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Abstract: One of the important tasks in a graph is to compute the similarity between two nodes; link-
based similarity measures (in short, similarity measures) are well-known and conventional techniques
for this task that exploit the relations between nodes (i.e., links) in the graph. Graph embedding
methods (in short, embedding methods) convert nodes in a graph into vectors in a low-dimensional
space by preserving social relations among nodes in the original graph. Instead of applying a similarity
measure to the graph to compute the similarity between nodes a and b, we can consider the proximity
between corresponding vectors of a and b obtained by an embedding method as the similarity
between a and b. Although embedding methods have been analyzed in a wide range of machine
learning tasks such as link prediction and node classification, they are not investigated in terms of
similarity computation of nodes. In this paper, we investigate both effectiveness and efficiency of
embedding methods in the task of similarity computation of nodes by comparing them with those of
similarity measures. To the best of our knowledge, this is the first work that examines the application
of embedding methods in this special task. Based on the results of our extensive experiments with
five well-known and publicly available datasets, we found the following observations for embedding
methods: (1) with all datasets, they show less effectiveness than similarity measures except for one
dataset, (2) they underperform similarity measures with all datasets in terms of efficiency except for one
dataset, (3) they have more parameters than similarity measures, thereby leading to a time-consuming
parameter tuning process, (4) increasing the number of dimensions does not necessarily improve
their effectiveness in computing the similarity of nodes.

Keywords: graph embedding; feature representation learning; link-based similarity measures; node–
pairs similarity

1. Introduction

Nowadays, graphs are becoming increasingly important since they are natural rep-
resentations to encode relational structures in many domains (e.g., app’s function-call
diagrams, brain-region functional activities, bio-medical drug molecules, protein interac-
tion networks, citation networks, and social networks), where nodes represent the domain’s
objects and links to their pairwise relationships [1–7]. Computing the similarity score be-
tween two nodes based on the graph structure is a fundamental task in a wide range of
applications such as recommender systems, spam detection, graph clustering [8,9], web
page ranking, citation analysis, social network analysis, k-nearest neighbor search [1,9], syn-
onym expansion (i.e., search engine’s query rewriting and text simplification), and lexicon
extraction (i.e., automatically building bilingual lexicons from text corpora) [10].

Link-based similarity measures (in short, similarity measures) such as SimRank [11]
are well-known and conventional techniques to compute the similarity of nodes only
based on the graph structure. Recently, SimRank and its variants have attracted a growing
interest in the areas of data mining and information retrieval [1,8–10,12–14]. The philosophy
of SimRank in similarity computation is that “two objects are similar if they are related to
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similar objects” [11]. In the literature, significant efforts have been devoted to improve the
effectiveness of SimRank in similarity computation by proposing different variants such
as SimRank++ [15], PSimRank [16], JacSim [1], JPRank [17], RoleSim [18], MatchSim [19],
C-Rank [20], SimRank* [9], SimRank# [12], and PRank [21]. Among the aforementioned
SimRank variants, JacSim, SimRank*, and JPRank are the state-of-the-art ones; JacSim solves
the pairwise normalization problem [1,16,20], SimRank* solves the level-wise computation
problem [9], and JPRank remedies both the pairwise normalization and in-links consideration
problems [17,21] in the original SimRank. In addition, other variants such as GSimRank [14]
and HowSim [8] have been proposed to compute the similarity of nodes in heterogeneous
graphs where nodes have different types and links represent different types of relationships
among nodes (However, in this paper, we only focus on the homogeneous graphs where
nodes and links have a single type such as a citation graph where nodes represent papers
and links to the citation relationship among them).

Graph embedding methods (in short, embedding methods), also known as feature repre-
sentation learning methods, exploit the graph structure to represent each node in the graph as a
low-dimensional vector in which neighborhood similarity, semantic information, and community
structure among nodes in the graph are captured [22–25]. The obtained vector representations
can be utilized by a wide range of tasks such as link prediction [22,24,26–28], node classifi-
cation [22,23,25–30], recommendations [27], word analogy detection [25], and document
classification [25]. Embedding methods, which are effective for extracting features from
graph structured data, have broadly attracted significant attention in the literature and
different embedding methods such as DeepWalk [23], Line [25], node2vec [26], graph-
GAN [27], NetMF [29], ATP [24], BoostNE [30], DWNS [22], and NERD [28] have been
proposed for homogeneous graphs. In addition, some embedding methods have been pro-
posed that target the heterogeneous graphs such as HeGAN [31], RTN [32], and HAN [33].
Some methods such as SIDE [34], CSNE [35], and nSNE [36] perform feature representation
learning in signed graphs where there are two types of links (i.e., positive and negative)
(In this paper, we focus only on the unsigned homogeneous graphs and the related embed-
ding methods).

All of the aforementioned embedding methods encode the social relations among
nodes into vectors in a continuous low-dimensional space where each dimension in this
space can be interpreted as a latent feature [22–24,26]. In order to compute the similarity
score of a pair of nodes in a given graph, we can apply Cosine [37] to their corresponding
vector representations, similar to the strategy observed in the word analogy detection [25,38].
In other words, a link-based similarity measure computes the similarity between nodes by
directly exploiting the graph structure, while an embedding method converts a node in the
graph into a vector representation composed of a set of latent features by exploiting the
graph structure, then these latent features preserving the graph structure properties can be
used to compute the similarity between nodes.

Although a lot of efforts have been devoted to propose powerful embedding methods
in the literature by analyzing them in a wide range of machine learning tasks, they are not
comprehensively analyzed in terms of similarity computation of nodes in graphs. In this
paper, we investigate and analyze both the effectiveness (i.e., accuracy) and efficiency
(i.e., execution time) of embedding methods (i.e., DeepWalk, Line, node2vec, graphGAN,
NetMF, ATP, BoostNE, DWNS, and NERD) in similarity computation of nodes and compare
them with those of similarity measures (i.e., SimRank, JacSim, JPRank, and SimRank*).
To the best of our knowledge, this is the first work that examines the application of embed-
ding methods in computing the similarity of nodes. We conduct extensive experiments
with five well-known and publicly available datasets as BlogCatalog [23,27,29], Cora [39,40],
DBLP [1,17,41], TREC [1,17], and Wikipedia [26,27,29], which are widely used in the lit-
erature. Our experimental results demonstrate that similarity measures are better than
embedding methods to compute the similarity of nodes; we found the following obser-
vations for embedding methods: (1) with all datasets, they show less effectiveness than
similarity measures except for the BlogCatalog dataset; however, they show less efficiency
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than similarity measures with this dataset, (2) they underperform similarity measures with
all datasets in terms of efficiency except for the Wikipedia dataset; however, with this
dataset, they show less effectiveness than similarity measures, (3) they have more parame-
ters than similarity measures, thereby leading to a difficult and time-consuming parameter
tuning process, and (4) increasing the number of dimensions (i.e., latent features) does not
necessarily improve their effectiveness in computing the similarity of nodes. In addition,
we observe that, among embedding methods, DeepWalk and its variants (i.e., Line and
NetMF) show better effectiveness.

The contributions of this paper are summarized as follows:

• Although embedding methods have been analyzed in a wide range of machine
learning tasks, they are not investigated in terms of similarity computation of nodes.
We investigate and analyze both the effectiveness and efficiency of embedding methods
in the task of similarity computation of nodes in graphs.

• We compare the effectiveness as well as efficiency of embedding methods with those of
link-based similarity measures as the conventional technique to compute the similarity
of nodes.

• We conduct extensive experiments with five widely used datasets by employing nine
different embedding methods and four different similarity measures, which all are
state-of-the-art ones in the literature.

The rest of this paper is organized as follows. We discuss link-based similarity mea-
sures and graph embedding methods in Sections 2 and 3, respectively. In Section 4,
we present and discuss the results of our extensive experiments. In Section 5, we conclude
our paper.

2. Link-Based Similarity Measures

In this section, we briefly explain SimRank [11], a well-known link-based similar-
ity measure (in short, similarity measure), and its state-of-the-art variants as JacSim [1],
JPRank [17], and SimRank* [9]; their corresponding mathematical formulations are repre-
sented in Appendix A.1, in detail.
SimRank: it computes the similarity between two nodes in a graph based on a philosophy
that “two objects are similar if they are related to similar objects” [11]. For a node-pair (a, b)
in a graph, let Ia and Ib be two sets of nodes directly pointing to nodes a and b, respectively.
In SimRank, the similarity score of (a, b) is iteratively computed as the average of similarity
scores of all possible node-pairs (i, j) where node i belongs to Ia and node j belongs to Ib;
this computation manner is called a pairwise normalization paradigm [1]. Consider a sample
graph in Figure 1; SimRank considers nodes e and f similar since they are directly pointed
to by common node b (each node is highly similar to itself) and nodes i and j are regarded
as similar since they are indirectly pointed to by common nodes c and d.
JacSim: it tries to solve the pairwise normalization problem, by employing both Jaccard and
pairwise normalization paradigm in similarity computation. This problem is a counter-
intuitive property of SimRank where the SimRank score of a pair of nodes commonly
pointed to by a large number of nodes tends to be lower than that of another pair of nodes
commonly pointed to by a small number of nodes [1,16,20]. As an example, consider node-
pairs (i, h) and (i, j) in the graph of Figure 1 where the similarity scores of some node-pairs
are shown as well (We note that all the scores are computed by employing the matrix form
of SimRank, JacSim, and JPRank); nodes i and h are pointed to by a single common node b,
while nodes i and j are pointed to by two common nodes c and d. However, the SimRank
score of (i, h) (i.e., 0.0106) is bigger than that of (i, j) (i.e., 0.0071) due to the pairwise
normalization problem, while, as shown in the figure, the JacSim score of (i, h) (i.e., 0.0048)
is smaller than that of (i, j) (i.e., 0.0076).
SimRank*: it is a variant of SimRank trying to remedy the level-wise computation problem
in SimRank; this problem happens since SimRank regards two nodes similar if some paths
only with equal length exist from a common node to both of them. As an example, consider
the node-pair (e, i) in Figure 1; there are no paths with the equal length from any common
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nodes such b to them. There is a path with length two from b to i, while there is a path with
length one from b to e. Therefore, the SimRank score of (e, i) becomes zero as shown in the
figure due to the level-wise computation problem; however, their SimRank* score is not
zero (i.e., 0.0206).
JPRank: it is another variant of SimRank that solves both the pairwise normalization and
in-links consideration problems. The latter problem arises since SimRank considers only
in-links to compute the similarity score. As an example, in Figure 1, the SimRank score of
node-pair (b, c) is zero since Ib= Ic =∅. However, both b and c are pointing to a common
node f , which means b and c are somehow similar; as shown in the figure, the JPRank
score of (b, c) is not zero (i.e., 0.0028).

