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Abstract: A distributed trigger counting (DTC) problem is to detect w triggers in the distributed
system consisting of n nodes. DTC algorithms can be used for monitoring systems using sensors
to detect a significant global change. When designing an efficient DTC algorithm, the following
goals should be considered; minimizing the whole number of exchanged messages used for counting
triggers and even distribution of communication loads among nodes. In this paper, we present
an efficient DTC algorithm, DDR-coin (Deterministic Detection of Randomly generated coins).
The message complexity—the total number of exchanged messages—of DDR-coin is O(n logn(w/n))
in average. MaxRcvLoad—the maximum number of received messages to detect w triggers in each
node—is O(logn(w/n)) on average. DDR-coin is not an exact algorithm; even though w triggers
are received by the n nodes, it can fail to raise an alarm with a negligible probability. However,
DDR-coin is more efficient than exact DTC algorithms on average and the gap between those is
increased for larger n. We implemented the prototype of the proposed scheme using NetLogo 6.1.1.
We confirmed that experimental results are close to our mathematical analysis. Compared with
the previous schemes—TreeFill, CoinRand, and RingRand— DDR-coin shows smaller message
complexity and MaxRcvLoad.

Keywords: distributed trigger counting; distributed algorithm; probabilistic algorithm; distributed systems

1. Introduction

Consider a distributed system with sensors, e.g., the wireless sensor network (WSN). For many
cases, monitoring is one of the most important issues and the system would like to detect a significant
global state change. For example, we consider traffic surveillance where a large number of sensors
are distributed in a targeted area. When the predefined number of cars have passed the targeted area,
the system raises an alarm. Another example is that a large number of illegal login attempts on diverse
nodes should be alarmed.

A distributed trigger counting (DTC) problem can play an important role in this kind of
monitoring applications. DTC problem is formally defined as follows. Suppose a distributed system
where n nodes communicate with each other. Assume that from external sources, w triggers arrive at
the n nodes, and that no statistical information about the triggers is given to the system in advance.
We consider the case where the number of triggers is much greater than the number of nodes, i.e., w� n
(If w ≤ n, the number of triggers can be easily aggregated using a spanning tree of nodes [1–3]).
The distributed trigger counting (DTC) problem is to raise an alarm when the total number of detected
triggers by the n nodes reaches to w.

In a distributed system, various state changes or data from sensors can be used to initiate a trigger.
Thus, if we define a global threshold for a certain property on a distributed system as the number
of total generated triggers in the system, DTC algorithms can be useful for detecting the time when
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the global threshold is reached, e.g., in the above traffic surveillance example, we can use a DTC
algorithm for counting the number of cars passing that area: When w cars have passed the targeted
area, the system raises an alarm. Moreover, DTC algorithms play an important role in many distributed
applications including taking global snapshots and monitoring significant events, e.g., in conventional
global snapshot algorithms, the total number of exchanged messages to take a global snapshot is
O(n2) [4–6]. With DTC algorithms, the number of exchanged messages can be reduced significantly
(for more detailed relationship between DTC algorithms and global snapshot algorithms, please refer
to the work in [3]). DTC algorithms can also be useful for monitoring specific events [7–11], which is
one of the core functionalities in distributed systems including computational grids, cluster computing
and wireless sensor networks [12–16].

