
solutions for aggregating sensitive data.

Definition 1 (ε-DP [39]): A randomized algorithm Ag sat-
isfies ε-DP if for all data sets D and D′ where
their symmetric difference contains at most one record
(i.e., |D�D′| ≤ 1), and for all S ⊆ Range(Ag), we have
Pr[Ag(D) ∈ S] ≤ eε · Pr[Ag(D′) ∈ S], where the probabil-
ities are over the randomness of the algorithm Ag. The
parameter ε is called the privacy budget, for which a small
budget corresponds to stronger protection and vice versa.

Definition 2 (Sensitivity [39]): For any function f : D →
Rd , the sensitivity of f is defined as � f = maxD,D′‖ f (D)−
f (D′)‖1, for all D and D′ differing by at most one record.

Definition 3 (Laplace Mechanism [40]): The mechanism
takes as inputs a data set D, a function f : D → Rd , and
the parameter � f/ε that determines the magnitude of noise.
It first computes the true output f (D), and then perturbs the
output by adding noise as f (D′) = f (D) + Lap(0,� f/ε).
The mechanism that adds independently generated noise L
with the distribution Lap(0,� f/ε) to each of the d output
terms enjoys ε-DP.

In a distributed setting, DP can be achieved by Distributed
Laplace Perturbation Algorithms (DLPAs). In DLPA, each
party generates a partial noise where the aggregated noise
follows the Laplace distribution (i.e., L ∼ Lap(0, α)), which
is enough to guarantee DP. Due to infinite divisibility of
the Laplace distribution [41], a random variable (r.v.) L with
such distribution can be computed by summing up K other
r.v.s.. We utilize this property and explore a few algorithms
named after different distributions to draw such partial noise
(i.e., Gaussian, Gamma, and Laplace), respectively.
• Gaussian DLPA [42]: L can be simulated by four

independent and identically distributed (i.i.d.) r.v.s
N1, N2, N3, N4, and each is drawn from the normal
distribution N(0, α/2) and applied as follows, L =
N2

1 + N2
2 − N2

3 − N2
4 . Drawing a single r.v. Ni ∼

N(0, α/2), i = 1, ..., 4, is again simulated by the sum
of K i.i.d. Gaussian r.v.s Ni,k ∼ N(0, α/2K ), i.e.,
Ni =∑K

k=1 Ni,k .
• Gamma DLPA [43]: L can be generated by the sum of

2K r.v.s, L =∑K
k=1(Gk−Hk), where Gk and Hk are i.i.d.

gamma distributed r.v.s with the parameters 1/α and 1/K .
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• Laplace DLPA [44]: L can be drawn by K i.i.d. r.v.s
Lk ∼ Lap(0, α) and a single r.v. B ∼ Beta(1, K − 1),
as defined in L = √B ·∑K

k=1 Lk .

C. Approximate Homomorphic Encryption

HE is a cryptographic tool that allows computation on
encrypted data without the need for decryption and generates
an encrypted result matching that of operations on plaintext.
So, it enables us to securely outsource expensive computation
on an untrusted server. This technology has great potentials in
many real-world applications such as statistical testing, neural
networks, and machine learning [30], [31], [45]–[47].

In this paper, we employ a special cryptosystem [48] with
support for approximate arithmetic of encrypted messages,
called HE for Arithmetic of Approximate Numbers (HEAAN).
The main idea is to consider an encryption noise (on the
ciphertext for security) as a part of computation error that
occurs in approximate arithmetic. That is, given a secret key
sk, an encryption ct of a plaintext m satisfies the equation
Dec(ct, sk) = m+e (mod q) for some small e. It supports an
encryption function Enc(·) and a decryption function Dec(·)
such that

Dec(Enc(x + y)) ≈ Dec(Enc(x))+ Dec(Enc(y)),

Dec(Enc(x · y)) ≈ Dec(Enc(x)) ·Dec(Enc(y)).

This HE scheme provides a trade-off between precision and
efficiency but it offers a practical and effective solution for
some applications that do not require absolute precision.

Let N be a power-of-two integer and R = Z[X]/(X N + 1)
be the ring of integers of the (2N)-th cyclotomic field. Let
us denote by [·]q the reduction modulo q into the interval
(−q/2, q/2] ∩ Z. We write Rq = R/qR for the residue
ring of R modulo an integer q . The following is a simple
description of the HEAAN scheme based on the Ring Learning
with Errors (RLWE) problem.
• ParamsGen(λ). Given the security parameter λ, choose

a power-of-two integer N , a modulus Q = q2, and a
discrete Gaussian distribution χ . The RLWE problem of
parameter (N, Q, χ) should achieve at least λ bits of
security level for the semantic security of cryptosystem.
Output params← (N, q, χ).
• KeyGen(params). Generate s ∈ R by sampling its

coefficient randomly from {0,±1}N and set the secret
key as sk← (1, s). Sample a uniformly at random from
Rq and e from χ . Set the public key as pk ← (b, a) ∈
Rq × Rq where b ← −as + e (mod q). Let s′ ← s2.
Sample a′ uniformly at random from RQ and e′ from χ .
Set the evaluation key as evk ← (b′, a′) ∈ RQ × RQ

where b′ ← −a′s + e′ + qs′ (mod Q).
• Enc(m, pk). For m ∈ Rq , sample a small polynomial

v (with 0,±1 coefficients) and two error polynomials
e0, e1 from χ . Output v · pk + (m + e0, e1) ∈ Rq ×Rq .
• Dec(ct, sk). For ct = (c0, c1) ∈ R2

q ′ , output m ← c0 +
c1 · s (mod q ′).
• Add(ct, ct′). For ct, ct′ ∈ R2

q ′ , output ctadd ← ct + ct′
(mod q ′).

• Multevk(ct, ct′). For two ciphertexts ct = (c0, c1), ct′ =
(c′0, c′1) ∈ R2

q ′ , let (d0, d1, d2) = (c0c′0, c0c′1+c1c′0, c1c′1)
(mod q ′). Output ctmult ← (d0, d1) +

⌊
q−1d2 · evk

⌉
(mod q ′).
• RS(ct; r). For ct ∈ R2

q ′ , output ctrs ←
⌊
r−1 · ct

⌉
(mod r−1q ′).

For a power-of-two integer � ≤ N/2, HEAAN provides a
technique to pack � complex numbers in a single polynomial
using a variant of the complex canonical embedding map
φ : C� → R. Throughout this paper, we restrict the plaintext
space as a vector of real numbers. We multiply a scale factor of
p to plaintexts before the rounding operation in order to pre-
serve their precision during computation. Since addition and
multiplication in R correspond the component-wise addition
and multiplication on the plaintext vector, we can parallelize
the operations and alleviate the costs of space and computation
time. We refer the reader to [48] for the technical details and
noise analysis.