It is worth noting that, although our sample graph in Figure 1 is directed, all the above
similarity measures can be applied to undirected graphs as well. However, the in-links
consideration problem is not applicable to an undirected graph and JPRank behaves exactly
the same as JacSim in similarity computation [17].

 

Node-Pairs SimRank JacSim JPRank SimRank* 

(i, h) 0.0106 0.0048 0.0045 0.0488 

(i, j) 0.0071 0.0076 0.0068 0.0478 

(e, i) 0 0 0 0.0206 

(b, c) 0 0 0.0028 0 

(e, f) 0.040 0.020 0.0199 0.0160 

b 

c 

d 

e 

f 

g 

h 

i 

j a 

k 

Figure 1. A sample graph and similarity scores of some node-pairs.

3. Graph Embedding Methods

In this section, we briefly describe the concept of graph embedding and explain
some of the state-of-the-art graph embedding methods (in short, embedding methods) in
the literature; their corresponding objective functions are represented in Appendix A.2,
in detail.

For a given graph G= (V, E), graph embedding aims to learn a function f ∶V→Rd

that maps each node v in the graph into a vector in the d-dimensional space where
d≪ ∣V∣ [23–25,29]. The embedding methods exploit the graph structure to represent nodes
as a low-dimensional vectors that encode the neighborhood similarity, semantic information,
and community structure among nodes in the graph [22–25]. In the low-dimensional space,
each dimension of the vectors can be interpreted as a latent feature [22–24,26]. Figure 2a
illustrates the Zachary’s Karate graph [42] where the clusters found by modularity max-
imization are shown in different colors. We applied DeepWalk on this graph to obtain
its two-dimensional representation, which is shown in Figure 2b; as an example, nodes 1
and 2 in the graph are represented as <–1.18, 1.15> and <–0.30, 1.10> vectors, respectively.
As observed in the figure, there is a commonality between clusters in the original graph and
its representation since they encode the social relations and community structure in the
graph. Therefore, in order to compute the similarity score of node-pair (a, b) in a given
graph, we can calculate the proximity of the corresponding vector representations of a and
b, similar to the strategy observed in the word analogy detection [25,38].
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Figure 2. Zachary’s Karate graph and its two-dimensional representation.

DeepWalk [23]: inspired by the remarkable achievements in the representation learning for
natural language processing such as Skip-gram [38], it exploits a stream of short random
walks to extract information from a graph where these short random walks can be regarded
as a neighborhood for a target node vi consisting of n nodes before and after vi (i.e., window
size W = 2n). DeepWalk tries to learn a model to maximize the probability of any node
appearing in the vi’s neighborhood without the knowledge of its offset from vi.
Line [25]: it considers the first-order proximity (i.e., direct neighbors of a node) and the
second-order proximity to capture the nodes’ neighborhoods; the second-order proximity
follows the sociology and linguistics theories where two nodes sharing similar neighbors
tend to be similar. These proximities are preserved by utilizing two distinct objective
functions where two different models for them are trained separately and their results are
concatenated as the final result.
node2vec [26]: by following the homophily and structural equivalence hypotheses, it considers
the community of a node and its structural roles in the graph, respectively, to capture the
node neighborhood. node2vec utilizes a biased random walk controlled by two parameters
p (return parameter) and q (in-out parameter). Suppose a random walk by using link (u, v)
in a graph; to decide the next walk from node v, parameter p controls the probability of
revisiting previous node in the walk (i.e., u) and parameter q controls the probability of
visiting a node close to v or visiting a node that is far from v.
graphGAN [27]: it considers two models, generator G and discriminator D, involving in a
minimax game as follows. For a target node v, the generator tries to generate relevant nodes
to the v’s neighborhood (i.e., found by BFS search rooted in v) and produces fabricated
samples to deceive the discriminator, while the discriminator tries to detect whether a node
actually belongs to v’s neighborhood or it is fabricated by the generator. In graphGAN,
the objective is to train two models as a two-play minimax game.
NetMF [29]: it shows that graph embedding methods utilizing the Skip-gram model
(e.g., DeepWalk, Line, and node2vec) with negative sampling perform implicit matrix
factorization with a closed form. NetMF draws a theoretical connection between DeepWalk’s
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implicit matrix and graph Laplacians leading to constructing a low-rank connectivity
matrix for DeepWalk, which is explicitly factorized by the singular value decomposition
(SVD) technique [43] to obtain the representation vectors.
ATP [24]: it is a matrix-factorization-based embedding method that tries to preserve
the asymmetric transitivity property in community question answering (CQA) graphs
(i.e., if question q1 is easier than q2 and q2 is easier than q3, then q1 is easier than q3).
ATP constructs graph G′ by removing cycle links from G, and incorporates both the graph
reachability (i.e., transitive closure of G′ [24]) and hierarchy (i.e., the rank of nodes in G′)
into a single matrix, which is factorized by a non-negative matrix factorization (NMF)
technique [44] to obtain the representation vectors; each node has two corresponding
vectors since its role in the graph is regarded as both a source and a target.
BoostNE [30]: it is a matrix-factorization-based embedding method that does not regard
the low-rank assumption on the DeepWalk’s connectivity matrix M; applying a single
NMF on M may lead to obtain such representations, which are insufficient to encode the
connectivity patterns among nodes. Inspired by ensemble learning methods [45], BoostNE
performs multiple levels of NMF on M to construct the representation vectors.
DWNS [22]: it applies the adversarial training method [46] to DeepWalk in order to
improve the robustness and generalization ability of the learning process; it forces the learned
classifier to be robust to adversarial examples (i.e., fabricated samples) generated from
real ones through small perturbations. The training process is a two-player game where
the adversarial samples are generated to maximize the model loss while the embedding
vectors are optimized against them by utilizing stochastic gradient descent (SGD) [47].
NERD [28]: it mainly considers two different roles, a source and a target, for any nodes in
the graph and maintains separate embedding spaces for the two distinct roles; based on this
consideration, it exploits two distinct neighborhoods for each node and tries to maximize
the likelihood of preserving both neighborhoods in their corresponding embedding spaces
at the learning process.

4. Experimental Evaluation

In this section, we extensively analyze both the effectiveness (i.e., accuracy) and ef-
ficiency (i.e., execution time) of embedding methods (i.e., DeepWalk, Line, node2vec,
graphGAN, NetMF, ATP, BoostNE, DWNS, and NERD) in the task of similarity computa-
tion of nodes in graphs with those of similarity measures (i.e., SimRank, JacSim, JPRank,
and SimRank*) as the conventional technique for this task. Section 4.1 describes our
experimental setup; Section 4.2 presents and analyzes the results.

4.1. Experimental Setup

All our experiments are performed on an Intel machine equipped with six 3.60 GHz
i5-8600 CPUs, 64 GB RAM, and a 64-bit Fedora Core 31 operating system. All required
codes are implemented with Python. We employ five well-known and publicly available
datasets for our evaluation as follows. Table 1 shows some statistics of our datasets:

• BlogCatalog [23,27,29] is a graph representing social relationships among bloggers.
The node labels denote blogger interests inferred through the metadata provided by
the bloggers. This graph is fully tagged by 39 different labels.

• Cora [39,40] is a citation graph of academic papers in the area of computer science.
The node labels denote the paper’s topic (e.g., Networking-Protocols). This graph is
fully tagged by 70 different labels.

• DBLP [1,17,41] is a citation graph of academic papers in the areas of data mining and
databases published in 2006 and earlier. The node labels denote the paper’s topic.
This graph is partially tagged (i.e., 200 labeled nodes) by 11 different labels.

• TREC [1,17] is a hyperlink graph based on TREC 2003) (http://trec.nist.gov/data.html)
where nodes represent web pages and links to the hyperlinks between web pages.
The node labels denote the web page’s topic. This graph is partially tagged (i.e.,
127 labeled nodes) by 11 different labels.

http://trec.nist.gov/data.html
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• Wikipedia [26,27,29] is a co-occurrence graph of words appearing in the first million
bytes of the English Wikipedia dump. The labels represent the inferred Part-of-Speech
(POS) tags of words. This graph is fully tagged by 40 different labels.

Table 1. Some statistics about our datasets.

∣V∣ ∣E∣ #Labels Graph Type Label Type

BlogCatalog 10,312 333,982 39 undirected full
Cora 23,166 91,500 70 directed full
DBLP 21,177 248,131 11 directed partial
TREC 43,202 347,702 11 directed partial

Wikipedia 4,777 184,812 40 undirected full

In the case of undirected graphs, we create two links in both directions. In order to
evaluate the effectiveness (i.e., accuracy), we utilize MAP (mean average precision), preci-
sion, recall, F-score [37], and PRES [48] as evaluation metrics. In each dataset, we consider
the labels as ground truth; for each label l, we use every single node with label l as a query
node for a similarity based searching, and find those nodes that are considered similar to the
query as a result set. If a node in the result set is labeled with l, it is regarded as relevant
to the query, otherwise irrelevant. Then, we compute precision, recall, F-score, average
precision (AP), and PRES for that query as follows:

precision =
∣Res∩ Rel∣

∣Res∣ (1)

recall =
∣Res∩ Rel∣

∣Rel∣ (2)

F−score =
2× recall × precision

recall + precision
(3)

where Res indicates the query result set, Rel indicates the set of relevant nodes to the query
(i.e., the set of all nodes labeled with l). ∣Rel∣ and ∣Res∣ indicate the sizes of Rel and Res,
respectively. In the AP measure, a precision value is computed in each position (rank) in
the query result set:

AP =
∑∣Res∣

k=1 P@k× Rel(k)
∣Rel∣ (4)

where P@k indicates the precision at position k, Rel(k) is set as 1 if the node in position k is
regarded as relevant. Otherwise, it is set as 0.

PRES considers the rank of retrieved relevant nodes in a result set and is computed
as follows:

PRES = 1−

Σri
∣Rel∣ −

∣Rel∣+1
∣2∣

∣Res∣ (5)

where ri is the rank of the ith relevant node in the result set; for each of those m (i.e., m≤ ∣Rel∣)
number of nodes that are relevant to the query but not retrieved in the result set, a rank is
assigned by starting from the value of (∣Res∣+∣Rel∣−x+1).

After computing the AP, precision, recall, F-score, and PRES for all the query nodes with
label l, we take their average values to get MAP, precision, recall, F-score, and PRES values
for label l. Then, we compute the average values of MAP, precision, recall, F-score, and PRES
over all labels in the dataset. The aforementioned process is separately computed at top
t (t = 5, 10, 20, 30) results; finally, the average accuracy over all values of t (e.g., we calculate
the MAP value by taking the average of four MAP values at top 5, 10, 20, and 30 results) is
regarded as the final accuracy for the dataset.

