
polymers

Article

Mechanistic Studies for Palladium Catalyzed
Copolymerization of Ethylene with Vinyl Ethers

Andleeb Mehmood 1,† , Xiaowei Xu 1,† , Waseem Raza 1, Ki-Hyun Kim 2,* and Yi Luo 1,*
1 State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology,

Dalian 116024, China; andleeb.mehmood@gmail.com (A.M.);
xuxiaowei001@mail.dlut.edu.cn (X.X.); razawaseem2@yahoo.com (W.R.)

2 Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro,
Seoul 04763, Korea

* Correspondence: kkim61@hanyang.ac.kr (K.-H.K.); luoyi@dlut.edu.cn (Y.L.)
† Two authors contributed equally.

Received: 9 October 2020; Accepted: 16 October 2020; Published: 19 October 2020
����������
�������

Abstract: The mechanism of ethylene with vinyl ether (VE, CH2=CHOEt) copolymerization catalyzed
by phosphine-sulfonate palladium complex (A) was investigated by density functional theory (DFT)
calculation. On achieving an agreement between theory and experiment, it is found that the favorable
1,2-selective insertion of VE into the complex A originates from stronger hydrogen interaction
between the oxygen atom of VE and the ancillary ligand of catalyst A. Additionally, VE insertion
is easier into the ethylene pre-inserted intermediate than that into the catalyst to form the resultant
copolymers with the major units of OEt in chain and minor units of OEt at the chain end. The effect
of β-OEt and β-H elimination was explored to elucidate chain termination and the molecular weight
of copolymers. Furthermore, a family of cationic catalysts has been demonstrated to copolymerize
ethylene with VE along with our modified cationic complex B with higher incorporation of VE and
reactivity in comparison with complex A, which was modelled computationally by increasing the
strong interactions between the catalyst and monomer moiety. Other than VE, the activity of cationic
complex B for copolymerization of vinyl chloride and methacrylate is also computed successfully.

Keywords: DFT; vinyl ethers; palladium phosphine sulfonate

1. Introduction

Incorporation of polar functional groups is an effective option to improve polyolefins’ properties [1].
It is known that transition metal catalyzed copolymerization has become a powerful tool for synthesizing
various copolymers with polar functionalized co-monomers [2–7]. However, copolymerization reactions
of olefin and polar monomers is a challenge due to the low incorporation rates of polar monomers and
the Lewis base poisoning effect towards positively-charged (Lewis acids) metal centers. Among polar
vinyl monomers, the production of linear copolymers from vinyl ethers have been extensively
investigated. These polar vinyl monomers are highly attractive among various synthetic copolymers
(poly (vinyl ethers)) due to their tunable OR (O = oxygen and R = ethyl, butyl, tertiary butyl,
and phenyl) groups [8,9]. In comparison to other alkenes, vinyl ethers have electron-rich π-bonds
with enhanced reactivity. In 2006, it was reported that the branched (co)polymers poly(hexane
co-CH2–CHOSiPh3) could be yielded by (α-diimine)PdMe+ catalyzed copolymerization of silyl
vinyl ethers (CH2=CHOSiPh3) with 1-hexene [10]. Subsequently, these authors investigated the
possible copolymerization mechanism for vinyl ethers (CH2=CHOR) with a different substituting
OR group in (α-diimine)PdMe + catalytic system. In the cationic polymerization, fast insertion of
a less electron-rich monomer CH2=CHOSiPh3 and relatively low β-OR elimination was observed.

Polymers 2020, 12, 2401; doi:10.3390/polym12102401 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-0488-2050
https://orcid.org/0000-0002-0642-7158
https://orcid.org/0000-0003-0487-4242
https://orcid.org/0000-0001-6390-8639
http://www.mdpi.com/2073-4360/12/10/2401?type=check_update&version=1
http://dx.doi.org/10.3390/polym12102401
http://www.mdpi.com/journal/polymers