IV. SECURE AND DIFFERENTIALLY PRIVATE DISTRIBUTED

LOGISTIC REGRESSION

We aim to compute logistic regression for horizontally
distributed data in a secure and privacy preserving manner.
A straightforward idea is to apply distributed DP on the
intermediate statistics of distributed logistic regression model
(introduced in Section III-B). However, if we directly combine
these methods, the noise added by any single party is not
sufficient to ensure the expected global DP. In this section,
we introduce a novel solution that synergistically harmonizes
DP and HE into a win-win strategy to develop secure and
differentially private distributed logistic regression. At a high
level, our protocol protects the intermediate statistics and
their computation during each iteration of parameter updates
while decrypting their differentially private intermediate model
estimator in order to avoid a heavy computational cost (due to
accumulation of deep circuits in HE). We note that it strictly
satisfies the differential privacy criterion, which is described
later in Section IV-C.

There are three parties in our protocol: collaborative sites
P1, . . . , PK (data providers), a cryptographic service provider
(CSP), and a cloud server. The CSP manages the cryptographic
keys that are used for encryption (pk), decryption (sk), and
homomorphic computation (evk). The cloud server is where
encrypted data is processed while it is still in encrypted form.
Fig. 1 illustrates our protocol.

We consider the following threat models. Firstly, we assume
that the cloud server is semi-honest, that is, an adversary is
honest but curious. If we ensure the semantic security of the
underlying HE scheme, all the computations on the server are
performed over encryption so the server learns nothing from
the encrypted data. Secondly, we assume that the CSP is not
allowed to collude with the server or each site. The CSP should
not be given access to data that are not part of the query from
the server. Lastly, we assume that the local sites should not
collude. That is, their local sample sizes are not disclosed to
the other local parties even though the global sample size is
given to all the local sites.
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Fig. 1. Overview of our secure and privacy-preserving logistic regression
protocol.

Throughout this paper, we employ the objective perturbation
approach in [12]:

l(β) = −
n∑

i=1

log(1+ exp(−yiβ
T zi ))− λ

2
βT β + bT β

n
,

(5)

l ′′(β t ) = −Z T Rt Z − λI =
K∑

k=1

(
−Z T

k Rt
k Zk − λ

K
I

)
, (6)

l ′(β t ) = Z T (y − μt )− λβ t + b

n

=
K∑

k=1

(
Z T

k (yk − μt
k −

λ

K
β t )+ bk

n

)
, (7)

where n is the global sample size, K is the total number of
participating institutions, and b is the noise aggregated from
locally generated noise bk according to DLPAs.

The existing HE schemes do not naturally support matrix
inversion, which makes it difficult to compute the inverse of
the Hessian over encrypted data (as expected in Equation 2).
Recently, Jiang et al. [47] developed a solution to encrypt
a matrix into a single ciphertext and perform arithmetic
operations using the ciphertext packing method. However, this
method is not generalized to matrix inverse, so we come up
with an alternative solution in this paper. The basic observation
is that the inverse of a diagonal matrix is obtained by replacing
each element in the diagonal with its reciprocal. We adapt
the diagonal approximation of the Hessian matrix and apply
the inverse method of [48] to our protocol. This approach
has another advantage in that it significantly reduces the
complexity of multiplication between the inverse of Hessian
and the gradient by employing the single instruction multiple
data (SIMD) technique. That is, we only need to perform
component-wise multiplication between encrypted vectors. In
the following, we introduce methodologies related to two kinds
of diagonal Hessian approximations.

A. Fixed Diagonal Hessian Method

The Newton-Raphson algorithm can be accelerated by using
an approximation of the Hessian to a fixed matrix H̄ , which

only needs to be inverted once. For maximum likelihood
estimation, Böhning [49] suggested the matrix H̄ = − 1

4 Z T Z ,
which can be generalized to H̄ = − 1

4 Z T Z − λ
K I . Here,

we introduce a simple approximation of H̄ using only its
diagonal elements: H̄ ≈ diag(H̄ ) = H̃ . The fixed diagonal
Hessian approximation H̃ can be locally decomposed as∑

k H̃k such that

H̃k = diag

(
−1

4
Z T

k Zk − λ

K
I

)
. (8)

Because the fixed diagonal Hessian does not depend on
the parameters β, we can pre-compute its inverse only
once. However, this approach has a limitation that the result
would only be valid when the Hessian matrix is strongly
diagonal-dominant, which means it is largely dependent on
the parameter λ to be set.

Our secure and differentially private distributed logistic
regression using the fixed diagonal Hessian approximation is
described in Algorithm 1, denoted by F-SPLR. It consists
of two phases: a preparation phase of securely inverting
the Hessian and determining the global sample size, and an
iterative estimation phase of the model estimator β.

1) Preparation Phase: The CSP first generates the key trio
(sk, pk, evk) while each local institution only has access to
the public key pk for data encryption and the cloud server
can only access to the evaluation key evk for homomorphic
computation (Step 1). Next, each local site generates a local
random noise bk from DLPAs (Step 3), which will be added to
the local gradient. Then it computes the local diagonal Hessian
approximation H̃k as in (8), encrypts the plaintext vector using
pk, and sends the output ciphertext to the cloud server (Step 4).
In addition, it encrypts the local sample size nk and transmits
Enc(nk) to the server (Step 5).

The server securely aggregates the local diagonal Hessian
across institutions and computes the inverse of the global
diagonal Hessian (Step 7). As mentioned before, we adapt
the multiplicative inverse evaluation algorithm, denoted by
Inv(·), suggested in [48]. In other words, we compute
Inv(

∑
k Enc(H̃k)) over encryption, or equivalently, we obtain

a ciphertext that encrypts an approximated value to

Dec(Inv(
∑

k Enc(H̃k))) ≈ Dec(Inv(Enc(H̃)))

≈ Dec(Enc(H̃−1)) ≈ H̃−1 (9)

from homomorphic properties of the HEAAN scheme. The
server also aggregates the local sample sizes Enc(nk) (Step 8)
and the resulting ciphertext is decrypted with the secret key of
the CSP (Step 9). If we take a sufficiently large scale factor
of p, the global sample size n can be the nearest integer
of the decryption result Dec(

∑
k Enc(nk)). Thus we get the

desired sample size by computing Dec(
∑

k Enc(nk))� =
Dec(Enc(n))� = n, and CSP disseminates the global sample
size to each local site.