We implemented the matrix forms of SimRank, JacSim, JPRank, and SimRank* by
applying the default parameter settings suggested by their original work with all datasets.
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We set the impact factor C as 0.8 for all four measures. For JacSim, the importance factor α
is set as 0.4 by following [1]. For JPRank, both importance factors α1 and α2 are set as 0.4
by following [17]; however, to indicate the value of weighting parameter β, we conducted
a very simple and fast experiment by following [17] to find out between in-links and
out-links which one is more beneficial to similarity computation as follows. With each
dataset, we computed SimRank based on in-links and out-links only on four iterations
and then compared the accuracy of these two computations; β is set as 0.9 if the similarity
computation based on in-links shows better accuracy (i.e., with the DBLP dataset); it is set
as 0.1, otherwise (i.e., with the TREC and Cora datasets (As explained in Section 2, JPRank
behaves the same as JacSim with undirected graphs; we do not apply it to these graphs)).

In the case of embedding methods, we utilized the implementations with the default
parameter settings provided by their original work (i.e., ATP (https://github.com/zhenv5/
atp#atp-directed-graph-embedding-with-asymmetric-transitivity-preservation), BoostNE
(https://github.com/benedekrozemberczki/BoostedFactorization), DeepWalk (https://
github.com/phanein/deepwalk), DWNS (https://github.com/wonniu/AdvT4NE_WW
W2019), graphGAN (https://github.com/hwwang55/GraphGAN), Line (https://github.c
om/tangjianpku/LINE), NERD (https://git.l3s.uni-hannover.de/khosla/nerd), NetMF
(https://github.com/xptree/NetMF), and node2vec (https://github.com/aditya-grover/n
ode2vec)). For ATP, we applied the H-voting technique (https://github.com/zhenv5/br
eaking_cycles_in_noisy_hierarchies) (it is not provided by the original implementation of
ATP) to the datasets to find their cycle links. We could not apply graphGAN to Cora and
TREC datasets since graphGAN requires lots of memory, and it does not run with these
datasets on a machine with 64 GB memory. In order to compute the similarity between
low-dimensional vectors, we implemented Cosine based on a matrix/vector multiplication
technique, which is significantly faster than its conventional implementation. We made
publicly available our implementations of the four similarity measures and Cosine along
with the five aforementioned datasets here (https://github.com/mrhhyu/EMB_vs_LB).

4.2. Results and Analyses

In Section 4.2.1, for each dataset, we find the best iterations on which similarity
measures show their highest accuracies. In Section 4.2.2, for each dataset, we find the
best values of d (i.e., number of dimensions) for which the embedding methods show
their highest accuracies in similarity computation of nodes. In Sections 4.2.3 and 4.2.5,
we present an experimental analysis on the effectiveness and efficiency of embedding
methods (i.e., based on their best values of d) in comparison with similarity measures
(i.e., based on their best iterations), respectively. Section 4.2.4 analyzes the impact of the
value of d on the accuracy of embedding methods.

4.2.1. Link-Based Similarity Measures: Best Iterations

We apply the similarity measures to our five datasets on eight iterations; then, for each
similarity measure with a dataset, we find out the best iteration on which the similarity
measure shows its highest accuracy. Figure 3 illustrates the results with our five datasets;
as an example, SimRank shows its highest accuracy on iterations 2 and 3 with the Blog-
Catalog and DBLP datasets, respectively. As already noted in Section 2, JPRank shows
exactly the same results as JacSim does with undirected graphs; therefore, we do not apply
JPRank to the BlogCatalog and Wikipedia datasets (i.e., 5 ∗ 4 − 2 = 18 experimental cases
are conducted). In addition, in the figure, we do not represent the precision metric since
the range of its values is higher than MAP, recall, PRES, and F-score; it makes the other
four metrics plotted out very close together in the figure, thereby decreasing the readability
of figures.

https://github.com/zhenv5/atp#atp-directed-graph-embedding-with-asymmetric-transitivity-preservation
https://github.com/zhenv5/atp#atp-directed-graph-embedding-with-asymmetric-transitivity-preservation
https://github.com/benedekrozemberczki/BoostedFactorization
https://github.com/phanein/deepwalk
https://github.com/phanein/deepwalk
https://github.com/wonniu/AdvT4NE_WWW2019
https://github.com/wonniu/AdvT4NE_WWW2019
https://github.com/hwwang55/GraphGAN
https://github.com/tangjianpku/LINE
https://github.com/tangjianpku/LINE
https://git.l3s.uni-hannover.de/khosla/nerd
https://github.com/xptree/NetMF
https://github.com/aditya-grover/node2vec
https://github.com/aditya-grover/node2vec
https://github.com/zhenv5/breaking_cycles_in_noisy_hierarchies
https://github.com/zhenv5/breaking_cycles_in_noisy_hierarchies
https://github.com/mrhhyu/EMB_vs_LB
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Figure 3. Accuracy of similarity measures with all datasets on eight iterations.

As shown in Figure 3, for all similarity measures, the best iteration is observed before
the eighth one in all datasets. Table 2 summarizes the best iterations for all similarity
measures with our datasets. Note that, hereafter, when we compare the effectiveness of
a similarity measure with those of embedding methods for a dataset, we consider the
effectiveness of the similarity measure on its best iteration with that dataset; as an example,
in the case of SimRank with the BlogCatalog dataset, we consider its effectiveness on the
second iteration according to Table 2.
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Table 2. Best iterations of all similarity measures.

JacSim JPRank SimRank* SimRank

BlogCatalog 1 1 2 2
Cora 5 4 5 5
DBLP 3 3 6 3
TREC 2 2 2 1

Wikipedia 5 5 2 2

4.2.2. Graph Embedding Methods: Best Values of d

Now, we apply ATP, BoostNE, DeepWalk, DWNS, graphGAN, Line, NERD, NetMF,
and node2vec to our five datasets to obtain the low-dimensional representation vectors of
the nodes. Then, to compute the similarity between two nodes in a dataset, we apply Cosine
to their corresponding vectors. In order to carefully analyze the impact of the number of
dimensions d in similarity computation of nodes, we set d to different values as 64, 128, 256,
and 512. For each possible combination of methods, datasets, and d values (e.g., ATP with
the BlogCatalog dataset when d=64), we perform the experiment five times and select the
best accuracy obtained among these five different executions as the final accuracy for that
combination. More specifically, we conducted 900 (=5 × 9 × 5 × 4) different experiments.
Finally, similar to the strategy taken in Section 4.2.1, in the case of each embedding method
with a dataset, we find out the best value of d for which the embedding method shows its
highest accuracy in similarity computation of nodes.

Figures 4 and 5 illustrate the accuracy of embedding methods with different values
of d. The former figure shows the results with the BlogCatalog, Cora, and DBLP datasets,
while the latter one shows the results with the TREC and Wikipedia datasets; as an example,
BoostNE shows its highest accuracy when d is set as 256 and 128 with the BlogCatalog and
TREC datasets, respectively. In these figures, we do not represent the precision metric due
to the same reason as in Figure 3; the values of this metric with BlogCatalog, Cora, DBLP,
TREC, and Wikipedia datasets for different values of d are represented in Tables A1–A5 in
Appendix A, respectively. As already noted in Section 4.1, we cannot apply graphGAN to
the Cora and TREC datasets due to their large sizes. Table 3 summarizes the best value of
d for all embedding methods with our datasets. Note that, hereafter, when we compare
the effectiveness of embedding methods with those of similarity measures for a dataset,
we consider the effectiveness of embedding methods on their best values of d with that
dataset; as an example, in the case of DeepWalk with the BlogCatalog dataset, we consider
its effectiveness based on d = 128 according to Table 3.
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Figure 4. Accuracy of embedding methods with BlogCatalog, Cora, and DBLP datasets for different values of d.
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Figure 5. Accuracy of embedding methods with TREC and Wikipedia datasets for different values of d.

Table 3. Best values of d for all embedding methods.

ATP BoostNE DeepWalk DWNS graphGAN Line NERD NetMF node2vec

BlogCatalog 512 256 128 512 64 512 128 256 128
Cora 512 512 512 512 - 512 128 128 64
DBLP 512 512 128 256 64 128 128 512 128
TREC 512 128 64 64 - 256 256 512 128

Wikipedia 512 128 64 256 64 64 512 64 64

4.2.3. Effectiveness Evaluation

In this section, we analyze the effectiveness (i.e., accuracy) of embedding methods
in computing the similarity of nodes and compare it with those of similarity measures
with each dataset as follows. As explained in Sections 4.2.1 and 4.2.2, to compare the
effectiveness of similarity measures with embedding methods for each dataset in this
section, we consider their accuracies on their best iterations and best values of d represented in
Tables 2 and 3, receptively.
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BlogCatalog Dataset

Figure 6 illustrates the accuracy of all embedding methods and similarity measures
with the BlogCatalog dataset. In this figure, we do not represent the precision measure due
to the same reason as in Figure 3; instead, we show the precision values for all methods
in Table 4. In addition, for those embedding methods and similarity measures that show
comparable accuracies, we write down the values of their corresponding MAP, PRES, recall,
and F-score in the figure to have better comparison.

As observed in the figure, with the BlogCatalog dataset, NetMF shows the highest
accuracy among all the embedding methods in terms of MAP, precision, recall, PRES,
and F-score; however, its accuracy is close to that of DeepWalk, while BoostNE, graphGAN,
and NERD show the worst accuracies. SimRank* shows better accuracy than other similarity
measures, while SimRank shows the worst accuracy in terms of MAP, precision, recall,
PRES, and F-score. Now, by comparing the accuracy of NetMF with that of SimRank*, it is
observed that NetMF outperforms SimRank* by 73.44%, 35.68%, 42.89%, 50.00%, and 47.10%
in terms of MAP, precision, recall, PRES, and F-score, respectively; Table 5 shows the
percentage of improvements in accuracy obtained by NetMF over all other methods with
the BlogCatalog dataset.
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Figure 6. Accuracy of embedding methods and similarity measures with the BlogCatalog dataset.

Table 4. Precision values with the BlogCatalog dataset.

ATP BoostNE DeepWalk DWNS graphGAN Line NERD NetMF node2vec JacSim SimRank* SimRank

0.085 0.045 0.161 0.101 0.047 0.100 0.049 0.170 0.116 0.090 0.125 0.069

Table 5. Accuracy improvements (%) by NetMF over other methods with the BlogCatalog dataset.