Polymers 2020, 12, 2401 2 of 15

In contrast, for more electron-rich vinyl ethers, β-OR elimination was faster than insertion, suggesting
that co-monomer of 1-hexene and more electron-rich vinyl ethers are not suitable in the cationic
polymerization [11]. Furthermore, copolymerization of ethylene vinylalkoxysilanes (CH2=CHOSiPh3)
was reported by using a traditional Pd(II) catalyst to explain their chain transfer mechanism and the
β-silyl elimination [12]. In contrast to cationic α-diimine palladium complexes (α-diimine)PdMe+),
a (phosphine-sulfonate) PdMe catalyst was proposed to copolymerize ethylene and alkyl vinyl ethers.
This process generates linear alkyl copolymer units (vinyl ether in-chain and chain-end) with lower
reactivity. It was found that incorporation of polar vinyl monomers increased significantly (12.5 mol%)
during the copolymerization of ethylene and divinyl formal than that of vinyl ether (6.9 mol%)
by the same catalyst [13–15]. In another study, a modified palladium catalyst bearing imidazole
[1,5-a]quinolin-9-olate-1-ylidene (IzQO) was successfully used to suppress the β-hydride elimination
during the copolymerization of the functionalized monomers [16]. Meanwhile, a polyethylene glycol
unit was substituted on some phosphine sulfonate palladium and nickel catalysts. This strategy
proved to be useful to acquire better catalytic activity, stability, and molecular weight of ethylene
polymerization [17]. Moreover, cationic palladium complexes ligated by bisphosphine monoxide
(BPMO) demonstrate higher reactivity of these catalysts as compared to the Brookhart-type complexes.
In addition, bisphosphine monoxide (BPMO) also produces highly linear copolymer microstructures
with a random distribution of polar functional groups throughout the polymer chain [18]. Further,
investigations to improve the reactivity and incorporation by modifying the ligand platform, backbone,
or substituting group has provided new routes for the catalyst tuning [19–22]. To date, the low
incorporation of polar monomers and copolymers with low molecular weight is still a challenge.
On this note, by following up catalyst A and the associated limitations of cationic palladium catalysts
has stimulated us to explore more about cationic palladium systems for copolymerization of ethylene
polar vinyl monomers [16,18,21,23]. Thus, we modified (PO)PdMe catalyst (A) computationally into
catalyst B bearing a cationic bis-phosphine monoxide (BPMO) ligand, by replacing the sulfonate moiety
with phosphine monoxide, which greatly influenced catalytic activity and the insertion mechanism of
the VE monomer. To make this study more systematic we considered the experimentally introduced
catalysts relative to the class of B.

In this manuscript, the chain initiation, propagation, and termination of ethylene and vinyl
ether copolymerization in catalyst A have been investigated in detail. Further, we have theoretically
explained the reason of low incorporation of vinyl ether, the activity of catalyst, and the low molecular
weight of copolymer as reported previously [15]. The modified catalyst (B) is proposed as an effective
route to improve the catalytic activity in copolymerization relative to catalyst A. We obtained the
copolymer units as shown in Scheme 1 with better incorporation of vinyl ether (up to 69.9%) by using
our modified catalyst B, which was quite low in the system (A) (up to 3.3%), which may help to improve
intrinsic properties (flexibility and adhesion) of polymers. Including the effect of different substituents
on the phosphorous, we also focused on the difference of activity shown by some fundamental polar
monomers (methacrylate and vinyl chloride) by using A and B.
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2. Computational Methods Used to Elucidate the Copolymerization

Density functional theory (DFT) calculations were used to investigate the mechanism of
copolymerization of ethylene and VE. All the calculations were carried out using the Gaussian
16 program [24]. The B3PW91 functional [25] was selected for geometric optimization and frequency
analysis of all structures. The effective core potentials (ECPs) of Hay and Wadt with a double-ζ
valence basis set (LanL2DZ) was used for Pd atom [26–28], while the 6-31G* basis set was used
for the rest of atoms; such basis sets are denoted as BSI. To obtain more reliable relative energies,
single-point calculations of optimized structures were performed further at a higher level using
the dispersion-corrected [29] density functional method B3PW91-D3 together with BSII. In BSII,
the Stuttgart/Dresden ECP and associated basis sets were applied to the Pd atom, while 6-311G(d,p)
was used for the rest of the atoms [30–33]. Toluene was used as a solvent to match the experimental
data. Thus, the solvation effect of toluene was considered through the SMD model in these single-point
calculations [34]. The energy profiles of the insertion mechanism were described by the relative free
energy in solution phase (∆G, kcal/mol) [35]. Optimized geometrical structures of transition states
were illustrated using CYLview [36]. Non-covalent interaction analysis (NCI) was performed for some
transition states (TSs) using Multiwfn and VMD software to observe the weak interactions between
catalysts and monomers [37,38]. Cavallo’s SambVca 2.0 program was also used to visualize the steric
hindrance of ligands around a central metal [39].