2) Iterative Estimation Phase: At each iteration t , each site
computes the locally perturbed gradient by

gtk = Z T
k (yk − μt

k −
λ

K
β t )+ bk

n
, (10)
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Algorithm 1 F-SPLR: homomorphic evaluation of the fixed diagonal Hessian method

Input: Initial β0 = 0; regularization parameter λ; DP budget ε; number of iterations of regression ι
Output: Globally estimated coefficients β

[At the CSP]:
1: Generate keys: (sk, pk, evk)

[At local sites]:
2: for each site k = 1 to K do
3: Generate a local random noise bk

4: Compute local fixed diagonal Hessian H̃k, encrypt, and transmit Enc(H̃k) to the server
5: Encrypt and transmit Enc(nk) to the server
6: end for

[At the cloud server]:
7: Aggregate local fixed diagonal Hessians across sites and invert the global diagonal Hessian: Inv(

∑
k Enc(H̃k))

8: Aggregate local sample sizes across sites and transmit to the CSP:
∑

k Enc(nk)

[At the CSP]:
9: Decrypt and disseminate the global sample size to each local site: n← Dec(

∑
k Enc(nk))

10: for t = 0 to ι− 1 do
[At local sites]:

11: for each site k = 1 to K do
12: Compute local gradient gk using the local noise bk , encrypt, and transmit Enc(gk) to the server
13: end for

[At the cloud server]:
14: Aggregate locally updated gradients:

∑
k Enc(gk)

15: Multiply the global gradient by the inverse Hessian: ctGD ← Inv(
∑

k Enc(H̃k)) ·∑k Enc(gk)
16: Update the model estimators and transmit it to the CSP: ctβ t+1 ← β t − ctGD

[At the CSP]:
17: Decrypt the ciphertext ctβ t+1 and send the update model estimator β t+1 back to the server

[At the cloud server]:
18: Disseminate the updated estimator to each local site
19: end for
20: return βι (last converged estimate)

and sends its encryption to the server (Step 12). For simplicity,
we will omit the subscript t when it is clear from the
context. The server aggregates gk over encryption, yielding a
ciphertext that encrypts a plaintext approximating to the global
updated gradient g = ∑

k gk (Step 14). Next, it performs a
homomorphic multiplication between the resulting ciphertext
and the pre-computed inverse Hessian ciphertext, and outputs
a ciphertext ctGD that represents a plaintext approximating
to Dec(Inv(

∑
k Enc(H̃k)) · ∑k Enc(gk)) ≈ H̃−1 · g. The

server securely updates the model estimator using the model
parameters β t and the encrypted gradient direction ctGD, yield-
ing the encrypted updated model estimator ctβ t+1 (Step 16).
The server sends the resulting ciphertext to the CSP. After
it is decrypted with the secret key of the CSP, it is sent
back to the server while ensuring its privacy via DP. Later,
we present a detailed proof that the estimated parameters
are differentially private in Section IV-C. Finally, the server
disseminates the perturbed model estimator to all the local
sites. Here, the decryption procedure in the CSP has an
important benefit in that the ciphertext modulus does not stack

up, which significantly impacts computational efficiency. This
is because the next update of the local gradient can be done
using the plaintext vector β in the clear and each site can
generate its encryption as a fresh input for the next iteration
(Step 12). We describe this idea in more detail below in
Section V-B.

B. Updated Diagonal Hessian Method
We introduce the diagonal updating approach via

quasi-Cauchy relation to approximate diagonal Hessian [50].
This was originally motivated by the least change secant
updating approach, in which the diagonal approximation
is to be the sum of two diagonal matrices where the first
diagonal matrix carries information of the local Hessian,
while the second diagonal matrix is chosen so as to induce
positive definiteness of the diagonal approximation. Because
this approach updates the Hessian matrix at each iteration,
it is more robust to the choice of the parameter λ.

We denote by tr(·) the trace operator and let � be a
positive definite diagonal matrix. The update formulation for
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Algorithm 2 U-SPLR: Homomorphic Evaluation of the Updated Diagonal Hessian Method

Input: Initial β0 = 0; regularization parameter λ; DP budget ε; number of iterations of regression ι
Output: Global estimated coefficients β

[At the CSP]:
1: Generate keys: (sk, pk, evk)

[At local sites]:
2: for each site k = 1 to K do
3: Generate a local random noise bk

4: Encrypt the local sample size nk and transmit Enc(nk) to the server
5: end for

[At the cloud server]:
6: Aggregate local sample sizes across sites and transmit to the CSP:

∑
k Enc(nk)

[At the CSP]:
7: Decrypt the ciphertext and disseminate the global sample size to each local site: n← Dec(

∑
k Enc(nk))

8: for t = 0 to ι− 1 do
[At local sites]:

9: for each site k = 1 to K do
10: Compute the local updated gradient gk , the local vector Vk , and the local constant ck

11: Encrypt and transmit the ciphertexts to the server
12: end for

[At the cloud server]:
13: Compute an encrypted constant for positive definiteness of diagonal Hessian: ctθ ← COMPTHETA(Enc(ck))
14: Aggregate the local vectors across sites:

∑
k Enc(Vk)

15: Compute the global vector W (Equation 16)
16: Compute the global updated diagonal Hessian (Equation 11): ctD ←∑

k Enc(Vk)− ctθ · W
17: Invert the global updated diagonal Hessian: Inv(ctD)
18: Aggregate local updated gradients across sites:

∑
k Enc(gk)

19: Multiply the global gradient by the inverse Hessian: ctGD ← Inv(ctD) ·∑k Enc(gk)
20: Update the model estimators and transmit it to the CSP: ctβ t+1 ← β t − ctGD

[At the CSP]:
21: Decrypt the ciphertext ctβ t+1 and send the update model estimator β t+1 back to the server

[At the cloud server]:
22: Disseminate the updated estimator to each local site
23: end for
24: return βι (last converged estimate)

approximating Hessian matrix diagonally is derived as follows:

Dt+1 = � +
(

θt I + sT
t ut − sT

t �st − θt sT
t st

tr(E2
t )

Et

)

= � + sT
t ut − sT

t �st

tr(E2
t )

Et − θt ·
(

sT
t st

tr(E2
t )

Et − I

)

= ∑K
k=1 Vtk − θt ·Wt , (11)

where

st = β t+1 − β t , (12)

ut = ∑
k utk

= ∑
k(Z T

k [yk − μt+1
k ] − λ

K β t+1)

− ∑
k(Z T

k [yk − μt
k] − λ

K β t ), (13)

Et = diag(s2
t,1, . . . , s2

t,d ), (14)

Vtk = �

K
+ sT

t utk

tr(E2
t )

Et − sT
t �st

K · tr(E2
t )

Et , (15)

Wt = sT
t st

tr(E2
t )

Et − I. (16)

We denote by st,i the i -th component of the vector st .
See [50, Theorem 1] for more details. Since maintaining the
positive definiteness for Dt+1 is crucial for the quasi-Newton
setting, the following lemma suggests a possible choice on θt .