ATP BoostNE DeepWalk DWNS graphGAN Line NERD node2vec JacSim SimRank* SimRank

MAP 209.77 1010.00 14.83 154.20 1068.42 163.24 838.03 121.26 179.83 73.44 365.73
precision 100.72 280.94 5.22 68.06 286.49 69.75 246.76 46.55 89.36 35.68 147.22

recall 162.84 456.31 8.73 99.65 519.46 114.61 293.81 88.18 125.15 42.89 245.18
PRES 168.22 617.50 9.68 112.59 682.73 128.99 431.48 101.17 145.30 50.00 286.10

F-score 147.01 418.26 9.88 106.51 466.07 113.95 344.39 88.32 135.98 47.10 222.37

Cora Dataset

Figure 7 illustrates the accuracy of all embedding methods and similarity measures
with the Cora dataset and Table 6 shows the precision values for all methods.

As observed in the figure, with the Cora dataset, although DeepWalk and Line show
the best accuracy among all embedding methods, their accuracies are not tangible; Line
outperforms DeepWalk in terms of recall, PRES, and F-score, while DeepWalk outperforms
Line in terms of MAP and precision. NetMF and BoostNE show the worst accuracy among
embedding methods in terms of all metrics. In the case of similarity measures, JPRank
shows the best accuracy and SimRank again shows the worst one in terms of MAP, precision,
recall, PRES, and F-score. Now, by comparing the accuracy of Line with that of JPRank, it
is observed that JPRank slightly outperforms Line by 4.05%, 5.73%, 2.28%, 2.98%, and 3.05%
in terms of MAP, precision, recall, PRES, and F-score, respectively; Table 7 shows the
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percentage of improvements in accuracy obtained by JPRank over all other methods with
the Cora dataset.
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Figure 7. Accuracy of embedding methods and similarity measures with the Cora dataset.

Table 6. Precision values with the Cora dataset.

ATP BoostNE DeepWalk DWNS Line NERD NetMF node2vec JacSim JPRank SimRank* SimRank

0.325 0.129 0.398 0.376 0.391 0.283 0.075 0.231 0.198 0.414 0.360 0.191

Table 7. Accuracy improvements (%) by JPRank over other methods with the Cora dataset.

ATP BoostNE DeepWalk DWNS Line NERD NetMF node2vec JacSim SimRank* SimRank

MAP 36.37 416.85 3.69 16.47 4.05 79.21 622.32 157.58 112.41 16.82 128.88
precision 27.36 221.00 3.87 9.98 5.73 46.49 452.53 79.41 109.17 14.84 116.91

recall 31.22 298.02 3.23 12.33 2.28 57.35 566.12 112.11 106.53 16.90 111.13
PRES 32.92 343.59 3.41 13.99 2.98 66.69 579.35 130.91 107.46 15.85 116.63

F-score 31.99 286.92 3.50 12.64 3.05 56.18 551.31 105.21 110.18 17.76 115.65

DBLP Dataset

Figure 8 illustrates the accuracy of all embedding methods and similarity measures
with the DBLP dataset and Table 8 shows the precision values for all methods.

As observed in the figure, DeepWalk shows the best accuracy among all embedding
methods, while NetMF shows the worst one in terms of MAP, precision, recall, PRES, and F-
score. Among similarity measures, JPRank shows the best accuracy and it is close to that of
JacSim, while SimRank shows the worst accuracy in terms of all metrics. Now, by compar-
ing the accuracy of DeepWalk with that of JPRank, it is observed that JPRank outperforms
DeepWalk by 64.89%, 50.34%, 51.70%, 52.71%, and 51.11% in terms of MAP, precision,
recall, PRES, and F-score, respectively; Table 9 shows the percentage of improvements in
accuracy obtained by JPRank over all other methods with the DBLP dataset.
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Figure 8. Accuracy of embedding methods and similarity measures with the DBLP dataset.

Table 8. Precision values with the DBLP dataset.

ATP BoostNE DeepWalk DWNS graphGAN Line NERD NetMF node2vec JacSim JPRank SimRank* SimRank

0.058 0.041 0.114 0.081 0.036 0.053 0.078 0.022 0.040 0.168 0.172 0.094 0.094
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Table 9. Accuracy improvements (%) by JPRank over other methods with the DBLP dataset.

ATP BoostNE DeepWalk DWNS graphGAN Line NERD NetMF node2vec JacSim SimRank* SimRank

MAP 306.56 441.78 64.89 168.03 603.43 363.51 150.31 1042.26 373.62 1.77 135.37 168.23
precision 195.25 314.09 50.34 111.59 382.84 226.79 119.44 665.05 329.97 2.44 82.36 82.17

recall 183.36 300.94 51.70 109.85 382.53 210.52 119.18 668.47 375.16 2.46 60.41 59.66
PRES 213.05 343.68 52.71 120.69 438.64 262.21 125.86 705.20 375.48 2.05 90.03 94.22

F-score 188.63 307.11 51.11 110.32 382.18 216.87 118.79 663.16 353.98 2.47 69.03 67.67

TREC Dataset

Figure 9 illustrates the accuracy of all embedding methods and similarity measures
with the TREC dataset and Table 10 shows the precision values for all methods.
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Figure 9. Accuracy of embedding methods and similarity measures with the TREC dataset.

Table 10. Precision values with the TREC dataset.

ATP BoostNE DeepWalk DWNS Line NERD NetMF node2vec JacSim JPRank SimRank* SimRank

0.018 0.008 0.033 0.026 0.022 0.005 0.034 0.021 0.019 0.031 0.035 0.015

As observed in the figure, DeepWalk and NetMF show the best accuracy among all
embedding methods in terms of MAP, precision, recall, PRES, and F-score. However, their ac-
curacies are not tangible, where NetMF outperforms DeepWalk in terms of precision, PRES,
and F-score, while DeepWalk shows better accuracy in terms of MAP and recall. NERD shows
the worst accuracy among all embedding methods. SimRank* shows the best accuracy among
all similarity measures, while SimRank shows the worst one in terms of all metrics. Now,
by comparing the accuracy of NetMF with that of SimRank*, it is observed that they show
very close accuracy; SimRank* outperforms NetMF in terms of precision, recall, and F-score,
while NetMF outperforms SimRank* in terms of MAP and PRES. Table 11 shows the per-
centage of improvements in accuracy obtained by SimRank* over all other methods with the
TREC dataset.

Table 11. Accuracy improvements (%) by SimRank* over other methods with the TREC dataset.

ATP BoostNE DeepWalk DWNS Line NERD NetMF node2vec JacSim JPRank SimRank

MAP 156.37 304.33 −9.82 45.81 15.95 617.85 −7.38 69.67 79.46 −23.56 211.07
precision 94.61 315.85 3.46 35.58 58.54 548.69 2.97 64.33 78.74 12.43 127.45

recall 97.67 346.31 5.82 37.06 81.61 780.16 6.03 71.36 64.31 31.32 91.21
PRES 110.68 343.59 −0.37 36.54 49.24 662.63 −0.73 64.85 77.88 6.68 132.30

F-score 94.42 331.43 3.74 34.57 67.83 651.72 3.52 66.84 71.41 20.90 107.64

Wikipedia Dataset

Figure 10 illustrates the accuracy of all embedding methods and similarity measures
with the Wikipedia dataset, and Table 12 shows the precision values for all methods. As ob-
served in the figure, DeepWalk shows the highest accuracy among embedding methods in
terms of MAP, precision, recall, PRES, and F-score; however, its accuracy is close to that of
DWNS, while graphGAN shows the worst accuracy. Among similarity measures, JacSim
shows the best accuracy, while SimRank shows the worst one in terms of all metrics. Now,
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by comparing the accuracy of DeepWalk with that of JacSim, it is observed that JacSim
outperforms DeepWalk by 140.20%, 34.91%, 74.16%, 83.45%, and 66.55% in terms of MAP,
precision, recall, PRES, and F-score; Table 13 shows the percentage of improvements in
accuracy obtained by JacSim over all other methods with the Wikipedia dataset.
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Figure 10. Accuracy of embedding methods and similarity measures with the Wikipedia dataset.

Table 12. Precision values with the Wikipedia dataset.

ATP BoostNE DeepWalk DWNS graphGAN Line NERD NetMF node2vec JacSim SimRank* SimRank

0.041 0.043 0.056 0.046 0.035 0.060 0.049 0.056 0.052 0.075 0.039 0.040

Table 13. Accuracy improvements (%) by JacSim over other methods with the Wikipedia dataset.

ATP BoostNE DeepWalk DWNS graphGAN Line NERD NetMF node2vec SimRank* SimRank

MAP 458.30 502.50 140.20 168.77 1663.41 179.69 557.27 161.48 330.36 347.68 1125.42
precision 80.82 72.57 34.91 61.70 112.21 24.10 54.15 33.68 43.00 90.86 85.06

recall 405.74 204.50 74.16 54.05 593.77 98.22 354.20 105.76 242.50 82.38 702.54
PRES 372.19 266.90 83.45 91.50 913.74 114.11 375.33 105.08 247.24 181.82 762.50

F-score 252.98 212.50 66.55 156.61 588.92 83.30 238.21 68.29 166.48 151.56 420.39

4.2.4. Impact of d on Accuracy of Embedding Methods

In this section, we analyze whether increasing the number of dimensions improves the
effectiveness of embedding methods in computing the similarity of nodes. In Section 4.2.2,
Figure 4 illustrates the accuracy of all embedding methods with the BlogCatalog, Cora,
and DBLP datasets for different values of d; in addition, Figure 5 illustrates the results
of the same experiments with the TREC and Wikipedia datasets. As observed in these
figures, in some cases such as DWNS and NetMF with the BlogCatalog dataset, increasing
the number of dimensions improves the accuracy of the embedding methods (i.e., refer to
Figure 4); on the contrary, in some cases such as Line with the Wikipedia dataset (i.e., refer
to Figure 5) and graphGAN with the BlogCatalog dataset (i.e., refer to Figure 4), increasing
the number of dimensions adversely affects the accuracy of the embedding methods. In
addition, in some cases such as DeepWalk with the DBLP dataset (i.e., refer to Figure 4) and
node2vec with the TREC dataset (i.e., refer to Figure 5), we observe both improvement and
reduction in accuracy by increasing the number of dimensions. In summary, increasing
the value of d does not help improve the accuracy of embedding methods in computing
the similarity of nodes. In Section 4.2.2, Table 3 indicates the value of d showing the best
accuracy for each embedding method with our datasets.