3. Results and Discussion

3.1. Chain Initiation

The dissociation of neutral ligand (Py) easily occurs from complex A and yielding complex A′ could
be a true initial active species. For the electronically asymmetric features of phosphine sulfonate-type
catalysts, the monomer could coordinate with metal centers from two sites, viz., cis and trans (for the cis
site, the monomer coordination is on the opposite side of the P atom of the phosphine group, while for
the trans site, monomer coordination is on the opposite side of the O atom of the sulfonate group)
(see Figure S1). It is acknowledged that the process firstly goes through the trans complex and is
isomerized to the less stable cis complex, and then adopts the preferable cis-insertion kinetically in the
system of polymerization reaction by phosphine-sulfonate catalysis [40–44]. Based on this, the mechanism
of VE insertions have been explored in detail with different modes (viz., 1,2 and 2,1-modes).

Note that the coordination complex (1A_12VE) of the double bond of VE with A′ is more stable
than that of oxygen atoms of VE (1A_12VEO) (see Figure S2). As Figure 1 shows, 1,2-insertion of VE
started form the π-coordination complex (1A_12VE) with trans fashion firstly releasing much energy
(15.1 kcal/mol). After that, it needs to transform into the complex (2A_12VE) with cis fashion. In order to
proceed through the favorable pathway, cis-insertion takes place via a transition state (TS), 3TSA_12VE,

and it yields the most stable product (4A_12VE) with O-chelated interaction, whereas the cis and trans
complexes of the VE 2,1-coordination mode are slightly more stable than those of 1,2-coordination
mode, respectively. In addition, the 3TSA_21VE with 2,1-insertion mode is less stable than 3TSA_12VE

with 1,2-insertion mode, and the free energy barrier of 2,1-insertion is much higher than that of
1,2-insertion (27.5 vs. 25.6 kcal/mol). Therefore, 1,2-insertion of VE is more favorable in comparison
with 2,1-insertion in the aspects of kinetics and thermodynamics, which is in line with experimental
results [15]. To explore the reason why 1,2-insertion is favorable, a comparative distortion/interaction
analysis [45–48] was performed for TSs, 3TSA_12VE, and 3TSA_21VE. They are divided into two
fragments: monomer moiety (fragment B) and the remained catalyst moiety (fragment A). In TS,
geometrical energies of fragments A and B were evaluated by single point calculations. The interaction
energies (∆Eint) of fragments A and B were calculated by estimating single point energies along with the
energy of TS. To calculate ∆ETS, total deformation energy (∆Edist) was calculated first by combining the
deformation energies of each fragment, i.e., ∆Edist(A) and ∆Edist(B). Finally, ∆ETS was estimated using
the relation ∆ETS = ∆Eint + ∆Edist(A) + ∆Edist(B) as shown in Figure 2. Although the total distortion
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energy of fragment A and B in the 3TSA_12VE is almost same as 3TSA_21VE (39.9 + 21.7 = 61.6 vs.
39.8 + 21.7 = 61.5 kcal/mol), the interaction between the two fragment in 3TSA_12VE is much more
negative than that in 3TSA_21VE (−60.3 vs. −58.7 kcal/mol). Therefore, the ∆ETS (61.5 − 60.3 = 1.2)
obtained for 3TSA_12VE is lower than that for 3TSA_21VE (61.6 − 58.7 = 2.9). Therefore, the higher
stability of 3TSA_12VE is mainly due to the stronger interaction between the catalyst and monomer
moiety. This is indicated by the short distance of Pd•••C2 and extra hydrogen interaction between
O4•••H1 in 3TSA_21VE in comparison with 3TSA_21VE Figure 2. Additionally, steric maps are also
showing more hindrance for 3TSA_21VE (81.4 vs. 80.4%V_Bur in 3TSA_12VE) (see Figure S4).
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omitted for clarity.

