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ABSTRACT A method for blind estimation of interleaver parameter was recently reported which made
additional data from a limited amount of received data. However, the process of making additional data
creates undesirable linearity which degrades estimation performance. Promise for improved estimation
therefore lies in enhancing blind estimation of interleaver parameter without making additional data. In this
paper, we propose an improved method to blindly estimate interleaver parameter under the condition of
scant data. We first generate a matrix by using the received data. From this matrix we then make square
submatrices and obtain their rank deficiency distribution. Finally, we estimate the interleaver parameter by
comparing the rank deficiency distribution of the square submatrices and that of random binary matrices.
Through computer simulations, we validate the proposed method in terms of detection probability and the
number of false alarms. Simulation results show that the proposed method works better than the conventional
method given scarce received data.

INDEX TERMS Blind detection, non-cooperative context, remote sensing, spectrum surveillance.

I. INTRODUCTION
In non-cooperative contexts, a receiver cannot identify any
information from the received data because the receiver lacks
all information about transmission parameters. To recover
information in a non-cooperative context, the receiver has
to blindly estimate communication parameters by using only
the received data. It is an extensive work requiring much
effort to estimate even a single communication parame-
ter. Therefore, blind estimation of communication parame-
ters has been researched separately: source coding [1]–[5],
channel coding [6]–[11], interleaving [12]–[23], spread-
ing sequence [24]–[26], scrambling [27]–[29], and modula-
tion [30]–[38]. In this paper, we focus on the blind estimation
of interleaver parameter.

Interleaving along with channel coding is essential to
establish reliable communication performance because it
enables transmitted signals to better withstand the effects
of various channel impairments [39]–[43]. Blind estima-
tion of interleaver parameter has been researched exten-
sively [12]–[23]. Reference [12] estimated block interleaver
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parameter using the rank of matrix composed of received
data for noiseless channels and [13] extended the estimation
method to noisy channels by using Gauss-Jordan elimination
through pivoting. Further, [14]–[19] estimated various types
of interleavers by using the number of ones or zeros in
each row (or column). Reference [14] estimated helical scan
interleaver for block channel coded data. Regarding convo-
lutional channel coded data, [15] estimated block and heli-
cal scan interleavers, and [16] estimated convolutional and
helical interleavers. Further, [17] jointly recognized the type
of channel codes and interleaver parameters, and [18] jointly
estimated Reed-Solomon code and block interleaver param-
eters. Recently, [19] proposed a blind estimation method of a
convolutional interleaver with denoising algorithm.

Instead of using the number of ones or zeros in each row
(or column), [20]–[22] proposed improved blind estimation
methods based on the rank deficiencies of the square matrices
generated from the received data: [20] estimated interleaver
parameter by choosing vectors having fewer errors, [21] used
binomial distribution to compare rank deficiency distribu-
tions, and [22] proposed an improved estimation method
which can be effectively applied to more severe channel
conditions. The estimation methods in [12]–[22] assumed
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a volume of received data sufficient for the blind estima-
tion of interleaver parameter. Given scant received data, the
conventional methods become infeasible or have degraded
estimation performance [23].

Very recently, [23] proposed a novel method for blind esti-
mation of interleaver parameter when only a limited amount
of received data is available. The method in [23] first made
additional data by combining the received data. Then it esti-
mated the interleaver parameter by using the average rank
deficiency of square matrices composed of the received data
and the created additional data. However, in the process of
making additional data, a linearity arises which impairs esti-
mation performance. Therefore, improved blind estimation
will presumably result from a method that does not produce
additional data from scant received data.

In this paper, we propose an improved method to blindly
estimate interleaver parameter without making additional
data under the condition of a limited amount of received
data. We first generate a matrix by using the received data.
We then make square submatrices from the matrix composed
of the received data and obtain rank deficiency distribution
of the square submatrices. Finally, we estimate the inter-
leaver parameter by comparing rank deficiency distribution
of the square submatrices and that of random binary matrices.
To validate the proposed method, we show the simulation
results in terms of detection probability and the number of
false alarms for various limited amounts of received data.