As represented in Table 3, some embedding methods show their best accuracies when
d=64 or d=512; we call such a case a suspicious one since it may possible to improve the
accuracy of the embedding method by assigning a lower (i.e., 32) or higher (i.e., 1024) value
to d, respectively. However, if the accuracy of a suspicious case is not comparable with the
accuracy of the best method in the dataset, conducting the aforementioned experiment is not
beneficial since our overall observations will not be affected by the new result; for example,
although ATP with the BlogCatalog dataset shows its highest accuracy when d=512 as a
suspicious case, its accuracy is quite lower than that of NetMF as the best method for the
same dataset (refer to Figure 6). In Table 3, there are only four following real suspicious
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cases that we need to consider them: both DeepWalk and Line show their highest accuracies
when d=512 with the Cora dataset and their accuracies are very close to that of JPRank
as the best method with Cora (i.e., refer to Figure 7). In addition, DeepWalk and NetMF
show their highest accuracies when d=64 and d=512 with the TREC dataset, respectively;
their accuracies are very close to that of SimRank* as the best method with TREC (i.e., refer
to Figure 9). Therefore, we conduct the following four new experiments:

1. DeepWalk with the Cora dataset and d=1024
2. Line with the Cora dataset and d=1024
3. DeepWalk with the TREC dataset and d=32
4. NetMF with the TREC dataset and d=1024

Table 14 represents the accuracies of the four new experiments (i.e., in bold face) along
with the accuracies of their corresponding suspicious cases. In case 1, DeepWalk shows the
same accuracy as it does when d=512; in addition, in cases 2 and 4, Line and NetMF show
similar accuracies as they do when d=512, respectively. In case 3, DeepWalk shows lower
accuracy in comparison with d=64. Therefore, we do not need to apply any changes in our
results represented in Table 3.

Table 14. Results of four extra experiments for suspicious cases.

MAP Precision Recall PRES F-Score

DeepWalk with Cora dataset d = 512 0.023 0.398 0.031 0.026 0.053
d = 1024 0.023 0.398 0.031 0.026 0.053

Line with Cora dataset d = 512 0.023 0.391 0.032 0.026 0.053
d = 1024d = 1024d = 1024 0.023 0.391 0.031 0.026 0.053

DeepWalk with TREC dataset d = 32d = 32d = 32 0.022 0.025 0.039 0.027 0.028
d = 64 0.026 0.033 0.054 0.035 0.038

NetMF with TREC dataset d = 512 0.025 0.034 0.054 0.036 0.038
d = 1024d = 1024d = 1024 0.025 0.033 0.053 0.035 0.038

4.2.5. Efficiency Evaluation

In this section, we carefully analyze the efficiency (i.e., execution time) of embedding
methods in computing the similarity of nodes and compare it with that of similarity measures.

Link-Based Similarity Measures

In order to conduct a fair comparison, we implemented the matrix form of JacSim,
JPRank, SimRank*, and SimRank without applying any acceleration techniques such as
multi-processing (as the simplest technique), fine-grained memorization [9], partial sums
memoization [49], and backward local push and Monte Carlo sampling [50]. Since the
execution time could slightly change depending on the system resources such as CPU
overload, to obtain an accurate execution time, we run each similarity measure on eight
iterations for five times with a dataset and the average run time over the five executions is
regarded as the final execution time of the similarity measure. Note that we consider only
the elapsed time to compute the similarity scores as the execution time; the required time
to store the results of similarity computation in a file or a database is not considered.

Table 15 shows the execution time (minutes) of similarity measures with our five
datasets (As already explained in Section 4.2.1, we do not apply JPRank to undirected
graphs BlogCatalog and Wikipedia). With all datasets, SimRank* shows the best efficiency
since it requires only one matrix multiplication in Equation (A8). With undirected datasets
(i.e., BlogCatalog and Wikipedia), JacSim shows the worst efficiency since it requires two
matrix multiplications and a pairwise normalization paradigm to compute matrix E in
Equation (A6). With directed datasets (i.e., Cora, DBLP, and TREC), JPRank shows the worst
efficiency since it requires four matrix multiplications and two pairwise normalization
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paradigms to compute matrices E and E′ in Equation (A10). However, among all the
available cases in Table 15, JacSim with the BlogCatalog dataset shows the worst efficiency,
although BlogCatalog has less nodes than Cora, DBLP, and TREC datasets. The reason
is that there are “32,787,165” node-pairs with non-empty common in-link sets in this
dataset, which makes the calculation of matrix E expensive; the number of these node-
pairs in Cora, DBLP, TREC, and Wikipedia datasets are “229,306”, “466,990”, “1,391,293”,
and “11,015,803”, respectively.

Table 15. Execution time (minutes) of all similarity measures with our datasets.

JacSim JPRank SimRank* SimRank

BlogCatalog 457.24 - 2.02 4.38
Cora 3.54 8.22 0.21 0.32
DBLP 3.85 8.41 0.51 0.70
TREC 39.80 91.17 1.45 5.10

Wikipedia 55.29 - 0.28 0.53

Graph Embedding Methods

For embedding methods, the execution time is regarded as the summation of a learning
time (i.e., elapsed time to construct low-dimensional representation vectors) and a simi-
larity computation time (i.e., elapsed time to compute the similarity scores of all pairs of
representation vectors by employing Cosine). With each dataset, the learning time of an
embedding method is regarded as the average run time over the five executions of the
method. We implemented Cosine based on a matrix/vector multiplication technique,
which is significantly (i.e., almost 30 times) faster than its conventional implementation.
In the case of similarity computation time, we consider only the elapsed time to compute
the similarity scores by applying Cosine; the required time to store the results in a file or a
database is not considered as we did for similarity measures.

Table 16 represents the learning time (minutes) of all embedding methods for different
values of d with all datasets where bold face numbers indicate the best efficiency with each
value of d in a dataset. As observed in the table, NetMF shows the best efficiency among all
embedding methods with the BlogCatalog and Wikipedia datasets regardless of the value
of d, node2vec shows the best efficiency among all methods with Cora, DBLP, and TREC
datasets regardless of the value of d, BoostNE, and ATP almost have better efficiency after
NetMF and node2vec with all datasets, and graphGAN shows the worst efficiency among
all embedding methods with all datasets regardless of the value of d.

Table 17 shows the similarity computation time (minutes) based on different vector
sizes (i.e., d = 64, 128, 256, 512) with our five datasets. Note that the similarity computation
time for a dataset depends on the number of node-pairs and the representation vector’s
size (i.e., the value of d); for example, with the BlogCatalog dataset, the required time
to compute Cosine for all node-pairs with vector size 64 obtained by any embedding
methods (except APT and NERD) is 4.07. In the case of ATP and NERD with any value
of d, the similarity computation time in Table 17 is multiplied by two since these methods
construct two vectors for each node (i.e., target and source vectors) where we apply Cosine
to the corresponding target vectors and source vectors of a node-pair separately; finally,
the highest score is regarded as the final similarity score of the node-pair.
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Table 16. Learning time of all embedding methods for different values of d with all datasets.

ATP BoostNE DeepWalk DWNS graphGAN Line NERD NetMF node2vec

BlogCatalog

d = 64 3.69 3.44 41.25 30.38 151.37 6.53 9.10 0.80 19.62
d = 128 4.21 3.73 53.16 52.86 308.36 10.49 11.12 1.12 24.16
d = 256 4.88 4.22 72.91 71.50 397.20 23.03 14.02 1.85 25.15
d = 512 6.21 4.63 106.40 90.26 579.83 36.19 30.30 3.31 26.29

Cora

d = 64 5.05 2.12 10.21 85.67 - 7.65 4.73 5.64 0.26
d = 128 5.24 2.54 12.22 116.03 - 10.01 6.09 7.76 0.31
d = 256 7.44 3.98 16.82 175.93 - 18.94 13.70 9.15 0.35
d = 512 11.30 9.44 24.22 216.82 - 34.62 25.94 12.38 0.61

DBLP

d = 64 5.85 2.42 4.88 89.76 891.96 6.55 6.01 5.63 0.17
d = 128 6.53 2.86 6.46 101.19 1009.23 10.24 8.01 6.56 0.22
d = 256 7.67 3.32 8.64 150.27 1479.23 19.37 13.61 7.33 0.26
d = 512 12.18 5.97 12.43 175.10 2292.45 35.67 26.87 9.17 0.38

TREC

d = 64 52.23 5.02 61.65 369.48 - 7.06 5.45 10.88 1.36
d = 128 57.86 5.84 79.98 408.59 - 10.10 7.92 11.55 1.65
d = 256 63.69 8.19 105.36 479.09 - 20.77 16.45 17.75 1.96
d = 512 76.22 9.90 144.88 639.21 - 33.98 27.36 26.46 2.41

Wikipedia

d = 64 1.03 1.00 16.20 9.73 29.55 6.65 8.88 0.26 4.92
d = 128 1.05 1.05 18.39 11.92 32.81 11.28 10.68 0.30 5.32
d = 256 1.33 1.15 25.77 18.32 49.52 18.61 17.04 0.40 5.55
d = 512 1.85 1.78 38.35 27.6 92.38 36.66 28.35 0.80 5.58

Table 17. Similarity computation time (minutes) with different values of d for all datasets.

BlogCatalog Cora DBLP TREC Wikipedia

d=64 4.07 21.05 17.52 72.89 0.90
d=128 4.51 22.45 19.87 74.07 0.92
d=256 4.91 23.28 20.44 76.42 1.10
d=512 6.13 25.69 23.23 83.06 1.62

In order to easily compare the efficiency of all embedding methods at a glance,
Figure 11 illustrates their execution times (i.e., the summation of the learning time and
the similarity computation time) with all datasets; we excluded graphGAN since its exe-
cution time value is quite larger than other embedding methods. For example, with the
BlogCatalog dataset when d=64, the execution time of ATP is 11.83 as the summation of
3.69 (i.e., the learning time from Table 16) and 2 × 4.07 (As explained before, for simplicity,
we regard the similarity computation time as twice that in Table 17; for ATP with Blog-
Catalog when d = 64, the real Cosine calculation time is 8.33 (≃2× 4.07).) (i.e., twice the
similarity computation time from Table 17); in addition, the execution time by DeepWalk
is 45.32 as the summation of 41.25 (i.e., the learning time) and 4.07 (i.e., the similarity
computation time).
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Figure 11. Efficiency of embedding methods to compute the similarity of nodes with all datasets.

Efficiency Comparison

In order to make a meaningful comparison, for each of our five datasets, we compare
the efficiency of the best embedding method with that of the best similarity measure from
Section 4.2.3, as follows:

• BlogCatalog: as observed in Figure 6, NetMF with d=256 (i.e., refer to Table 3) and
SimRank* are the best embedding method and similarity measure showing highest
accuracy, respectively. The execution time of NetMF with d=256 is 6.76 (i.e., 1.85 from



Appl. Sci. 2021, 11, 162 21 of 29

Table 16 plus 4.91 from Table 17), while the execution time of SimRank* is 4.38 (refer
to Table 15); SimRank* shows almost 35% better efficiency than NetMF.

• Cora: as observed in Figure 7, Line (i.e., with d = 512) and JPRank are the best
embedding method and similarity measure, respectively. The execution time of Line
when d= 512 is 60.31 (i.e., 34.62 + 25.69), while the execution time of JPRank with this
dataset is 8.22; JPRank is almost 7.3 times more efficient than Line.