Lemma 1 ( [50, Lemma 2]): Assume that st �= 0 for all t .
Then Dt is positive definite, if

θt = min{1,
sT

t ut − sT
t �st

sT
t st

}. (17)

Note that the second input of the minimum function,
denoted by ct , can be computed in a distributed manner across
local institutions as follows: ct =∑

k ctk where

ctk = sT
t utk

sT
t st
− sT

t �st

K · sT
t st

. (18)

Our secure and differentially private distributed logistic
regression using the updated diagonal Hessian approxima-
tion is presented in Algorithm 2, denoted by U-SPLR. As
mentioned before, this algorithm updates the global diagonal
Hessian and computes its inverse at each iteration, so the
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Algorithm 3 Homomorphic Computation for the Parameter θ

procedure COMPTHETA(Enc(ck))
[At the cloud server]:

1: Generate two random numbers ξ1 and ξ2, and encrypt the
random number (1+ ξ1) · ξ2

2: Aggregate local constants across sites, add ξ1, and multiply
it by ξ2: (

∑
k Enc(ck)+ ξ1) · ξ2

3: Transmit two ciphertexts to the CSP
[At the CSP]:

4: Decrypt two ciphertexts ct1, ct2 and find the minimum
value between them: M = min{Dec(ct1), Dec(ct2)}

5: Re-encrypt the value M and transmit it to the server
[At the cloud server]:

6: Multiply the ciphertext by ξ−1
2 and subtract ξ1

7: return ciphertext ctθ

pre-processing phase of U-SPLR is done in a simpler way
than F-SPLR.

At each iteration, each local institution updates the local
gradient gk using its local noise bk and the sample size n
as in (10). Each site also computes the local vector Vk and
the local statistics ck as in (15) and (18), respectively. After
that, it encrypts all the values and sends the output ciphertexts
Enc(gk), Enc(Vk), and Enc(ck) to the server (Step 10 and 11
in Algorithm 2).

The server begins by computing an encryption of the
constant θ = min{1,

∑
k ck}, which can be used for ensuring

positive definiteness of the updated diagonal Hessian (Step 13
in Algorithm 2 or COMPTHETA(·) in Algorithm 3). We
employ a random masking technique to obscure the inputs
while computing their minimum. At first, the server generates
two positive random numbers ξ1, ξ2 < 1 and obtains two
ciphertexts: one is the encryption of (1 + ξ1) · ξ2 and the
other is computed by (

∑
k Enc(ck) + ξ1) · ξ2. The output

ciphertexts are sent to the CSP, say ct1 and ct2 (Step 1 to 3
in Algorithm 3). It follows from the IND-CPA security of the
underlying HE scheme that the ciphertexts are computationally
indistinguishable. The CSP learns nothing else after decryp-
tion while computing the (scaled) minimum value between
them (Step 4), say M = min{Dec(ct1), Dec(ct2)}. The CSP
re-encrypts M and sends it to the server (Step 5). Using the
fact that

M = min{Dec(Enc((1+ ξ1) · ξ2)),

Dec((
∑

k Enc(ck)+ ξ1) · ξ2)}
≈ min{(1+ ξ1)ξ2, (

∑
k ck + ξ1)ξ2}

= (
min{1,

∑
k ck} + ξ1

) · ξ2, (19)

the value of θ can be recovered from M as follows:
θ = min{1,

∑
k ck} ≈ ξ−1

2 ·M− ξ1. (20)

In other words, the server performs homomorphic evaluation
of (20) to get a ciphertext of the desired constant θ :

ctθ = ξ−1
2 · Enc(M)− ξ1. (21)

Now the server securely aggregates Vk over encryption and
computes the global vector W using (16) (Step 14 and 15 in

Algorithm 2). Equation (11) can be homomorphically evalu-
ated to obtain the global updated diagonal Hessian ciphertext
ctD , that is, ctD =∑

k Enc(Vk)− ctθ ·W . Note that

Dec(ctD) ≈ Dec(
∑

k Enc(Vk))− Dec(ctθ ·W )

≈ ∑
k Vk − θ · W = D. (22)

Then the server carries out the inversion operation of the
output ciphertext ctD (Step 16 and 17). Next, it aggregates
gk over encryption and performs a homomorphic multiplica-
tion between the resulting ciphertext and the updated inverse
Hessian ciphertext ctD (Step 19). This procedure outputs a
ciphertext ctGD that encrypts a plaintext approximating to
Dec(Inv(ctD) ·∑k Enc(gk)) ≈ D−1 · g. Similar to F-SPLR,
the server securely updates the model estimator using β t and
ctGD, yielding the encrypted updated model estimator ctβ t+1

(Step 20). The server sends the resulting ciphertext to the CSP.
After it is decrypted by the CSP, the updated model estimator
is sent back to the server and disseminated to all the sites.

C. Correctness

Theorem 1: Given a set of n examples x1, . . . , xn over Rd

with labels y1, . . . , yn such that ||xi || ≤ 1 for each i , the
output model estimator of each iteration in Algorithm 1 or
Algorithm 2 preserves (ε/ι)-DP.

Proof: Following the proof of Theorem 2 in [11],
we assume α and α′ are two normalized vectors over Rd ,
and y, y ′ ∈ {−1, 1} are the corresponding binary labels.
For every unique b (associated with the added perturbation
term bT β/n to the objective), there is an one-to-one mapping
between the inputs S and output β∗ because the regulariza-
tion function and loss function are differentiable everywhere.
Consider Sα = {(z1, y1), . . . , (zn−1, yn−1), (α, y)} and Sα′ =
{(z1, y1), . . . , (zn−1, yn−1), (α

′, y ′)}, which differ only by the
last instance. We can sample b1 and b2 from the Laplacian
distribution so that these two different log-likelihood functions
share the same β∗. That is, for any b1, there exists b2 such that
b1 − yα

1+ey(β∗)T α
= b2 − y′α′

1+ey′(β∗)T α′ . Because ||α||, ||α′|| ≤ 1,

and 1
1+ey′(β∗)T α′ ,

1
1+ey(β∗)T α

≤ 1, we get ||b1− b2|| ≤ 2 for any
β∗, and therefore, ||b1|| − 2 ≤ ||b2|| ≤ ||b1|| + 2.