The rest of the paper is organized as follows. Section II
introduces the system model and Section III proposes an
improved method for the blind estimation of interleaver
parameter from scant data. Section IV shows the simulation
results to validate the proposed method, followed by the
conclusions in Section V.

II. SYSTEM MODEL
Let us assume a transmitter using an (nc, kc) linear block code
and an interleaver with period P, where P is a multiple of
the codeword length nc; a codeword consists of kc message
bits and nc – kc parity bits. The parity bits are generated by
the linear combination of message bits and the interleaver
changes the order of codeword bits in every period P. We fur-
ther assume that a total number of the received data bits isM
and the predicted interleaving period is L in a non-cooperative
context.

If we sequentially partition the received data as w row
vectors of length L, then the i-th row vector si can be written
as

si = [bi1 b
i
2 · · · b

i
L] (1)

where w =
⌊M
L

⌋
, b·c is the floor function, bij is the j-th bit

of si, bij ∈ {0, 1} for 1 ≤ i ≤ w and 1 ≤ j ≤ L, and w >

L. If we arbitrarily select L different vectors from the w row
vectors and pile up the selected L vectors row by row, we can
generate an L×L square matrix R. By repeating the process,

we can generate a total number of
(
w
L

)
square matrices R’s,

where
(
x
y

)
is the binomial coefficient.

If the predicted interleaving period L is different from the
original interleaving period P, the message bits and the parity
bits are not aligned in columns of R and the linearity in a
codeword is lost [12]; in this case, the rank deficiency of R
becomes similar to that of a random binary matrix composed
of elements in the Galois field GF(2). Therefore, if L is not
equal to P, the rank deficiency distribution of matrices R’s
will also become similar to that of random binary matrices.
The probabilities that the rank deficiency of random binary
matrix becomes ε are known to be 0.288788, 0.577576,
0.128350, 0.005239, and 0.000047 when ε equals 0, 1, 2, 3,
and 4, respectively [44]. On the other hand, if the predicted
interleaving period L is equal to the original interleaving
period P, the message bits and the parity bits are aligned
in columns of R and the linearity in a codeword is main-
tained [12]. Therefore, if L is equal to P, the rank deficiency
distribution of matrices R’s will differ from that of random
binary matrices [21], [22].

Using the above properties, the methods in [21] and [22]
compared the rank deficiency distribution of matrices R’s
with that of random binary matrices to estimate interleaving
period. These methods generally do estimate the interleaver
parameter given sufficient collected data. When the amount
of received data is limited such that w is smaller than P,
not even a single P × P square matrix R can be generated.
Therefore, the methods in [21] and [22] become infeasible
given a limited amount of data [23].

To solve that problem, [23] proposed a novel method for
blind estimation of interleaver parameter when only a limited
amount of received data is available. The method in [23]
makes additional row vectors cJ ’s by linear combination of
n different si’s, where cJ = ⊕

j∈J
sj, J is the index set of

size n, and⊕ denotes modulo-2 addition. For example, when
n = 2 and J = {x, y}, cJ becomes sx ⊕ sy, where 1
≤ x ≤ w, 1 ≤ y ≤ w, and x 6= y. Note that, in this case,

there is a total number of w +
(
w
n

)
vectors, which may be

enough vectors to generate square matrices [23]. Meanwhile,
in the process of making cJ ’s, additional linearity among
vectors occurs. For example, when n = 2 and J = {x, y},
there is a linear relation among vectors s x , sy, and cJ since
cJ = sx ⊕ sy. Therefore, if we denote the L × L square
matrix composed of L different vectors from cJ ’s and si’s
as RN for notational convenience, unlike the rank deficiency
of R, there are two types of linearity relating to the rank
deficiency of RN: one is the linearity in a codeword and
the other is the linearity among vectors, which addition-
ally occurs in the process of making cJ ’s [23]. The latter
linearity degrades the estimation performance. Therefore,
it can be expected that the estimation performance can be
improved if there is a blind estimation method without mak-
ing additional data under the condition of a limited amount
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of received data. We propose just such an enhanced method
in Section III.