• DBLP: as observed in Figure 8, DeepWalk (i.e., with d= 128) and JPRank show the
highest accuracies among embedding methods and similarity measures, respectively.
The execution time of DeepWalk when d=128 is 26.33 (i.e., 6.46 + 19.87) and that of
JPRank is 8.41, which means that JPRank is 3.1 times more efficient than DeepWalk.

• TREC: as observed in Figure 9, NetMF with d = 512 and SimRank* are the best
embedding method and similarity measure, respectively. The execution time of the
former method is 109.52 (i.e., 26.46+83.06) and that of the latter one is only 1.45,
which means SimRank* is significantly faster than NetMF.

• Wikipedia: as observed in Figure 10, DeepWalk with d = 64 and JacSim show the
best accuracies among embedding methods and similarity measures, respectively.
The execution time of DeepWalk when d = 64 is 17.10 (i.e., 16.20 + 0.90) and the
execution time of JacSim is 55.29, which means DeepWalk is almost 3.2 times faster
than JacSim.

4.2.6. Discussion

Based on the results of our extensive experiments with embedding methods and
similarity measures in Sections 4.2.3 and 4.2.5, we observe that the latter technique is better
than the former one to compute the similarity of nodes in graphs for the following reasons.

• First, similarity measures outperform embedding methods with all datasets in terms
of effectiveness except with the BlogCatalog dataset where NetMF (i.e., with d=256)
shows the better accuracy than SimRank*; however, its efficiency is 54% less than that
of SimRank* with this dataset.

• Second, similarity measures show better efficiency with all datasets except with the
Wikipedia dataset where DeepWalk (i.e., with d=64) is almost 3.2 times faster than
JacSim; however, for this dataset, JacSim shows better effectiveness than DeepWalk
and significantly outperforms it in terms of all five evaluation metrics as observed
in Table 13.

• Third, similarity measures have a very low number of parameters than embedding
methods, thereby leading to a simpler parameter tuning process to possibly obtain a
better accuracy; for example, JPRank has only three parameters as α1, α2, and β in
Equation (A10), while DeepWalk has six parameters as the window size, walk length,
number of dimensions, number of walks, size of training data, and learning tare.

In addition to the above findings, we observed that DeepWalk and its variants
(i.e., Line and NetMF) show better effectiveness than other embedding methods in the task
of similarity computation of nodes in graphs. Furthermore, it is shown that increasing the
value of d (i.e., number of dimensions) does not help improve the accuracy of embedding
methods in computing the similarity of nodes.

5. Conclusions

Embedding methods aim to represent each node in a given graph as a low-dimensional
vector while preserving the neighborhood similarity, semantic information, and community
structure of the nodes in the original graph. The dimensions in the low-dimensional vectors
can be interpreted as latent features and the obtained vectors can be employed to compute
the similarity of nodes in the graph. In this paper, we evaluated and compared both the
effectiveness and efficiency of embedding methods in the task of computing similarity
of nodes in graphs with those of link-based similarity measures by conducting extensive
experiments with five datasets. We observed the following findings based on the results
of our experiments. The similarity measures outperform embedding methods in terms of
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effectiveness with all datasets except with the BlogCatalog dataset where DeepWalk and
NetMF show the best accuracy. The similarity measures are more efficient than embedding
methods in similarity computation of nodes with all datasets except with the Wikipedia
dataset where DeepWalk shows better efficiency. Finally, similarity measures are better to
compute the similarity of nodes in graphs.
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Appendix A

Appendix A.1

In this section, we present the mathematical formulation of SimRank, SimRank*,
JacSim, and JPRank with their detailed description.

SimRank [11]: for a given graph G = (V, E) where V represents a set of nodes and
E⊆(V×V) is a set of links among nodes, the SimRank score of a node-pair (a, b) is defined
as follows:

S(a, b) = {
1, a = b

C
∣Ia∣∣Ib∣Σi∈Ia Σj∈Ib S(i, j), a ≠ b (A1)

where Ia is a set of nodes directly pointing to node a, ∣Ia∣ is the size of Ia, and C ∈ (0, 1)
is a damping factor. If Ia =∅ or Ib =∅, S(a, b)= 0. Equation (A1) is a recursive formula
initialized by S0(a, b)=1 if a=b; S0(a, b)=0, otherwise. For k=1, 2, ..., we have

Sk(a, b) = {
1, a = b

C
∣Ia∣∣Ib∣Σi∈Ia Σj∈Ib Sk−1(i, j), a ≠ b (A2)

where on each iteration k, Sk(a, b) is computed based on similarity scores obtained in the
previous iteration k−1.

The iterative form of SimRank can be transformed to a closed matrix form [51,52],
which is quite faster than the original iterative form. Let S∈R(∣V∣×∣V∣) be a similarity matrix
whose entry [S]a,b denotes S(a, b); then, SimRank scores are computed as follows:

S = C ⋅ (QT
⋅ S ⋅Q)+ (1− C) ⋅ I (A3)

where Q∣V∣×∣V∣ is a column normalized adjacency matrix whose entry [Q]a,b = 1/∣Ib∣ if a
points b; [Q]a,b = 0, otherwise. QT is a transpose matrix of Q, I∣V∣×∣V∣ is an identity matrix,

https://github.com/mrhhyu/EMB_vs_LB
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and term (1− C) ⋅ I guarantees that the main diagonal entries in S are always maximum.
The recursive computation of the matrix form starts with S0= I for k=1, 2, ..., as follows:

Sk = C ⋅ (QT
⋅ Sk−1 ⋅Q)+ (1− C) ⋅ I (A4)

JacSim [1]: it has both iterative and matrix forms; however, we explain its matrix form
since it is more efficient than the iterative form while their accuracies are comparable [1].
Let JS be the similarity matrix; then,

JS = C ⋅ (α ⋅ J + (1− α) ⋅ (QT
⋅ JS ⋅Q− E))+ (1− C ⋅ α) ⋅ I (A5)

where α∈(0, 1) is an importance factor to control the degree of importance of Jaccard score
and the one computed by the pairwise normalization paradigm, J∈R(∣V∣×∣V∣) is a matrix
whose entry [J]a,b denotes the Jaccard score of (a, b). E∈R(∣V∣×∣V∣) is a matrix whose entry
[E]a,b denotes the summation of JacSim scores of all node-pairs between (Ia ∩ Ib) and itself
normalized by value ∣Ia∣∣Ib∣. For k = 1, 2, ..., the recursive computation is started with
JS0= I as follows:

JSk = C ⋅ (α ⋅ J + (1− α) ⋅ (QT
⋅ JSk−1 ⋅Q− Ek))+ (1− C ⋅ α) ⋅ I,

[Ek]a,b =
Σi∈Ia∩Ib Σj∈Ia∩Ib JSk−1(i, j)

∣Ia∣∣Ib∣
, ∀a, b ∈V (A6)

SimRank* [9]: let S∗ be the SimRank* similarity matrix; then,

S∗ =
C
2 ⋅ (QT

⋅ S∗ + S∗ ⋅Q)+ (1− C) ⋅ I (A7)

where only one matrix multiplication is required since S∗ is a symmetric matrix and S∗⋅Q
is identical to the transpose of QT ⋅S∗. For k=1, 2, ..., the recursive computation is started
with S∗0 = I as follows:

S∗k =
C
2 ⋅ (QT

⋅ S∗k−1 + S∗k−1 ⋅Q)+ (1− C) ⋅ I (A8)

JPRank [17]: it has been proposed by both iterative and matrix forms; here, we explain
its matrix form since it is more efficient than the iterative form while their accuracies are
comparable [17]. Let JP be the JPRank similarity matrix; then,

JP=β⋅(C⋅α1⋅ J+C⋅(1−α1)⋅(QT
⋅ JP⋅Q− E))

+(1−β)⋅(C⋅α2⋅ J
′
+C⋅(1−α2)⋅(P⋅ JP⋅PT

−E′))
+(1−C⋅β⋅(α1−α2)−C⋅α2)⋅I (A9)

where β∈[0, 1] is a weighting parameter for in-links and out-links, α1 and α2 are used to
control the degree of importance of the Jaccard score and the one computed by pairwise
normalization paradigm based on in-links and out-links, respectively; P∈R(∣V∣×∣V∣) is a row
normalized adjacency matrix whose entry [P]a,b=1/∣Oa∣ if a points b; [P]a,b=0, otherwise
(i.e., Oa is a set of nodes directly pointed to by node a). J′∈R(∣V∣×∣V∣) is a matrix containing
the Jaccard score of node-pairs computed based on out-links. E′ ∈R(∣V∣×∣V∣) is a matrix
whose entry [E′]a,b denotes the summation of JPRank scores of all node-pairs in (Oa∩Ob)
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normalized by the values of ∣Oa∣∣Ob∣. For k=1, 2, ..., the recursive computation of JPRank
is started with JP0= I as follows:

JPk=β⋅(C⋅α1⋅ J+(1−α1)⋅(QT
⋅ JPk−1⋅Q− Ek))

+(1−β)⋅(C⋅α2⋅ J
′
+(1−α2)⋅(P⋅ JPk−1⋅P

T
− E′k))

+(1−C⋅β⋅(α1−α2)−C⋅α2)⋅I

[Ek]a,b =
Σi∈Ia∩Ib Σj∈Ia∩Ib JPk−1(i, j)

∣Ia∣∣Ib∣
, ∀a, b ∈V

[E′k]a,b =
Σi∈Oa∩Ob Σj∈Oa∩Ob JPk−1(i, j)

∣Oa∣∣Ob∣
, ∀a, b ∈V (A10)

Appendix A.2

DeepWalk [23]: it tries to learn a model by the following optimization function to maximize
the probability of any node appearing in the vi’s neighborhood with no knowledge of its
offset from vi:

min
f

− log Pr (vi−n, ..., vi+n \ vi ∣ f (vi)), (A11)

where the Skip-gram model equipped with a hierarchical softmax and the stochastic
gradient descent (SGD) [47] are utilized to optimize the objective function.