The computed energy profile of ethylene insertion into Pd-C of active species (A) is presented in
Figure 1. The formation of π-coordination complex (1A_E) in trans fashion and complex (2A_E) with cis
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is less stable than those of VE, respectively. This can be attributed to the lack of hydrogen interaction in
1A_E as seen in Figure S3. After 1A_E the ethylene will overcome the free energy barrier of the 20.0
(8.9 + 11.2) kcal/mol. In this process the product (4A_E) with γ-agostic interaction could be yielded to be
isomerized readily to more stable product (4′A_E) with β-agostic interaction after releasing the energy
of 2.5 (18.6 − 16.1) kcal/mol. It is obvious that the free energy barrier of ethylene insertion is 20 kcal/mol,
which is much lower than that of VE (25.6 kcal/mol, Figure 1). To have a better understanding on
the activity difference in insertion between ethylene and VE, a similar distortion/interaction analysis
has been performed for the 3TSA_E (Figure 2c). The total distortion energy (∆Edist 56.1 (16.3 + 39.8)
kcal/mol) can be balanced by its interaction energy (∆Eint −57.8 kcal/mol), which is leading ∆ETS by
−1.7 kcal/mol. Note that the interaction between two fragments in the 3TSA_E is less negative than
that of 3TSA_12VE (−57.8 vs. −60.3 kcal/mol). Thus, the smaller distortion of ethylene is a main factor
of higher stability for 3TSA_E than that of VE. In Figure S5. geometric analysis has also shown that the
total difference in bond angles for ∠C1-C2-H2 of 1,2-insertion of VE is larger (∆(∠C1-C2-H2) = 3.7◦)
than the ethylene (∆(∠C1-C2-H2) = 3.0◦). On the other hand, VE contains an OR group with a very
large difference of angle (∆(∠C1-C2-O4)= 7.0◦) than the hydrogen of ethylene (∆(∠C1-C2-H4) = 3.8◦)
due to the presence of a large OR group in VE. It is already known that large size atoms undergo
more distortion due to more polarizability. Hence, the presence of an oxygen atom in VE causes more
distortion than the small size of hydrogen of ethylene.

It is obvious that the coordination complex of VE should be much more stable than that of
ethylene, as observed by the less negative coordination energy of the former (−28.2 kcal/mol) than that
of ethylene (−24.0 kcal/mol). In contrast, the insertion of ethylene is favorable than that of VE, as the
activation barrier of the former is lower than the latter by 2.5 kcal/mol. By taking account of the kinetic
and thermodynamic aspects, we estimated the probability ratio of VE insertion into the initial active
species (A′) at the chain initiation stage. The population ratio between the complex coordinated with
VE and the ethylene, nE/n12VE, can be calculated in accordance with Boltzmann statistics [49,50]:

nE

n12VE
= exp

(
−

∆GC,E

RT

)
/exp

(
−

∆GC,12VE

RT

)
(1)

Here ∆GC,E and ∆GC,12VE denote the coordination free energies for the insertion of ethylene and
1,2-VE insertion, respectively. Note that nE and n12VE represent the population of ethylene-coordinated
complex (1A_E) and VE 1,2-coordinated complex (1A_12VE), respectively (R = 8.3145 J·mol−1

·K−1 and
T = 298.15 K). At the stage of chain initiation, the values for the population of ethylene-coordinated
complexes were computed as: ∆GC,E =−11.2 kcal/mol; ∆GC,12VE =−14.8 kcal/mol; and nE/n12VE = 0.0023.
Moreover, on the basis of this population ratio and the insertion free energy barrier, the probability
ratio of the ethylene-insertion and 1,2-insertion into the active species, PE/P12VE, can also be estimated
according to the equation:

PE

P12VE
=

nE

n12VE
exp

−∆G‡E
RT

/exp

−∆G‡12VE
RT

 (2)

∆GE
‡ and ∆G12VE

‡ denote the insertion free energy barriers for ethylene-insertion and VE
1,2-insertion. At the stage of chain initiation, the probability ratio of the ethylene vinyl ether 1,2-insertion
into the initial active species (A′)2 was computed as: ∆GE

‡ = 20.0 kcal/mol; ∆G12VE
‡ = 25.6 kcal/mol;

PE/P12VE = 29.23. It is suggested that the 1,2-insertion of VE shows approx. 3.3% probability while that
of ethylene shows approx. 96.7% probability. Therefore, ethylene gained an overwhelming advantage
over VE for the insertion during the chain initiation stage.