III. PROPOSED METHOD
When the amount of received data is limited such that w is
smaller than P, we cannot obtain rank deficiency distribu-
tion because not even a single P × P square matrix can be
generated for this case. The method in [23] made additional
data to generate a sufficient number of square matrices under
the condition of scant data as explained in Section II. The
cost of this is degraded estimation, because of the linearity
arising from the process of making additional data. To solve
this problem, we propose a method by using the rank defi-
ciency distribution of square submatrices obtained from the
matrix composed of received data, without making additional
data. By comparing the rank deficiency distribution of the
square submatrices and that of the random binary matrices,
we blindly estimate interleaver parameter without making
additional data, even with scant received data. To do this,
we first generate a matrix by using the received data. We
then make square submatrices from the matrix composed
of received data and obtain rank deficiency distribution of
the square submatrices. Finally, we estimate the interleaver
parameter by comparing rank deficiency distribution of the
square submatrices and that of random binary matrices.
We develop the proposed method with the following steps.

If we arrange the w row vectors of (1) row by row, we can
generate a w× L matrix Ra as

Ra=


s1
s2
...

sw

 =

b11 b12 · · · b1L
b21 b22 · · · b2L
...

...
. . .

...

bw1 bw2 · · · bwL

 . (2)

By arbitrarily deleting some rows and columns from the
matrixRa, we can compose different k×k square submatrices
Rs’s [45], where k is an integer smaller than min(w, L),
and min(x, y) is the min operation. Note that, for a given k ,

we can generate a total number of
(
w
k

)
×

(
L
k

)
different

square submatrices Rs’s and this may be a sufficient number
of square submatrices to obtain rank deficiency distribution.
For example, when we receive 26 × 28 data bits and the
predicted interleaving period L is 28, we only have w =
26×28
28 = 26 row vectors. In this case, not even a single

28 × 28 square matrix can be generated. However, if we
compose 24× 24 square submatrices Rs’s, i.e. k = 24, then

we can generate
(
26
24

)
×

(
28
24

)
= 6 654 375 different

square submatrices Rs’s, and this is enough to obtain rank
deficiency distribution.

We examine the rank deficiency distribution of Rs, which
is generated by deleting some rows and columns fromRa, for
two cases: one is for L 6= P and the other is for L = P. When
L 6= P, the message bits and parity bits are not aligned in

columns of Ra in (2). Consequently, if we generate a k × k
square submatrix Rs when L 6= P, neither the message bits
nor parity bits are aligned in columns of Rs and the linearity
in a codeword is lost. In this case, the rank deficiency of Rs
becomes similar to that of a random binary matrix. Therefore,
if L 6= P, the rank deficiency distribution of submatricesRs’s
will become similar to that of random binary matrices.

On the other hand, when L = P, themessage bits and parity
bits are aligned in columns of Ra in (2). If we compose a
k×k square submatrixRs when L = P, some of the message
bits and parity bits in Ra are also aligned in columns of Rs
and we expect the linearity in a codeword to be maintained.
To show that the linearity in a codeword is maintained in
Rs, we investigate the rank deficiency of Rs mathematically.
If the expected value of rank deficiency of Rs is larger than
that of a random binary matrix, we can consider that the
rank deficiency distribution of Rs is different from that of
random binary matrices, and the linearity in a codeword is
maintained in Rs. Therefore, we derive the expected value
of minimum rank deficiency of Rs and show that it is larger
than the expected value of rank deficiency of a random binary
matrix when L = P.
We start from a simple case for P = nc and then generalize

the result to the case for P = αnc, where α is the number
of codewords in an interleaving period. When P = nc, there
is only one codeword in an interleaving period. In this case,
if we arrange the w row vectors of (1) row by row, we can
generate a w × nc matrix Ra of (2) and the maximum rank
of Ra becomes kc which is the dimension of (nc, kc) linear
block code. If we make a k × k square submatrix Rs by
deleting some rows and columns from the matrix Ra, since
the rank of Rs is less than or equal to the rank of Ra, the
maximum rank of Rs also becomes kc, in other words, the
minimum rank deficiency of Rs becomes k – kc. Therefore,
when L = P = nc, the minimum rank deficiency of Rs, f (k),
can be obtained by