An exact DTC algorithm should always raise an alarm when w triggers have arrived at n
nodes whereas a probabilistic one fails sometimes (to be practical, the failure probability should
be very low). Garg et al. showed that the lower bounds on message complexity (i.e., total number
of exchanged messages) of an exact DTC algorithm are Ω(n log(w/n)) [3]. Moreover, they showed
that the lower bounds on MaxRcvLoad (i.e., the maximum number of received messages in each
node) is Ω(log(w/n)) [3]. Garg et al. suggested the tree-based DTC algorithm and the centralized one,
both of which are exact algorithms [3]. Their centralized algorithm has optimal message complexity
but MaxRcvLoad is high (and not analyzed). Chakaravarthy et al. suggested the sub-optimal DTC
algorithm for both total message complexity and MaxRcvLoad, where their algorithm uses a tree-like
network topology [2]. Kim et al. suggested an optimal DTC algorithm [17] in terms of message
complexity and MaxRcvLoad, where its algorithm is more complex than [2]. Emek et al. improved
lower bounds on DTC algorithms and proposed the probabilistic DTC algorithm, where its message
complexity is low but MaxRcvLoad is not bounded [18]. Chang et al. suggested the DTC algorithm
that can work with any network topology [19].

In this paper, we present an efficient probabilistic DTC algorithm, DDR-coin (Deterministic
Detection of Randomly generated coins). DDR-coin has a (one-sided) failure probability, where the
failure probability is defined as the probability of not raising an alarm even if the number of triggers
reaches w. Table 1 summarizes the comparison results between previous work and DDR-coin. We use
the following performance metrics to evaluate our algorithm, which are also used in previous
work [1–3,17].

• Message complexity: the total number of exchanged messages among the nodes. For efficiency,
this should be low.

• MaxMsgLoad: the maximum number of exchanged (i.e., sent and received) messages in each
node. For even distribution of load, this should be low.

• MaxRcvLoad: the maximum number of received messages in each node. For even distribution of
load, this should be low.

As seen in Table 1, the average message complexity of DDR-coin is O(n logn(w/n)), which is
lower than the optimal message complexity (O(n log(w/n)) [17]) of exact DTC algorithms.
The MaxRcvLoad of DDR-coin is O(logn(w/n)) on average, which is lower than those of other
schemes. (For MaxMsgLoad, just as in many of previous schemes, we were unable to get the bounds
of DDR-coin since it is too complex.) The failure probability of DDR-coin is negligible, which will be
seen in Section 3.1.3. We implemented the prototype of the proposed scheme using NetLogo 6.1.1.
We confirmed that experimental results are close to our mathematical analysis. Compared with the
previous schemes—TreeFill, CoinRand, and RingRand— DDR-coin shows smaller message complexity
and MaxRcvLoad.

This paper is organized as follows. The DDR-coin algorithm is explained in Section 2. We analyze
the failure probability, message complexity, and MaxRcvLoad of DDR-coin in Section 3. We show
experimental results in Section 4. The related works on DTC algorithms are summarized in Section 5.
We conclude this paper in Section 6.
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Table 1. Comparison of distributed trigger counting (DTC) algorithms.

Algorithm Message MaxRcvLoad MaxMsgLoad Exact or
Complexity Probabilistic

Centralized [3] O(n log(w/n)) − − Exact

Tree-based [3] O(n log n log(w/n)) O(log n log(w/n)) O(log n log(w/n)) Exact

LayeredRand [1] O(n log n log w) O(log n log w) − Exact

CompTreeRand [18] O(n log w(log log n)2) − − Probabilistic

CompTreeDet [18] O(n(log w log n)2) O((log w log n)2) O((log w log n)2) Exact

CoinRand [2] O(n(log w + log n)) O(log w + log n) − Exact

RingRand [2] O(n log n log w) O(log n log w) O(log n log w) Probabilistic

TreeFill [17] O(n log(w/n)) O(log(w/n)) − Exact

DDR-coin O(n logn(w/n)) O(logn(w/n)) − Probabilistic

(−: not bounded, which implies that the value is equal to the message complexity.) (The algorithms of the work
in [18] are the bounds for arbitrary networks).

2. DDR-coin Algorithm

After we describe the system model and our objectives in Section 2.1, an overview of DDR-coin is
given in Section 2.2. Section 2.3 explains the tree-like structure used by DDR-coin and Section 2.4 deals
with detailed explanation of the DDR-coin algorithm. Table 2 summarizes explanation on notation
used in this paper.