Line [25]: first-order and second-order proximities are preserved by the two following
objective functions, respectively:

O1= − ∑
(i,j)∈E

wij

1+ exp(−−⇀u T
i ⋅
−⇀uj)

, (A12)

O2= − ∑
(i,j)∈E

wij ⋅ exp(−⇀u T
j ⋅
−⇀ui)

Σ∣V∣
k=1 exp(−⇀u T

k ⋅
−⇀ui)

, (A13)

where wij is the weight of the link between vi and vj (in unweighted graphs, it is set as
one), −⇀ui is the vector representation of vi, and −⇀u i is the vector representation of vi when it
is regarded as a neighbor in the second-order proximity of other nodes. Line employs a
negative sampling technique based on the links’ weights and the asynchronous stochastic
gradient descent (ASGD) [53]. Two models for the above objective functions are trained
separately, and their results are concatenated as the final result.

node2vec [26]: it employs the following objective function:

max
f

∑
v∈V

[− log Zv + ∑
u∈N(v)

f (u) ⋅ f (v)], (A14)

Zv = ∑
u∈V

exp( f (v). f (u)),

where N(v) is a set of nodes as v’s neighborhood. The above objective function is optimized
by utilizing the negative sampling and the stochastic gradient ascent.

graphGAN [27]: the objective is to train the two models as G(u∣v; θG) (tries to approxi-
mate the underlying true connectivity distribution of v, pt(u∣v)) and D(u, v; θD) (tries to
discriminate the connectivity for the node-pair (u, v)) by the following two-play minimax
game with a value function V(G,D):
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min
θG

max
θD

V(G,D) = ∑
v∈V

(Eu∼pt(.∣v)[logD(u, v; θD)]+Eu∼G(.∣v;θG)[log(1−D(u, v; θD))]), (A15)

where θD and θG are the union of all vector representations of nodes u constructed by D and
G, respectively. It employs a negative sampling technique where nodes truly connected
to v are used as positive samples and some fabricated nodes are used as negative ones;
D is implemented by a softmax function, while G is implemented by a graph softmax
function [27].

NetMF [29]: it proposes the following low-rank connectivity matrix for DeepWalk:

M =
S

s⋅W
⋅ (

W

∑
r=1

Pr) ⋅D−1 (A16)

where S denotes the volume of G (i.e., summation of all entries in A as the adjacency matrix
of G), s is the number for negative samples, W is the window size, D is a diagonal matrix
containing values of d1, ..., d∣V∣ as its diagonal entries where di is the degree of node vi, and P
is defined as D−1⋅A; M is explicitly factorized by the singular value decomposition (SVD)
technique [43] (i.e., M ≃ UΣV) where row i in matrix U

√
Σ contains the representation

vector of node vi.

ATP [24]: it incorporates the graph reachability and hierarchy through the following
matrix M:

M = c1⋅A
′
+ log(c2⋅A

′
+A′⋅D−D⋅A′) (A17)

where c1 and c2 are constants, matrix A′ contains the information of graph reachability
(i.e., transitive closure of G′ [24]), and diagonal matrix D keeps the information of the
graph hierarchy in its diagonal entries (i.e., the value of [D]i,i is the rank of node i in G′).
Finally, a non-negative matrix factorization (NMF) technique [44] is applied to matrix M to
generate a low-rank approximation of M≈S⋅T (i.e., S∈R∣V∣×d and T∈Rd×∣V∣) where row i
and column i in matrices S and T contain the representation vectors of node vi when its
role in the graph is regarded as a source and a target, respectively.

BoostNE [30]: it performs multiple levels of NMF resulting in the following objective
function:

min
Ul ,Vl ≥ 0, l=1, ..., k

∥ M−
k

∑
l=1

Ul ⋅Vl ∥2
F, (A18)

where k denotes the number of levels, Ul ∈R∣V∣×d′ contains the vector representations of

nodes in level l, and Vl ∈Rd′×∣V∣ contains the vector representations of nodes when they
are treated as specific neighbors for other nodes in level l. For d (d= k⋅d′), the final matrix
U is obtained by assembling all partial representations U1, ..., Uk where row i in U is the
representation vector of node vi.

DWNS [22]: the objective function is as follows:

L(G ∣Θ)+ λ⋅Ladv(G ∣Θ+ nadv), (A19)

nadv = ε ⋅
g

∥ g ∥2
,

g =▽−⇀uL(G ∣Θ′),

where L and Ladv denote the loss function of DeepWalk and the adversarial training
regularizer, respectively. λ is a parameter to control the importance of the regularization
term, Θ denotes the model parameters, Θ′ denotes the current model parameters, nadv
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denotes the adversarial perturbation, ε denotes the adversarial noise level, and −⇀u is the
vector representation of node v.

NERD [28]: for two nodes u and v with roles r1 and r2, respectively, NERD tries to
find representations fr1(u) and fr2(v) by utilizing ASGD [53] to maximize the following
objective function:

O(u, v) = log σ( fr1(u)⋅ fr2(v))+ sEv′∼Pn
r2(v)( log σ(− fr1(u)⋅ fr2(v′)), (A20)

where σ denotes the sigmoid function, Pn
r2(v) does the indegree (if r2 is a target role)

or outdegree (if r2 is a source role) noise distribution, and s is the number of negative
examples.

Appendix A.3

As explained in Section 4.2.2, we did not represent the precision metric in Figures 4
and 5 since the range of its values is higher than MAP, recall, PRES, and F-score; it makes
the other four metrics plotted out very close together in the figures, thereby decreasing
the readability of figures. The values of this metric with BlogCatalog, Cora, DBLP, TREC,
and Wikipedia datasets for different values of d are represented in the following tables,
respectively.

Table A1. Precision values of all embedding methods with the BlogCatalog dataset and different
values of d.

ATP BoostNE DeepWalk DWNS graphGAN Line NERD NetMF node2vec

d=64 0.083 0.039 0.161 0.070 0.047 0.105 0.037 0.155 0.117
d=128 0.083 0.041 0.161 0.084 0.044 0.101 0.049 0.167 0.116
d=256 0.084 0.045 0.156 0.096 0.039 0.101 0.048 0.17 0.115
d=512 0.085 0.041 0.152 0.101 0.041 0.100 0.048 0.167 0.115

Table A2. Precision values of all embedding methods with the Cora dataset and different values of d.

ATP BoostNE DeepWalk DWNS Line NERD NetMF node2vec

d=64 0.259 0.081 0.401 0.355 0.391 0.085 0.070 0.231
d=128 0.302 0.105 0.401 0.367 0.391 0.283 0.075 0.231
d=256 0.313 0.121 0.399 0.376 0.391 0.28 0.075 0.228
d=512 0.325 0.129 0.398 0.376 0.391 0.28 0.075 0.224

Table A3. Precision values of all embedding methods with the DBLP dataset and different values
of d.

ATP BoostNE DeepWalk DWNS graphGAN Line NERD NetMF node2vec

d=64 0.046 0.024 0.107 0.074 0.036 0.050 0.013 0.019 0.036
d=128 0.053 0.033 0.114 0.064 0.031 0.053 0.078 0.022 0.040
d=256 0.057 0.028 0.107 0.081 0.029 0.052 0.072 0.021 0.039
d=512 0.058 0.041 0.097 0.064 0.030 0.052 0.079 0.023 0.035

Table A4. Precision values of all embedding methods with the TREC dataset and different values
of d.

ATP BoostNE DeepWalk DWNS Line NERD NetMF node2vec

d=64 0.018 0.004 0.033 0.026 0.021 0.001 0.032 0.015
d=128 0.017 0.008 0.033 0.015 0.021 0.005 0.033 0.021
d=256 0.017 0.005 0.031 0.019 0.022 0.005 0.032 0.018
d=512 0.018 0.001 0.032 0.025 0.022 0.005 0.034 0.012
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Table A5. Precision values of all embedding methods with the Wikipedia dataset and different values
of d.

ATP BoostNE DeepWalk DWNS graphGAN Line NERD NetMF node2vec

d=64 0.041 0.04 0.056 0.041 0.035 0.06 0.045 0.056 0.052
d=128 0.041 0.043 0.052 0.044 0.036 0.058 0.049 0.053 0.051
d=256 0.041 0.043 0.05 0.046 0.034 0.056 0.048 0.05 0.051
d=512 0.041 0.045 0.051 0.048 0.034 0.057 0.049 0.05 0.05

References
1. Hamedani, M.R.; Kim, S.W. JacSim: An Accurate and Efficient Link-Based Similarity Measure In Graphs. Inf. Sci. 2017,

414, 203–224. [CrossRef]
2. Ktena, S.I.; Parisot, S.; Ferrante, E.; Rajchl, M.; Lee, M.; Glocker, B.; Rueckert, D. Metric Learning with Spectral Graph Convolutions

on Brain Connectivity Networks. NeuroImage 2018, 169, 431–442. [CrossRef] [PubMed]
3. Li, Y.; Gu, C.; Dullien, T.; Vinyals, O.; Kohli, P. Graph Matching Networks for Learning the Similarity of Graph Structured Objects.

In Proceedings of the 36th International Conference on Machine Learning (ICML), Long Beach, CA, USA, 9–15 June 2019; pp.
3835–3845.

4. Wills, P.; Meyer, F.G. Metrics for Graph Comparison: A Practitioner’s Guide. PLoS ONE 2020, 15, 1–54. [CrossRef] [PubMed]
5. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural

Netw. Learn. Syst. (Early Access) 2020, 326. [CrossRef] [PubMed]
6. Yoshida, T.; Takeuchi, I.; Karasuyama, M. Distance Metric Learning for Graph Structured Data. arXiv 2020, arXiv:2002.00727.
7. Zhang, J. Graph Neural Distance Metric Learning with Graph-Bert. arXiv 2020, arXiv:2002.03427.
8. Wang, Y.; Wang, Z.; Zhao, Z.; Li, Z.; Jian, X.; Xin, H.; Chen, L.; Song, J.; Chen, Z.; Zhao, M. Effective Similarity Search on

Heterogeneous Networks: A Meta-path Free Approach. IEEE Trans. Knowl. Data Eng. (Early Access) 2020. [CrossRef]
9. Yu, W.; Lin, X.; Zhang, W.; Pei, J.; McCann, J.A. Simrank*: Effective and Scalable Pairwise Similarity Search Based on Graph

Topology. VLDB J. 2019, 28, 401–426. [CrossRef]
10. Yu, W.; Wang, F. Fast Exact CoSimRank Search on Evolving and Static Graphs. In Proceedings of the 27th World Wide Web

Conference (WWW), Lyon, France, 23–27 April 2018; pp. 599–608.
11. Jeh, G.; Widom, J. SimRank: A Measure of Structural-Context Similarity. In Proceedings of the 8th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD), Edmonton, AB, Canada, 23–26 July 2002; pp. 538–543.
12. Yu, W.; McCann, J.A. High Quality Graph-Based Similarity Search. In Proceedings of the 38th International ACM SIGIR

Conference on Research and Development in Information Retrieval (SIGIR), Santiago, Chile, 9–13 August 2015; pp. 83–92.
13. Kusumoto, M.; Maehara, T.; ichi Kawarabayashi, K. Scalable Similarity Search for SimRank. In Proceedings of the 2014

International Conference on Management of Data (ACM SIGMOD), Snowbird, UT, USA, 22–27 June 2014; pp. 325–336.
14. Zhang, C.; Hong, X.; Peng, Z. GSimRank: A General Similarity Measure on Heterogeneous Information Network. In Lecture

Notes in Computer Science, Proceedings of Asia-Pacific Web and Web-Age Information Management Joint International Conference on Web
and Big Data, APWeb-WAIM, Tianjin, China, 18–20 September 2020; Springer: Cham, Switzerland, 2020; pp. 588–602.