f (k) =
{
k − kc, kc ≤ k ≤ nc
0, 0 ≤ k < kc

(3)

where k is the number of rows (or columns) of Rs.
Next, we consider the general case for P = αnc, where

there are α codewords in an interleaving period. In this case,
if we arrange the w row vectors of (1) row by row, we can
generate a w× αnc matrix Ra of (2), and the maximum rank
of Ra becomes αkc, since there are α codewords in each row
of Ra. By deleting some rows and columns from the matrix
Ra, we can obtain a k×k square submatrixRs. If we denote ki
as the number of columns in Rs relating to the i-th codeword
in each row of Ra where 1 ≤ i ≤ α and 0 ≤ ki ≤ nc, then∑α

i=1 ki = k and the minimum rank deficiency of Rs can
be calculated as

∑α
i=1 f (ki) from (3). Since the number of

possible ki columns inRs relating to the i-th codeword in each

row of Ra for each ki is
(
nc
ki

)
and the number of codewords

in each row of Ra is α, there are a total number of
α∏
i=1

(
nc
ki

)
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square submatricesRs’s for given ki’s. Finally, by considering
all possible ki’s for a given k , we can formulate the expected
value of minimum rank deficiency of Rs, rmin(k), when L =
P = αnc as

rmin(k) =
(
L
k

)−1 ∑
k1+k2+···+kα=k

 α∏
j=1

(
nc
kj

) α∑
i=1

f (ki)

.
(4)

Note that when α = 1, (4) reduces to (3).

FIGURE 1. Rank deficiencies of submatrix and random binary matrix
versus the number of rows (k) when interleaving period is 49 and
(7, 4) Hamming code is used.

FIGURE 2. Rank deficiencies of submatrix and random binary matrix
versus the number of rows (k) when interleaving period is 60 and
(15, 11) BCH code is used.

To validate rmin(k), we compare rmin(k) obtained from (4)
and the average rank deficiency of Rs obtained from com-
puter simulation by varying k , in Figs. 1 and 2. We assume
the interleaving period of 49 and (7, 4) Hamming code in
Fig. 1, and the interleaving period of 60 and (15, 11) BCH
code in Fig. 2. The average rank deficiency of Rs is obtained
from computer simulation by averaging the rank deficiencies
of 100 Rs’s for a given k . From Figs. 1 and 2, we can see that
rmin(k) is less than or equal to the average rank deficiency of
Rs. To be specific, the gap between rmin(k) and the average
rank deficiency of Rs decreases as k increases and the gap
becomes 0 when k is equal to the original interleaving period.

We also show the expected value of rank deficiency of a
random binary matrix in Figs. 1 and 2, where the expected
value of rank deficiency of the random binary matrix is about
0.8502 [44]. From Figs. 1 and 2, we can also see that, when
L = P, rmin(k) is different from the expected value of rank
deficiency of a random binary matrix. Therefore, we can
confirm that when L = P, the linearity in a codeword is
maintained in Rs and the rank deficiency distribution of sub-
matrices Rs’s becomes different from that of random binary
matrices. Consequently, by using the rank deficiency distri-
bution of Rs’s and that of random binary matrices, we can
estimate the interleaver parameter under the condition of a
limited amount of received data.

For the comparison of the rank deficiency distribution
of Rs’s and that of random binary matrices, we adopt mean
square error as a measure, which is calculated as

DMSE =
1

k + 1

k∑
i=0

{P(X = i)− P(Y = i)}2 (5)

whereP(X = i) andP(Y = i) are the rank deficiency distribu-
tion of Rs’s and that of random binary matrices respectively,
i is rank deficiency, and k is the number of rows (or columns)
ofRs. If P(X = i) and P(Y = i) are similar, i.e., the rank defi-
ciency distribution ofRs’s and that of random binary matrices
are similar, DMSE will become relatively small, on the other
hand, if two distributions are different from each other,DMSE
will become relatively large. Therefore, by obtaining DMSE
for each L, we can estimate L as the original interleaving
period P when DMSE has the largest value.