3.2. Chain Propagation

Subsequently, the mechanism of ethylene and VE insertion into the ethylene pre-inserted
intermediate (4′A_E) and VE pre-inserted intermediate (4A_12VE) were explored during the stage
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of chain propagation. The computed energy profiles of ethylene and VE insertion with optimal fashion
into 4′A_E were presented in Figure 3. Similar to the case of chain initiation in Figure 1, the formation
of coordinative complex 5A_E of ethylene with 4′A_E is less stable than that of 5A_12VE in trans fashion.
Successive ethylene insertion proceeds through 4′A_E → 5A_E→ 6A_E→ 7TSA_E → 8A_E, the free
energy barrier of this process is 20.6 (24 − 3.4) kcal/mol and is exergonic by 11.5 (30.1 − 18.6) kcal/mol.
Yet, VE insertion into 4′A_E proceeds through 4′A_E→5A_12VE→6A_12VE→7TSA_12VE→8A_12VE, and the
free energy barrier of this process is 23.1 (28.2 − 5.1) kcal/mol, which is lower than the insertion into
A at the chain initiation stage (25.6 kcal/mol, Figure 1). This is due to the extra hydrogen interaction
between the longer growing chain and incoming VE monomer Figure S6.
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(4′A_E) and the third monomer insertion into VE and ethylene pre-inserted intermediate (8A_12VE).

Next, the third monomer insertion were calculated into ethylene and the VE pre-inserted
intermediate (8A_12VE). The activation barrier of 28.7 kcal/mol for VE insertion is much higher
5.9 (28.7 − 22.8) kcal/mol than that of ethylene insertion, which is attributed to the rather stable
π-coordination complex (9A_12VE) and less stable TS (11TSA_12VE) in comparison with the corresponding
stationary points, respectively. Further calculations may be performed to clarify the discrepancy in the
two monomer insertion. The bonding energy ∆E (bonding) of 9A_12VE is −29.5 kcal/mol, which is more
negative than that of 9A_E (−25.3 kcal/mol), suggesting the stronger interaction in the former. This is
indicated by the hydrogen interaction between the growing chain and VE (see Figure S7). Meanwhile,
the less steric hindrance could lead to a lower activation barrier, which is indicated by a comparison
between the steric maps of 11TSA_12VE and 11TSA_E, in which the latter has much less hindrance in
the SW quadrant Figure 4a,b.

It has been found that once VE insertion occurs, the next insertion of ethylene will become
harder and lead to lower reactivity and decreasing molecular weight. This is suggested by the harder
coordination and insertion in comparison with ethylene insertion into 4A_E (0.8 vs. −5.4 for ethylene
coordination, 23.2 vs. 20.6 kcal/mol for ethylene insertion). Meanwhile, ethylene insertion still holds
on to a favorable position in comparison with VE insertion after last VE insertion, which is consistent
with the experimental result that the copolymer units with OEt in chain could be obtained and there
are few VE continuous insertion units [15].
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At the initiation stage, the insertion of VE adopts the 1,2-fashion predominately according to the
energetic factors. The insertion of ethylene and VE into the VE pre-inserted intermediate (4A_12VE) was
investigated during the chain propagation. As shown in Figure 5, weak interaction of the monomer
and catalyst is responsible for the slightly endergonic coordination processes of ethylene in 13A_E,
as compared to the exergonic VE in 13A_12VE (see Figure S8). During the insertion process of ethylene,
the relative free energy of 15TSA_E (21.2 kcal/mol) is slightly higher than that of 3TSA_E (20.6 kcal/mol)
by 0.6 kcal/mol. It is indicated that the insertion of ethylene into VE pre-inserted active species is
kinetically less favorable than the continuous insertion of ethylene. A successive insertion of VE is
difficult due to the high energy barrier of 29.1 kcal/mol. These calculated results are in line with the
observed yield of minor copolymer units with OEt at the chain end and without VE continued units.
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To sum up, the VE could be inserted into the ethylene pre-inserted intermediate with an overall
free energy barrier of 23.1 kcal/mol through the pathway A of 1A_E→3TSA_E→4′A_E→5A_12VE→
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7TSA_12VE→8A_12VE to form the growing units with OEt in the chain. In contrast, ethylene could be
inserted into the VE pre-inserted intermediate with the overall free energy barrier of 25.6 kcal/mol
through the pathway B of 1A_12VE→3TSA_12VE→4A_12E→5A_E→7TSA_E→8A_E to form the growing
units with OEt at the chain end. Thus, for the growing unit, the presence of a lower free energy barrier
for pathway A ultimately suggests that the OEt content within the chain is more than that at the
chain end. Additionally, the free energy barrier of the continuous insertion of ethylene is much lower
(20.6 kcal/mol) than that of VE insertion (pathway A 25.6 vs. pathway B 23.1 kcal/mol). Therefore,
the copolymers feature mainly alkyl chains and few of VE units in the chain or chain end. This is in
agreement with experimental observation that the NMR detected with low incorporation ratios of VE.