The outputs of the Algorithm 1 and Algorithm 2 are the
updated β+ following the gradient direction before converging
to β∗. We show in the Appendix A that the difference of two
log-likelihood functions (induced by (Sα,b1) and (S′α ,b2)) has
a single optimum at β∗. Using this property together with
||b1|| − 2 ≤ ||b2|| ≤ ||b1|| + 2, we can show that

Pr[β+|z1, . . . , zn−1, y1, . . . , yn−1, zn = α, yn = y]
Pr[β+|z1, . . . , zn−1, y1, . . . , yn−1, zn = α′, yn = y ′]

≤eε/2ι(||b1||−||b2||) (23)

is at most eε/ι, as desired. �
We refer the reader to the Appendix A for details.

V. EXPERIMENTS

We conducted experiments to validate our proposed meth-
ods on two real datasets. For comparison, we set the prediction
performance of the global model with the entire samples as
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TABLE I

DESCRIPTION OF DATASETS

a reference. Let us assume that there are K sites with the
same number of patients nk for simplicity, but each site has no
information about other local sample sizes. We utilized κ-fold
cross validation (CV) that randomly splits patients into κ folds
with the equal size; we used (κ−1) folds for training and one
fold for testing. As an evaluation measure, we used the area
under the receiver operating characteristic curve (AUC), which
is a summarized single value for the curve. AUC has desirable
properties that are independent to a threshold and invariant
to a priori class probability distributions. Therefore, it is a
widely used measure to evaluate accuracy in classification
problems of imbalanced data and both datasets that we used
are imbalanced. All the experiments were performed on a
machine with an Intel Core i7 running at 2.9 GHz processor.
We used the approximate HE scheme of [48]. As mentioned
in Section III-C, we take advantage of the ciphertexts packing
method and the homomorphic SIMD technique to perform
computation in parallel.

A. Data Description

We used two datasets: PhysioNet Challenge 2012 [51]
and Diabetes 130-US hospitals [52]. PhysioNet Challenge
2012 dataset extracted from the Multiparameter Intelligent
Monitoring in Intensive Care II database comprised of patient
stays in the intensive care unit (ICU) lasting at least 48 hours
to predict mortality. We used the dataset A consisting
of 4000 subjects whose age at ICU admission was 16 years
or over. The data were formatted as time-stamped measure-
ments for 37 distinct variables and four static variables. We
transformed each time-series variable into min, max, mean,
first value, and last value variables as a way to summarize it.
Missing values were replaced by the mean value of a variable.
On the other hand, Diabetes 130-US hospitals dataset was
developed to study factors related to readmission for patients
with diabetes. The dataset represents 10 years (1999-2008)
of clinical care at 130 US hospitals and integrated delivery
networks with over 50 features representing patient and hos-
pital outcomes. We preprocessed data following the work of
Strack et al. [52]. Table I illustrates the datasets with the num-
ber of observations (n), the number of local institutions (K ),
and the number of features (d), the imbalance ratio (IR),
respectively. IR is defined as the ratio of the number of
instances in the majority class to the number of examples in
the minority class. Note that we used 5-fold CV for the first
dataset and 10-fold CV for the other.

B. HE-parameters Tuning

Cheon et al. [48] introduced an approximation to convert
the multiplicative inverse function into a low-degree polyno-
mial and presented an efficient evaluation strategy. The only

constraint ensuring the convergence of the geometric series in
the approximation is that an input of the evaluation function
should be in the range of [1/2, 3/2]. We observe that

(
∑

H̃k)
−1 · (∑ gk) = (

∑ H̃k
γ )−1 · (∑ gk

γ ) (24)

for a scaling factor γ . In our implementation, the local
diagonal Hessian H̃k is divided by γ before encryption so that
H̃k/γ is in the range and one can guarantee its convergence.

Suppose that we adapt the degree (2r − 1) approximating
polynomial of the inverse function. Specifically, the arithmetic
circuit can be expressed as Inv(x) = ∏r−1

j=0(1 + x̄2 j
) where

x̄ = 1 − x . It is a common practice to perform the rescaling
procedure by a factor of p on ciphertexts after each multipli-
cation in order to maintain the precision of plaintext. Thus,
the ciphertext modulus is reduced by log p bits after a mul-
tiplication. As discussed in [48], the evaluation of the above
equation requires a total ciphertext modulus of r log p bits. In
the case of F-SPLR, it requires log p more bits to perform a
multiplication between the encrypted inverse Hessian and the
encrypted global gradient. In the case of U-SPLR, it requires
2 log p more bits than F-SPLR: log p bits for a multiplication
by the constant ξ−1

2 (Step 6 in Algorithm 3) and log p bits
for a multiplication between the ciphertext ctθ and the global
vector W (Step 16 in Algorithm 2). Therefore, a lower-bound
on the bit length of a fresh ciphertext modulus, denoted by
log q , is as follows:{

(r + 1) log p + log q0, for F-SPLR (25a)

(r + 3) log p + log q0, for U-SPLR (25b)

where q0 is the output ciphertext modulus. The final ciphertext
represents the desired vector β but is scaled by a factor of p,
which implies that log q0 should be larger than log p.

We note that the HEAAN scheme comes with encod-
ing/encryption errors as well as computation error. The first
type errors are O(N) and the precision loss during com-
putation is bounded by a depth of a circuit (see the detail
in [48, Lemma1]). For example, the precision loss during the
evaluation of F-SPLR exceeds at most (r + 1) bits when
compared to the unencrypted approximate computation. So,
we multiply the scale factor p to input messages before
encryption to reduce the precision loss from the resulting
errors. In our implementation, we assume that all the inputs
have log p = 35 bits of precision and set the bit length of the
output ciphertext modulus as log q0 = log p + 20.

We further optimized the U-SPLR algorithm by manipu-
lating the arithmetic circuit for computing the ciphertext ctD .
Specifically, it can be expressed as follows:

ctθ · W = (ξ−1
2 · Enc(M)− ξ1) · W

= (ξ−1
2 ·W ) · Enc(M)− ξ1 · W. (26)

If the server multiplies ξ−1
2 and W in plaintext, it only needs

to multiply the ciphertext Enc(M) by the resulting constant
(ξ−1

2 ·W ). As a result, this method could reduce the bit length
of a fresh ciphertext modulus down to (r + 2) log p + log q0.

In our implementation, we used the Gaussian distribution
of standard deviation σ = 3.2 to sample error polynomials
and we set h = 64 as the number of nonzero coefficients



704 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

TABLE II

HE PARAMETER SET

TABLE III

AVERAGED GLOBAL AUCs OF F-LR AND U-LR WITH

STANDARD DEVIATIONS (PARENTHESIS)

in a secret key s(X). We took the ring dimension N = 214

to ensure 80 bits of security against the known attacks on
the LWE problem and we checked its security by using the
LWE estimator of Albrecht et al. [53]. We set r = 4, that is,
we used the degree 15 approximating polynomial to the inverse
function and we could actually obtain the bit length of a fresh
ciphertext modulus as 230 and 265 for F-SPLR and U-SPLR,
respectively. For these settings, the key generation takes about
two seconds and the encryption takes around one second. In
Table II, we summarize the parameter setting as well as the
sizes of the public key and a freshly encrypted ciphertext.