After estimating L as the original interleaving period P,
we compare once more the rank deficiency distribution
of Rs’s and that of random binary matrices. The mean square
error between the rank deficiency distribution of Rs’s and
that of random binary matrices, DMSE , may have the largest
value even when L 6= P because of the erroneous bits
caused by noise. In this case, a false alarm occurs. To control
the false alarm, we adopt the Kullback-Leibler divergence
(KLD), which is typically used to check the similarity of the
two probability distributions [22]. KLD is the relative entropy
between the two probability distributions; therefore, it has
a non-negative near-zero value for similar distributions and
relatively large value as the difference between the distribu-
tions increases.When KLD becomes larger than γ , we finally
declare that L is the original interleaving period P, where the
threshold γ is a design parameter to control false alarms. The
larger γ becomes, the less often false alarms occur.

Finally, we can summarize the proposed method step by
step in Algorithm 1.

IV. SIMULATION RESULTS
In this section, we validate the proposed method through
computer simulations in terms of detection probability and
the number of false alarms. In the simulations, a random inter-
leaver with interleaving period P, binary phase shift keying
modulation, and an additive white Gaussian noise (AWGN)
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Algorithm 1 Estimation of the Interleaving Period by Using
Square Submatrices
Notation of Variable: Cnt denotes the number of matrices
generated to calculate rank deficiency distribution. L∗ is the
predicted interleaving period.
Input: M -bit received data
1: for L∗ = Lmin : Lmax do
2: Sequentially partition the received data as w row

vectors si’s with length L∗

3: Arrange the w row vectors row by row to generate
matrix Ra of (2)

4: for i = 1 : Cnt do
5: Delete some rows and some columns from the

matrix Ra to obtain k × k square submatrix Rs
6: Calculate the rank deficiency of Rs
7: end
8: Calculate and record rank deficiency

distribution of Rs’s
9: Calculate DMSE in (5)
10: Update L as L∗ when DMSE is larger than the previous

maximum value of DMSE
11: end
12: Calculate KLD by using the rank deficiency distribution

corresponding to L
13: Declare L as the original interleaving period P when

KLD is larger than γ
Output: Estimated interleaving period L

FIGURE 3. Detection probability according to k when interleaving period
is 60 and (15, 11) BCH code is used in an AWGN channel.

channel are assumed. We limit the amount of received data,
M , less than P × P bits in the simulations to validate that
the proposed method can effectively estimate the interleav-
ing period when there is only a limited amount of received
data available. We examine the detection performance of the
proposed method according to k , which is the number of rows
(or columns) in a square submatrixRs, γ , which is a threshold
to control the false alarm, and M , which is the amount of
received data. We include the results of the methods in [13]
and [23] for comparison.

Firstly, we investigate the detection performance of the
proposed method according to k where k is smaller than

min(w, L). Generally, as k increases under the condition of
k being less than min(w, L), the possibility of maintaining
linearity in a codeword inRs also increases and we can expect
better detection performance. We show the detection proba-
bility of the proposed method in Fig. 3 by varying k from
min(w, L) – 1 to min(w, L) – 4, when the interleaving period
is 60, (15, 11) BCH code is used, γ is 0.75, and M is 2520
(60×60×0.7) bits. FromFig. 3, we find that the detection per-
formance improves as k increases, as we expected. Therefore,
in general, we can choose k as min(w, L) – 1 to acquire better
estimation performance. For some cases, such as a small
values ofw and L, if we set k tomin(w, L) – 1, we cannot com-
pose a sufficient number of Rs’s to obtain a rank deficiency
distribution. In such a case, we can choose k smaller than
min(w, L) – 1. Consequently, we set k to a design parameter,
and choose k as large as possible to compose a sufficient
number of Rs’s for calculating rank deficiency distribution.

FIGURE 4. Detection probability according to γ when interleaving period
is 60 and (15, 11) BCH code is used in an AWGN channel.