3.3. β-H and β-OEt Elimination

As for the observed decreasing reactivity and low molecular weights of copolymerization in
the experiment [15], the chain termination needs to be discussed and its mechanism seeks to be
clarified. Therefore, the computed energy profiles of β-OEt and β-H elimination are followed by chain
re-growth, as presented in Figure 6. The β-OEt elimination process started from the intermediate
(4A_12VE) formed by 1,2-VE insertion of VE and goes through the pathway 4A_12VE→5β_OEt→6TSβ_OEt

→7β_OEt (green line in Figure 6). This process needs to overcome the free energy barrier of
28.3 (6.9 + 21.4) kcal/mol with the endergonic species 7β_OEt by 9.4 (21.4− 12) kcal/mol, thus suggesting
the β-OEt elimination process is kinetically and thermodynamically unfavorable. The Pd-OEt active
species hardly exists in this system, which is a different form of the α-diamine palladium system [51].
Further, ethylene insertions into the Pd−OEt bond of 7β_OEt suffer from a very high energy barrier
(27.5 kcal/mol), which is higher by 6.3 kcal/mol (=27.5 − 21.2 kcal/mol) for chain propagation, as shown
in Figure 6. Additionally, the β-H elimination pathway was explored based on the intermediate (4′A_E),
which was formed by ethylene insertion and isomerization of species 4A_E (black line in Figure 6).
As seen in Figure 6, 4′A_E needs to overcome a lower free energy barrier of 9.4 (18.6 − 9.2) kcal/mol
(Intrinsic reaction coordinate (IRC), Figure S9) which is slightly endogenic by 1.8 (18.6 − 16.8) kcal/mol.
It is thus suggested that the β-H elimination may result in a quick-reversible process during the
high-pressure insertion reaction of ethylene in terms of kinetics and thermodynamics. Herein, a facile
release of propene occurs, and Pd-H species coordinate with ethylene as 12E. Further, direct insertion
of an incoming ethylene molecule (14TSE) allows the β-agostic complex 15E to achieve its chain transfer.
The overall free energy barrier of chain transfer is 24.3 (5.7 + 18.6) kcal/mol, which is higher than that
of chain propagation (20.6 kcal/mol, Figure 3). This phenomena indicates that the chain transfer could
occur to a certain extent to decrease the molecular weight and reactivity, which is consistent with the
experimental observation [15].
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3.4. Catalyst Tuning

As for system A, there are a number of limitations of low incorporation ratios, catalytic activity,
and molecular weight in the copolymerization of ethylene and vinyl ether. With these insights,
we attempted to estimate the polymerization behavior of ethylene-VE catalyzed by cationic catalysts
(BPMO) demonstrated in previous studies, which has shown some unique features in the polymerization
of ethylene and polar monomers in comparison with the neutral catalyst A [18,21,23]. Firstly, cationic
palladium complexes ligated by a bisphosphine monoxide (BPMO) were observed to be suitable
for ethylene polymerization. We also compared the experimental results with our computational
data. Accordingly, high energy barriers of catalyst b and c (20.4 and 19.0 kcal/mol) were observed
as compared to a (18.0 kcal/mol) for ethylene polymerization. This observation thus suggests that
polymerization should become easier when the substituent of phosphine is isopropyl rather than
phenyl or o-methoxy phenyl group. Higher activity of a is attributed to the smaller distortion of catalyst
and monomer as compared to the b (11.7 + 36.4 = 48.1 vs. 13.0 + 38.4 = 51.4 kcal/mol) (Figure S10)
Table 1. From d to e, substituents on phosphine are kept the same while changes are performed at the
phosphine oxide group by the replacement of tertiary butyl to isopropyl groups. Herein, an increase in
the energy barrier is seen as 18.4, 18.7, and 19.0 kcal/mol for d, e, and c, respectively. These findings are
consistent with the experimental results in that the activity of ethylene polymerization is higher for a
catalyst with the lowest energy barrier of 18.0 kcal/mol than that of b (20.4 kcal/mol) [12].