C. Experimental Results

1) Accuracy Analysis: In the rest of the paper, we let T
denote the total number of iterations for the Newton-Raphson
method. Table III shows results of the global logistic regression
models with fixed and updated diagonal Hessian approxi-
mations without HE and DP, denoted by F-LR and U-LR,
respectively. These results are the references for the com-
parison with DLPA. Because F-SPLR is relatively sensitive
to λ, it is necessary to differentiate T depending on λ to
get a good performance. From the preliminary experiments,
we determined the iteration number T for each λ as shown
in Table III and this setting was equally applied to other
experiments.

We see that F-SPLR has comparable results with those
pairs; the larger the lambda, the smaller numbers of iterations
are needed in both datasets. For U-SPLR, we set T to the
smallest one in U-SPLR without any change. We note that
we set the DP budget ε to ε/T because the budget at every
iteration is accumulated into the total budget. Despite setting
the parameters in favor of F-SPLR, U-SPLR outperforms
F-SPLR in terms of AUC. The gap between two methods
is more significant in PhysioNet dataset than in the Diabetes
one. Fig. 2 shows the effect of Gauss, Gamma, and Laplace
DLPA on the accuracy of F-SPLR and U-SPLR with fixed
values of λ and T . It is encouraged that F-SPLR and U-SPLR
based on Gauss, Gamma, and Laplace DLPA reach their global

Fig. 2. (a), (b) Averaged AUCs of F-SPLR and U-SPLR based on
Gauss, Gamma, and Laplace DLPA with λ = 500, T = 50 in PhysioNet;
(c), (d) Averaged AUCs of F-SPLR and U-SPLR based on Gauss, Gamma,
and Laplace DLPA with λ = 500, T = 50 in Diabetes.

Fig. 3. (a), (b) Averaged AUCs of F-SPLR and U-SPLR based on Gamma
DLPA with different combinations of λ and T in PhysioNet; (c), (d) Averaged
AUCs of F-SPLR and U-SPLR based on Gamma DLPA with different
combinations of λ and T in Diabetes.

accuracies as ε increases. However, Gamma and Laplace
DLPA are stable enough even at small ε, while Gauss DLPA
is not.

Fig. 3 shows the effect of different combinations of para-
meters λ and T on the accuracy of F-SPLR and U-SPLR
based on Gamma DLPA. What we can see in this experiment
is that U-SPLR is robust to λ but F-SPLR is sensitive to λ.
Therefore, to obtain good results in F-SPLR, T should be
adjusted according to λ as in the global model. In particular,
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TABLE IV

COMPLEXITIES OF F-SPLR AND U-SPLR FOR T = 50. NUMBERS ARE IN SECONDS AND STANDARD DEVIATIONS ARE IN THE PARENTHESES

F-SPLR has the best accuracy at λ = 500 and T = 50 in
both datasets, but it can never outperform U-SPLR. It should
be noted that only the result of Gamma DLPA is provided
here for simplicity, but the trend in the result remains the
same in Gauss and Laplace DLPA. We describe more detailed
results in Appendix B. In addition, it is found that parameter
estimates (i.e., coefficients β) have the same trend of AUC.
That is, when epsilon increases, the coefficients obtained from
experiments in a secure and privacy-preserving manner reach
within a reasonable range of estimates of the global model.

2) Complexity Analysis: Homomorphic multiplication is the
most time-consuming procedure, so in the following descrip-
tion we will only count the number of the operations. We
note that homomorphic evaluation of the degree (2r − 1)
approximating polynomial of the inverse function requires
2(r − 1) homomorphic multiplications (see Section V-B).

In the case of F-SPLR, the local site encrypts its own
local gradients at each iteration (Step 12 in Algorithm 1).
The server securely aggregates K number of the local gra-
dients, multiplies it by the pre-computed inverse Hessian, and
updates the model estimator. The resulting ciphertext ctβ t+1 is
decrypted by the CSP. In total, K local institutions encrypt the
information K · (T + 2) times, the server takes T + 2(r − 1)
multiplications, and the CSP performs (T +1) decryptions. In
Table IV, we summarize the theoretical complexity where HM
denotes homomorphic multiplication. In addition, we report
experimental results with T = 50. In Appendix C, we provide
more results at various numbers of iterations for F-SPLR.

In the case of U-SPLR, the local site encrypts three types
of data at each iteration: the local constant ck , the local vectors
Vk , and the local updated gradients gk , which means that each
site takes about three times more effort to encrypt the data. In
order to securely compute the constant θ , the server generates
an encryption of a random value, and the CSP decrypts two
ciphertexts and re-encrypts the minimum result. After that,
the server takes 2(r − 1) homomorphic multiplications to
compute the inverse of the global diagonal Hessian (Step 17 in
Algorithm 2) and needs one more multiplication to compute
the increment (Step 19). Finally, the CSP needs to decrypt
the resulting ciphertext ctβ t+1 (Step 21). In total, K local
institutions encrypt the intermediate statistics K · (3T + 1)

TABLE V

CIPHERTEXT SIZES OF F-SPLR AND U-SPLR

times, the server performs one encryption operations and takes
(2r − 1) · T multiplications, and the CSP performs (3T + 1)
decryptions and T encryptions.

As shown in Table IV, the running timings of the server
and CSP are similar in both datasets. However, Diabetes
dataset has more local institutions than PhysioNet, so, it takes
KDiabetes/KPhysioNet = 2 times more to encrypt the Diabetes
dataset than PhysioNet. We note that the local encryptions can
be done in a synchronous way.

3) Communication Complexity: At each iteration of
U-SPLR, each local site generates two more ciphertexts
(Enc(ck), Enc(Vk)) compared to F-SPLR, and sends them to
the server. So it results in a larger communication cost between
the local institutions and the server. In U-SPLR, the server
sends two randomized ciphertexts to get the ciphertext ctθ
to the CSP and CSP transmits the encrypted minimum value
Enc(M) to the server. Table V summarizes the numbers
between the institutions involved in our protocols.