15. Antonellis, I.; Molina, H.G.; Chang, C.C. Simrank++: Query Rewriting Through Link Analysis of the Click Graph. In Proceedings
of the 17th International Conference on World Wide Web, Beijing, China, 21–25 April 2008; pp. 408–421.

16. Fogaras, D.; Racz, B. Scaling Link-based Similarity Search. In Proceedings of the 14th International Conference on World Wide
Web (WWW), Chiba, Japan, 10–14 May 2005; pp. 641–650.

17. Hamedani, M.R.; Kim, S.W. Pairwise Normalization in Simrank Variants: Problem, Solution, and Evaluation. In Proceedings of
the 34th ACM/SIGAPP Symposium on Applied Computing (ACM SAC), Limassol, Cyprus, 8–12 April 2019; pp. 534–541.

18. Jin, R.; Lee, V.E.; Hong, H. Axiomatic Ranking of Network Role Similarity. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), San Diego, CA, USA, 22–27 August 2011; pp. 922–930.

19. Lin, Z.; Lyu, M.R.; King, I. Matchsim: A Novel Similarity Measure Based on Maximum Neighborhood Matching. Knowl. Inf. Syst.
2012, 32, 141–166. [CrossRef]

20. Yoon, S.; Sang, S.W.K.; Sun-Ju, P. C-Rank: A Link-based Similarity Measure for Scientific Literature Databases. Inf. Sci. 2016,
326, 25–40. [CrossRef]

21. Zhao, P.; Han, J.; Yizhou, S. P-Rank: A Comprehensive Structural Similarity Measure over Information Networks. In Proceedings
of the 18th ACM Conference on Information and Knowledge Management (ACM CIKM), Hong Kong, China, 2–6 November
2009; pp. 553–562.

22. Dai, Q.; Shen, X.; Zhang, L.; Li, Q.; Wang, D. Adversarial Training Methods for Network Embedding. In Proceedings of the 28th
International Conference on World Wide Web (WWW), San Francisco, CA, USA, 13–17 May 2019; pp. 329–339.

23. Perozzi, B.; Al-Rfou, R.; Skiena, S. DeepWalk: Online Learning of Social Representations. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), New York, NY, USA, 24–27 August 2014;
pp. 701–710.

http://dx.doi.org/10.1016/j.ins.2017.06.005
http://dx.doi.org/10.1016/j.neuroimage.2017.12.052
http://www.ncbi.nlm.nih.gov/pubmed/29278772
http://dx.doi.org/10.1371/journal.pone.0228728
http://www.ncbi.nlm.nih.gov/pubmed/32050004
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://dx.doi.org/10.1109/TKDE.2020.3019488
http://dx.doi.org/10.1007/s00778-018-0536-3
http://dx.doi.org/10.1007/s10115-011-0427-z
http://dx.doi.org/10.1016/j.ins.2015.07.036


Appl. Sci. 2021, 11, 162 28 of 29

24. Sun, J.; Bandyopadhyay, B.; Bashizade, A.; Liang, J.; Sadayappan, P.; Parthasarathy, S. ATP: Directed Graph Embedding with
Asymmetric Transitivity Preservation. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI), Honolulu,
HI, USA, 27 January–1 February 2019; pp. 265–272.

25. Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. LINE: Large-scale Information Network Embedding. In Proceedings of the
24th International Conference on World Wide Web (WWW), Florence, Italy, 18–22 May 2015; pp. 1067–1077.

26. Grover, A.; Leskovec, J. node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 13–17 August 2016;
pp. 855–864.

27. Wang, H.; Wang, J.; Wang, J.; Zhao, M.; Zhang, W.; Zhang, F.; Xie, X.; Guo1, M. GraphGAN: Graph Representation Learning with
Generative Adversarial Nets. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI), New York, NY,
USA, 7–12 February 2018; pp. 2508–2515.

28. Khosla, M.; Leonhardt, J.; Nejdl, W.; Anand, A. Node Representation Learning for Directed Graphs. In Lecture Notes in Computer
Science, Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD), Würzburg, Germany, 16–20 September 2019; Springer: Cham, Switzerland, 2019; pp. 395–411.

29. Qiu, J.; Dong, Y.; Ma, H.; Li, J.; Wang, K.; Tang, J. Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE,
and node2vec. In Proceedings of the 11st ACM International Conference on Web Search and Data Mining (WSDM), Marina Del
Rey, CA, USA, 5–9 February 2018; pp. 459–467.

30. Li, J.; Wu, L.; Guo, R.; Liu, C.; Liu, H. Multi-Level Network Embedding with Boosted Low-Rank Matrix Approximation. In Pro-
ceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM),
Vancouver, BC, Canada, 25–29 August 2019; pp. 49–56.

31. Hu, B.; Fang, Y.; Shi, C. Adversarial Learning on Heterogeneous Information Networks. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Anchorage, AK, USA, 25–29 August 2019;
pp. 120–129.

32. Gao, X.; Chen, J.; Zhan, Z.; Yang, S. Learning Heterogeneous Information Network Embeddings via Relational Triplet Network.
Neurocomputing 2020, 412, 31–41. [CrossRef]

33. Wang, X.; Ji, H.; Shi, C.; Wang, B.; Ye, Y.; Cui, P.; Yu, P.S. Heterogeneous Graph Attention Network. In Proceedings of the World
Wide Web Conference (WWW), San Francisco, CA, USA, 13–17 May 2019; pp. 2022–2032.

34. Kim, J.; Park, H.; Lee, J.E.; Kang, U. SIDE: Representation Learning in Signed Directed Networks. In Proceedings of the World
Wide Web Conference (WWW), Lyon, France, 23–27 April 2018; pp. 509–518.

35. Mara, A.; Mashayekhi, Y.; Lijffijt, J. CSNE: Conditional Signed Network Embedding. In Proceedings of the 29th ACM International
Conference on Information and Knowledge Management (CIKM), New York, NY, USA, 19–23 October 2020; pp. 1105–1114.

36. Song, W.; Wang, S.; Yang, B.; Lu, Y.; Zhao, X.; Liu, X. Learning Node and Edge Embeddings for Signed Networks. Neurocomputing
2018, 319, 42–54. [CrossRef]

37. Manning, C.; Raghavan, P.; Schutze, H. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2008.
38. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013,

arXiv:cs.CL/1301.3781.
39. Ou, M.; Cui, P.; Pei, J.; Zhang, Z.; Zhu, W. Asymmetric Transitivity Preserving Graph Embedding. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 22–27
August 2016; pp. 1105–1114.

40. Šubelj, L.; Bajec, M. Model of Complex Networks Based on Citation Dynamics. In Proceedings of the 22nd International
Conference on World Wide Web (WWW), Rio de Janeiro, Brazil, 13–17 May 2013; pp. 527–530.

41. Hamedani, M.R.; Kim, S.W.; Kim, D.J. SimCC: A Novel Method to Consider both Content and Citations for Computing Similarity
of Scientific Papers. Inf. Sci. 2016, 334–335, 273–292. [CrossRef]

42. Zachary, W.W. An Information Flow Model for Conflict and Fission in Small Groups. J. Anthropol. Res. 1977, 33, 452–473.
[CrossRef]

43. Golub, G.H.; Loan, C.F.V. Matrix Computations, 4th ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2013.
44. Cheng, P.; Wang, S.; Ma, J.; Sun, J.; Xiong, H. Learning to Recommend Accurate and Diverse Items. In Proceedings of the 26th

International Conference on World Wide Web (WWW), Perth, Australia, 3–7 April 2017; pp. 183–192.
45. Suh, S.; Choo, J.; Lee, J.; Reddy, C.K. L-EnsNMF: Boosted Local Topic Discovery via Ensemble of Nonnegative Matrix Factoriza-

tion. In Proceedings of the 16th IEEE International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016;
pp. 479–488.

46. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing Properties of Neural Networks.
arXiv 2014, arXiv:1312.6199.

47. Bottou, L. Stochastic Gradient Learning in Neural Networks. In Proceedings of the Neuro-Nimes 91, Nimes, France, 4–8
November 1991.

48. Magdy, W.; Jones, G.J. PRES: A Score Metric for Evaluating Recall-oriented Information Retrieval Applications. In Proceedings of
the 33rd International Conference on Research and Development in Information Retrieval (ACM SIGIR), Geneva, Switzerland,
19–23 July 2010; pp. 611–618.

http://dx.doi.org/10.1016/j.neucom.2020.06.043
http://dx.doi.org/10.1016/j.neucom.2018.08.072
http://dx.doi.org/10.1016/j.ins.2015.12.001
http://dx.doi.org/10.1086/jar.33.4.3629752


Appl. Sci. 2021, 11, 162 29 of 29

49. Lizorkin, D.; Velikhov, P.; Grinev, M.; Turdakov, D. Accuracy Estimate and Optimization Techniques for SimRank Computation.
In Proceedings of the VLDB Endowment, Auckland, New Zealand, 23–28 August 2008; pp. 422–433.

50. Yu, W.; Zhang, W.; Lin, X.; Zhang, Q.; Le, J. Accelerating Pairwise SimRank Estimation Over Static and Dynamicgraphs. VLDB J.
2019, 28, 99–122.

51. He, G.; Feng, H.; Li, C.; Chen, H. Parallel SimRank Computation on Large Graphs with Iterative Aggregation. In Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Washington, DC, USA,
24–28 July 2010; pp. 543–552.

52. Yu, W.; Zhang, W.; Lin, X.; Zhang, Q.; Le, J. A Space and Time Efficient Algorithm for SimRank Computation. World Wide We
2012, 15, 327–353. [CrossRef]

53. Niu, F.; Recht, B.; Re, C.; Wright, S.J. HOGWILD!: A Lock-free Approach to Parallelizing Stochastic Gradient Descent. In Proceed-
ings of the 24th International Conference on Neural Information Processing Systems (NIPS), Red Hook, NY, USA, 6–9 December
2010; pp. 693–701.

http://dx.doi.org/10.1007/s11280-010-0100-6

	Introduction
	Link-Based Similarity Measures
	Graph Embedding Methods
	Experimental Evaluation
	Experimental Setup
	Results and Analyses
	Link-Based Similarity Measures: Best Iterations
	Graph Embedding Methods: Best Values of d
	Effectiveness Evaluation
	Impact of d on Accuracy of Embedding Methods
	Efficiency Evaluation
	Discussion


	Conclusions
	
	
	
	

	References