Table 1. Computed energies for ethylene polymerization and ethylene (E) vinyl ether (VE)
copolymerization catalyzed by alkyl-BPMO-palladium (a, b, c, d and e) catalysts. EC1, EC2, ETS1,
and ETS2 are first and second ethylene coordination complexes and transition states, respectively.
E-VEC1 and E-VETS1 are coordination complexes and transition states of ethylene and vinyl ether
copolymers, respectively.

Catalysts EC1 ETS1 EC2 ETS2 ∆G‡E2 E-VEC3 E-VETS3 ∆G‡E-VE

a −9.9 7.6 −23.0 −5.0 18.0 −22.5 −7.5 15.0
b −10.3 7.6 −26.1 −5.7 20.4 −23.5 −7.9 15.6
c −10.2 7.2 −24.9 −8.1 19.0 −23.4 −8.1 15.3
d −12.1 6.0 −25.8 −7.3 18.4 −26.2 −10.0 16.2
e −12.4 5.5 −26.1 −7.4 18.7 26.7 −6.7 20.0

For catalysts a, b, c, and d, almost similar energy barriers (15.0, 15.6, 15.3, and 16.2 kcal/mol)
of copolymerization are observed. It can thus be concluded that the change in the substituent on
phosphine should have negligible effect on copolymerization reactivity although it may have partial
effects on the ethylene polymerization. As the energy barrier of catalyst d is lower (16.2 kcal/mol)
than that of e, the change in the substituent of phosphine oxide from tertiary butyl (in catalyst d) to
isopropyl (in catalyst e) may be more effective for copolymer formation.

Large differences in the energy barriers of d and e are further evaluated to understand the
substituent effect on catalytic activity during copolymer formation. From distortion/interaction
analysis, we found that the combination of stronger interaction energy of d as compared to e (−70.4 vs.
−69.6 kcal/mol) and less distortion (13.5 + 22.7 = 36.2 vs. 23.0 + 16.0 = 39 kcal/mol) contribute to the
stability of the transition state during copolymer formation, as shown in Figure 7. It is worth noting
that a small isopropyl group is more favorable to rotate in the available space around the phosphine
oxide of catalyst e as compared to the large tertiary butyl group of catalyst d. The catalyst fragment of
transition state E-VETS3 in d system showed larger changes of dihedral angles among ∆(C6-P-O-Pd)
than e (3.05◦ vs. 6.9◦ in e), likewise for ∆(C5-C6-P-O) (2.86◦ vs. 31.0◦ in e). A previous study also
confirmed that the large ring size increases the catalytic flexibility to ultimately affect the electronic
parameters of the metal center. Small ring sizes in Pd complexes cause the rigidity in the catalyst with
the enhancement of the catalytic properties [52].
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copolymer formation stage (E-VE). All energies are calculated in kcal/mol unit and atomic distances are
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omitted for clarity.

On the basis of our computational findings obtained from the study of cationic catalysts (BPMO),
further we modified catalyst B computationally by the replacement of -SO2-O− (in catalyst A) with
P(Me2)=O+. As followed by the A system, the two pathways of forming the copolymer of ethylene
and VE insertion were located as shown in Figure 8.Polymers 2020, 12, x FOR PEER REVIEW 11 of 15 
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For the chain initiation step, the ethylene coordination is less stable than VE, as suggested by
the free energies between the former (−10.7 kcal/mol) and the latter (−13.8 kcal/mol). Immediately
after the coordination, the ethylene is easier to insert than that of VE, which is manifested by their free
energy barriers of 17.7 and 20.8 kcal/mol, respectively. After that, the probability of VE insertion was
estimated through the Boltzmann equation (vide supra) by considering the coordination and insertion
in total. The 1,2-insertion of VE showed the probability of approx. 69.9%, which is much higher than
that of system A (3.3% probability). This indicates that the incorporation ratios of VE may have been
improved in system B relative to A. Meanwhile, it was found that the insertion of ethylene and VE into
B′ is much easier than into A′.