FIGURE 5. Number of false alarms in 10 000 iterations according to γ
when interleaving period is 60 and (15, 11) BCH code is used in an AWGN
channel.

We depict the detection probability and the number of false
alarms of the proposed method for various values of γ in
Figs. 4 and 5, respectively, when the interleaving period is 60,
(15, 11) BCH code is used, k is min(w, L) – 1, andM is 2520
(60×60×0.7) bits. We can see from Fig. 4 that the detection
probability increases as γ decreases. And from Fig. 5, we find
that the number of false alarms decreases as γ increases. To be
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specific, when γ is 0, the detection probability becomes better
but there are a number of false alarm occurrences. On the
other hand, when γ is 1, the detection probability becomes
worse but there are only a few false alarms. Therefore, we can
confirm from Figs. 4 and 5 that there is trade-off between
the detection probability and the number of false alarms
according to the design parameter γ .

FIGURE 6. Detection probability according to M when interleaving period
is 49 and (7, 4) Hamming code is used in an AWGN channel.

FIGURE 7. Detection probability according to M when interleaving period
is 60 and (15, 11) BCH code is used in an AWGN channel.

Finally, we validate the performance of the proposed
method in an AWGN channel according to the amount of
received data M in Figs. 6, 7, and 8. We show the detection
probabilities when the interleaving period is 49 and (7, 4)
Hamming code is used in Fig. 6, and when the interleaving
period is 60 and (15, 11) BCH code is used in Fig. 7. We also
depict the number of false alarms when the interleaving
period is 60 and (15, 11) BCH code is used in Fig. 8. In the
simulations, we setM to P× P× β bits for 0 < β < 1, γ to
0.75, and k to min(w, L) – 1. For comparison, we include the
performance of the conventional methods in [13] and [23].

From Figs. 6 and 7, we can see that the proposed method
is superior to the conventional methods of [13] and [23] in
detection probability. When M is P × P × 0.9 bits, at a
detection probability of 0.9, the proposed method achieves
signal-to-noise ratio (SNR) gains of about 2.5 dB and 3.4 dB
over [13], 1.0 dB and 1.1 dB over [23], in Figs. 6 and 7,

respectively. For more limited cases of M being 1176
(≈ 49× 49× 0.49) bits in Fig. 6 and 2520 (60×60×0.7) bits
in Fig. 7, the detection probabilities of the proposed method
reach 0.9 at SNRs of 6.2 dB and 7.4 dB, respectively, while
the conventional methods in [13] and [23] cannot give any
meaningful detection results. From Fig. 8, we can see that
there are only a few false alarms with the proposed method,
where the results are obtained from 10 000 iterations for
each M.

FIGURE 8. Number of false alarms in 10 000 iterations when interleaving
period is 60 and (15, 11) BCH code is used in an AWGN channel.
(a) M = 3240 (60× 60× 0.9) bits. (b) M = 2880 (60× 60× 0.8) bits.

From the simulation results, we can see that the proposed
method can effectively estimate the interleaving period when
there is only a limited amount of received data available.

V. CONCLUSION
In this paper, we proposed an improved method for blind
estimation of interleaver parameter from scant data. In cases
where only a limited amount of received data was available,
the previous method estimated interleaver parameter by mak-
ing additional data with the received data. The cost of this was
degraded estimation, because of the linearity arose in the pro-
cess of making additional data. To solve this problem, we first
generated a matrix by using the received data. We then made
square submatrices from the matrix composed of the received
data and obtained a rank deficiency distribution of the square
submatrices. Finally, we estimated the interleaver parameter
by comparing rank deficiency distribution of the square sub-
matrices and that of random binary matrices. The proposed
methodwas validated through computer simulations and gave
better estimation performance than the conventionalmethods,
given scant received data. Further, for more limited cases of
the amount of received data, the proposed method could esti-
mate interleaver parameter whereas the conventionalmethods
in [13] and [23] could not give any meaningful detection
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results. Therefore, it is expected that the proposedmethod can
effectively estimate interleaver parameter under the condition
of scant received data.
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