VI. DISCUSSION

A. Hybrid Model of Distributed Logistic Regression

HE provides a practical solution for secure data out-
sourcing, but it can only evaluate functions of fixed depth.
This is because a ciphertext modulus decreases or a level
of noise grows with operations, and it finally becomes too
small or large to carry out more computation. Previous
studies [30], [31] are based on the leveled HE scheme for
efficiency, so they have an inherent challenge such that it only
allows a very small number of iterations of gradient descent
training. Because it converges very slowly, their methods
are not amenable to get accurate models for all datasets.
Recently, Cheon et al. [54] proposed a new technique to
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refresh low-level ciphertexts in the HEAAN scheme and keep
computing on encrypted data. However, this procedure still
entails expensive computational cost, so it is a non-trivial task
to apply them to real-world applications.

This article proposes a new method to use a fruitful combi-
nation of HE and DP for an iterative learning algorithm. If we
perturb data with noise and it does not significantly change
the estimation, one can decrypt it and use the information for
regression while ensuring the privacy. In our implementation,
we decrypted the model estimator at each iteration and it was
re-distributed to generate fresh inputs for the next iteration. It
enables us to use smaller HE parameters than the ones used
in previous approaches [30], [31], and consequently, this leads
to better performance in terms of computation efficiency and
accuracy.

A similar approach was introduced by Aono et al. [32],
which aims to securely compute a polynomial approximation
of the objective function and directly add noise to coefficients
of the approximation. As a result, the secret-key owner can
get the perturbed coefficients of the objective function after
decryption. Their approach is computationally efficient, but
it tends to incur accuracy loss because the scale of noise is
roughly proportional to dr when taking a degree-r polynomial
approximation with d-dimensional input ( [32, Theorem 2]).
In comparison, our method would be more useful for learning
tasks with many features because its accuracy is not affected
by the number of features.

B. Comparison With F-SPLR and U-SPLR

In this paper, we presented two types of diagonal Hessian
approximation methods: F-SPLR and U-SPLR. As men-
tioned in Section IV-A, the latter algorithm repeatedly updates
the approximate inverse Hessian via the quasi-Cauchy relation,
so at each iteration, it has one more interaction with the CSP
to compute the value for maintaining positive definiteness of
Hessian and needs more homomorphic computation for the
update. When r = 4, the computational costs of the server for
F-SPLR and U-SPLR are (T+6) and 7T homomorphic mul-
tiplications, respectively. That is, the server performs around
7 times more computations to proceed U-SPLR than F-SPLR.
However, U-SPLR is more robust to the user-defined parame-
ter λ than F-SPLR, and thus U-SPLR shows stable results
with the constant number of iterations regardless of λ rather
than F-SPLR. The difference between AUCs of U-SPLR and
F-SPLR is also more significant when the data dimensionality
is high. As a result, we recommend F-SPLR if there is prior
knowledge of λ, otherwise U-SPLR.

C. Comparison with Gauss, Gamma, and Laplace DLPA

Our experimental results show that AUCs of all three
mechanisms approach the global AUC as the privacy budget
ε increases regardless of the diagonal approximation methods.
However, the AUC from the Gauss mechanism is significantly
lower than the others when ε is relatively small. This is
because the Gauss mechanism generates significantly more
redundant noise, which brings degradation of its accuracy. The
Gamma and Laplace mechanisms generate similar amounts of

redundant noise for any ε, which results in similar patterns
in accuracy. These findings are consistent with the work of
Goryczka and Xiong [44].

D. Limitations and Future Work

We demonstrated the feasibility of secure and differentially
private logistic regression and the experiments were conducted
on a single machine (with different processes) to serve as a
proof-of-concept. In practice, we need to deploy the algorithm
in multiple computers.

U-SPLR has an advantage of robustness in terms of learn-
ing rate and λ, and it can converge in fewer iterations when
compared to existing algorithms based on the gradient descent
method. Nevertheless, it should be noted that the accuracy
of our methods can be decreased as T and/or K increase(s)
because the noise distribution is dependent on these two
parameters (see Appendix D for details). In particular, because
T is a fixed priori and ε is evenly split across iterations in our
algorithms, accuracy highly depends on T . As T is increased,
the privacy budget for each iteration becomes smaller, which
adds a lot of noise to each gradient and thus results in accuracy
degradation. To address this problem, we will consider the
dynamic allocation of privacy budget for each iteration [55] to
do intensive analysis on accuracy and T in future work. The
optimal values of parameters, λ and T , are data-dependent,
which makes hard to select those a priori. There is definitely
a need to study this problem using more principled approaches.

Although there are many extensions of the objective pertur-
bation approach, we used the straightforward objective pertur-
bation technique to demonstrate the feasibility of integrating
HE and DP in a harmonious manner. We will consider using
these extensions to do more precise and rigorous analysis of
DP at applicable scenarios.

VII. CONCLUSION

We develop a novel secure and differentially private
distributed logistic regression model by harmonizing state-of-
the-art security and privacy frameworks. To the best of our
knowledge, this is the first work that combines DP and HE
to support the construction of a distributed learning model.
Combining the complementary strength of both frameworks,
our solutions achieved high efficiency and good accuracy.

APPENDIX A
PROOF OF THEOREM 1

We assume that α and α′ are two normalized vectors
over Rd , and y, y ′ ∈ {−1, 1} are the correspond-
ing binary labels. Consider two sets of inputs: Sα =
{(x1, y1), . . . , (xn−1, yn−1), (α, y)} and Sα′ = {(x1, y1), . . . ,
(xn−1, yn−1), (α

′, y ′)}, where xn = α or α′ and yn = y or
y ′ in the context of Sα or Sα′ . The negative log-likelihood
function has the following form

l(β, b, xn, yn) = λ

2
βT β + bT β

n
+ 1

n

n−1∑
i=1

log(1+ e−yiβ
T xi )

+ 1

n
log(1+ e−ynβT xn ) (27)
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where b is a random sample from the density function
h(b) ∝ e− ε

2 ||b||.
For any output β∗ by our algorithm, there is a unique value

of b that maps the input to the output because the entire
function is differentiable everywhere. We pick a common
minimizer β∗ for both sets of inputs: Sα and Sα′ . Note that
there is b1 that maps these inputs Sα to β∗, and similarly, there
is a unique b2 that maps these inputs Sα′ to β∗. Since β∗
optimizes both problems, the derivatives at this point are 0,
which means there exist b1, b2 such that

b1 − yα

1+ ey(β∗)T α
= b2 − y ′α′

1+ ey′(β∗)T α′ . (28)

Because ||α||, ||α′|| ≤ 1 and 1
1+ey(β∗)T α

, 1
1+ey′(β∗)T α′ ≤ 1,

we get ||b1 − b2|| ≤ 2 for any β∗, and therefore, ||b1|| − 2 ≤
||b2|| ≤ ||b1|| + 2.