It is noted that the free energy barrier of ethylene insertion into B′ (2.9 (20.6 − 17.7) kcal/mol)
is lower than that of A′. We also observed that the free energy barrier of VE insertion into B′ is
approximately 5.4 kcal/mol, which is far lower than that of A′ (25.4 kcal/mol) (see Figure 8). This can be
attributed to the stronger interaction between the catalyst B′ and monomer moiety (−58.1 kcal/mol for
ethylene, −65.7 for VE) as compared to A′ (−57.8 for ethylene, −60.3 kcal/mol for VE). The shorter bond
lengths of Pd•••C1 and Pd•••C2 are seen in 3TSB_E and 3TSB_12VE than in 3TSA_E and 3TSA_12VE,
respectively (see Figures 2 and 9, respectively). Moreover, a natural bond orbital analysis of the
same species between 3TSB_E and 3TSB_12VE indicates some more interactions as there are shorter
bond lengths for H5•••O5 (2.71 vs 3.51 and 2.77 vs. 3.53, respectively) (see Figure S11). Furthermore,
in Figure S12, the LUMO energy of B′ (as compared to A′) is much closer to the HOMO energy of
monomers E and VE, which ultimately confirms the applicability of catalyst B as compared to A.
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All energies are calculated in kcal/mol unit and atomic distances are measured in Å. Hydrogen atoms
of the catalyst’s ligand have been omitted for clarity.

In addition to VE, we also examined the advantage of catalyst B for copolymerization of ethylene
with other fundamental polar vinyl monomers, like methacrylate (MA) and halogenated vinyl monomer
as vinyl chloride (VC), which are inexpensive and readily available. Methacrylate and vinyl chloride
display a 2,1-insertion mode as compared to VE (1,2-insertion) in both systems A and B. To observe the
activity of B, we considered only the copolymer formation step. Hence, VC and MA monomers are
inserted in to the ethylene pre-inserted intermediates (4A_E and 4B_E). It is noted that the free energy
barriers of VC and MA with catalyst B are quite lower (17.6 and 14.9 kcal/mol) than that of A (19.1 and
17.2 kcal/mol, respectively). Calculated low energy barriers by using B suggested that changes in the
ligand of catalysts can the design of high-performance catalysts for challenging polar vinyl monomers.
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4. Conclusions

The copolymerization mechanism of ethylene and VE catalyzed by Pd catalyst (A) has been
explored by DFT calculation. It has been found that VE insertion can be favorable with the 1,2-modes
in comparison with 2,1-modes, which is due to the stronger interaction between the catalyst and
monomer in the former mode. In contrast, ethylene is harder to coordinate with Pd-Me than that of VE.
This can be attributed to the existence of hydrogen interactions between the oxygen atom of VE and
the catalyst ligands. After insertion of ethylene, the subsequent insertion of VE needs to overcome a
higher free energy barrier of 23.1 kcal/mol than that of continuous insertion of ethylene (20.6 kcal/mol).
This indicates that the catalytic activity of copolymerization of ethylene and VE is lower than that of
the homopolymerization of ethylene. Once VE is inserted in the Pd-Me specie, the ethylene insertion
becomes harder than the continuous insertion of ethylene. Nevertheless, repeated insertion of VE
needs to overcome a quite high free energy barrier (29.1 kcal/mol) that ultimately makes this process
kinetically unfavorable. This phenomena can be mainly attributed to steric hindrance between the
coming VE and growing chain. The computational results are in good agreement with the experimental
data in that the resultant copolymer only contains OEt in the chain and chain end without the repetitive
insertion units of VE. Furthermore, as the β-OEt hardly occurs, the insertion of ethylene becomes more
difficult. Moreover, after an easy β-H elimination and difficult reinsertion of ethylene in Pd−H there
may be a decrease in the molecular weight and reactivity as well.

In addition, we considered the cationic family of Pd catalyst (BPMO) to evaluate the effect of
different substituted ligands. We found that tertiary butyl substituted at phosphine oxide is effective for
ethylene and VE copolymerization with the least distortion of catalyst d. Our modified cationic complex
B was calculated and found more active in improving the reactivity and incorporation ratios of polar
monomer in the system of ethylene with VE copolymerization. A stronger interaction has been observed
between catalyst and monomer in system B relative to the neutral catalyst A. Finally, other fundamental
polar monomers (VC and MA) have also shown better activity for the copolymerization step in system
B. This study may further provide better understanding of the mechanism of copolymerization of
ethylene and polar vinyl monomers when catalyzed by Pd metal complexes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/10/2401/s1.
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