Now we look at the intermediate estimated parameters
β+ = β∗ − c (i.e., obtained in gradient based optimization
before convergence), where c is a vector of the same dimension
as β∗. Therefore, we know that

Pr[β+|x1, . . . , xn−1, y1, . . . , yn−1, xn = α, yn = y]
Pr[β+|x1, . . . , xn−1, y1, . . . , yn−1, xn = α′, yn = y ′]

∝ μ(b1|Sα) · exp (l(β+, b1, α, y))

μ(b2|S′α) · exp (l(β+, b2, α′, y ′))

∝ μ(b1|Sα) · e λ
2 (β+)T β+ · e

bT
1 β+

n

μ(b2|S′α) · e λ
2 (β+)T β+ · e

bT
2 β+

n

×
∏n−1

i=1 (1+ e−yi (β
+)T xi )

1
n · (1+ e−y(β+)T α)

1
n∏n−1

i=1 (1+ e−yi (β+)T xi )
1
n · (1+ e−y′(β+)T α′)

1
n

∝ μ(b1|Sα) · e
bT

1 β+
n · (1+ e−y(β+)T α)

1
n

μ(b2|S′α) · e
bT

2 β+
n · (1+ e−y′(β+)T α′)

1
n

(29)

where μ(b|D) is the densities of b given the output β∗. Note
that Theorem 9 of [12] implies,

μ(b1|Sα)

μ(b2|S′α)
=
||b1||d−1e−ε||b1||/2ι · 1

sur f (||b1||)
||b2||d−1e−ε||b2||/2ι · 1

sur f (||b2||)
≤ eε(||b1||−||b2||)/2ι ≤ eε/ι (30)

where ι is the number of iterations in the optimization and
sur f (x) denotes the surface area of the sphere in dimension
d with radius x . Since two log-likelihood functions share the
same minimizer β∗, we can make them meet by adding a
scalar c, which does not change the shape of the log-likelihood
functions and therefore preserves parameter estimation results.
This adjustment makes the ratio of the likelihood functions
equal 1, that is,

e
bT

1 β∗
n · (1+ e−y(β∗)T α)

1
n = e

bT
2 β∗

n · (1+ e−y′(β∗)T α′)
1
n .

When a point is deviating from the optimum (e.g. moving
on the gradient ascending direction along any dimension),
the likelihood ratio will change. Fig. 4 shows when each
dimension of the estimated parameters is departing from the
optimum β∗ (i.e., replacing β∗ with β+ = β∗ − c), the

Fig. 4. Illustration on the inequality of the log-likelihood function at β+.

TABLE VI

AVERAGED AUCs WITH STANDARD DEVIATIONS (PARENTHESIS) OF

F-SPLR AND U-SPLR WITH GAUSS DLPA ON PhysioNet

following inequality satisfies from the fact that the difference
of the negative log-likelihood functions is greater or equals
to 0. It can be shown that the derivative of the following
function of any dimension of β

n · l(β, b2, α
′, y ′)− n · l(β, b1, α, y)

= log(1+ e−y′βT α′)− log(1+ e−yβT α)

+ y ′βT α′

1+ ey′(β∗)T α′ −
yβT α

1+ ey(β∗)T α
(31)

only equals to 0 when β = 0, which means there is a single
minimum of the differences between the likelihood functions.
When we plug β = 0 into the above equation, it equals 0 and
the differences between the two functions are greater or equals
to 0 at any point. Therefore, the following inequality holds on
any dimension of β+

e
bT

1 β+
n · (1+ e−y(β+)T α)

1
n ≤ e

bT
2 β+

n · (1+ e−y′(β+)T α′)
1
n .

Finally, we have the following inequality

Pr[β+|x1, . . . , xn−1, y1, . . . , yn−1, xn = α, yn = y]
Pr[β+|x1, . . . , xn−1, y1, . . . , yn−1, xn = α′, yn = y ′] ≤ eε/ι.

This result is in line with that of Theorem 1 of [56], which
shows the update of β can be protected by adding a Laplacian
noise μ(b|D) ∝ 1

n e−ε/2 to the gradient (if all the budgets are
spent in a single iteration, i.e., ι = 1).

APPENDIX B
PREDICTION PERFORMANCE

See Table VI to XI
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TABLE VII

AVERAGED AUCs WITH STANDARD DEVIATIONS (PARENTHESIS) OF
F-SPLR AND U-SPLR WITH GAMMA DLPA ON PhysioNet

TABLE VIII

AVERAGED AUCs WITH STANDARD DEVIATIONS (PARENTHESIS) OF
F-SPLR AND U-SPLR WITH LAPLACE DLPA ON PhysioNet

TABLE IX

AVERAGED AUCs WITH STANDARD DEVIATIONS (PARENTHESIS) OF

F-SPLR AND U-SPLR WITH GAUSS DLPA ON DIABETES

APPENDIX C
EXPERIMENTAL RESULTS OF F-SPLR

Table XII provides additional experimental results of
F-SPLR when differentiating the number of iterations of the
algorithm.

TABLE X

AVERAGED AUCs WITH STANDARD DEVIATIONS (PARENTHESIS) OF
F-SPLR AND U-SPLR WITH GAMMA DLPA ON DIABETES

TABLE XI

AVERAGED AUCs WITH STANDARD DEVIATIONS (PARENTHESIS) OF
F-SPLR AND U-SPLR WITH LAPLACE DLPA ON DIABETES

TABLE XII

RESULTS OF F-SPLR AT VARIOUS ITERATION NUMBERS

Fig. 5. Global AUCs of F-LR and U-LR with λ = 100 in (a) PhysioNet
and (b) Diabetes datasets, depending on the number of iterations.

APPENDIX D
EXPERIMENTAL RESULTS OF PARAMETERS T AND K

Additional experimental results are described when dif-
ferentiating the number of iterations from 50 to 1000



KIM et al.: SECURE AND DIFFERENTIALLY PRIVATE LOGISTIC REGRESSION 709

Fig. 6. Average AUCs of F-SPLR and U-SPLR with Gamma DLPA and
λ = 100 for the privacy budgets in (a) PhysioNet and (b) Diabetes datasets,
depending on the number of iterations.

Fig. 7. Global AUCs of F-LR and U-LR with λ = 100 in (a) PhysioNet
and (b) Diabetes datasets, depending on the number of sites.

Fig. 8. Average AUCs of F-SPLR and U-SPLR with Gamma DLPA and
λ = 100 for the privacy budgets in (a) PhysioNet and (b) Diabetes datasets,
depending on the number of sites.

(Fig. 5 and 6), the number of sites from 5 to 1000
(Fig. 7 and 8) in our algorithms with privacy budgets from
0.001 to 1.
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