Table 2. Table of notation.

Category Variable Description

n The number of nodes.

Overall w The number of triggers to be detected.

κ (�
√

n) Security parameter to adjust the failure probability (refer to Sections 2.4.2 and 3.1).

wi The number of remaining triggers to be detected at the beginning of Round i.
(w1 = w, wi = wi−1 − ˆwi−1 (2 ≤ i ≤ f )).

Round i ŵi The number of detected triggers at Round i.

(1 ≤ i ≤ f ) w f The number of remaining triggers in the beginning of the final (= f ) round.

h The height of the tree-like structure.

k Each internal vertex has k children.

nj, node-j Node j (1 ≤ j ≤ n) corresponding to the vertex j in the tree-like structure.

nj.trg The number of received triggers in nj (1 ≤ j ≤ n).

du The node u for the internal vertex in the tree-like structure.

Tree-like du.cns[1..k] The Boolean array of length k in du.

structure coin When nj at level-h receives a trigger, it generates a coin message with the
probability of n/wi. This coin is sent to a randomly-selected node in level-(h-1).

full-coin When du.cns[1...k] becomes full (i.e., all entries are true),
du sends a full-coin to its parent.

If a coin arrives at du where du.cns[1...k] are already all true, du sends
overflow-coin an overflow-coin to the randomly chosen node dupper at the upper level.

(This coin will go up to a certain level and then go down to arrive
at level-(h-1) eventually. Refer to Section 2.4.2)
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2.1. System Model and Objectives

We assume that the number of nodes in the system is n. To simplify the problem, assume that the
nodes are fully connected, there are no message drops, there are no external attackers, and the nodes do
not fail. Events are being triggered with arbitrary distribution on these nodes in the system. We want to
detect and raise an alarm when w or more triggers occur in the system. To this end, n nodes should send
and receive messages, and we want to minimize this (i.e., minimizing message complexity). We also
want communication overheads to be evenly distributed among nodes (i.e., minimizing MaxRcvLoad).
We assume that events continue to be triggered while the protocol is running.

We only consider the case where the number of triggers is much greater than the number of nodes,
i.e., w� n (for w ≤ n, the works in [1–3] solve the problem with O(n) messages using spanning trees).

Our objectives are as follows.

• When w or more than w triggers occur, the system has a very high probability of raising an alarm.
(In other words, the failure probability is negligible.)

• When the system raises an alarm, the probability that the number of triggers is less than w is 0
(i.e., no false positives).

• The average message complexity is O(n logn(w/n)).
• The average MaxRcvLoad is O(logn(w/n)).

2.2. Overall of DDR-coin

The system works in the following way. n nodes have hierarchy to form a complete tree-like
structure, e.g., the lower part of Figure 1 shows the nodes on the network when n = 9, and the upper
part corresponds to the tree-like structure of these nodes. All the nodes correspond to leaf vertices at
the level-h of the tree (h: the height of the tree-like structure), and some nodes correspond to internal
vertices in addition to the leaves (i.e., have dual roles). The tree-like structure will be explained in
detail in Section 2.3.

DDR-coin operates in multi-round. For Round 1, w1, the number of remaining triggers to be
detected is set to w. The goal of Round 1 is to detect the state where nodes have been received slightly
less than w1 triggers.

To do so, when an event is triggered on the node associated with the leaf with level-h, with a
specific probability, a message is sent to a node associated with the internal vertex corresponding
to h-1 level. Then, the node corresponding to the level h-1 counts the number of received messages,
and when it exceeds a certain threshold, this node sends a message to a node corresponding to
the level h-2 to inform reaching the threshold. When we repeat the work in this way, the node
corresponding to the root (level-0) finally receives messages from nodes at level-1. Then, the root starts
the aggregating work that counts the number of triggers that have occurred in all nodes (which we call
the end-of-round procedure).

In the end-of-round procedure, the root propagates the aggregating message to the leaves and
then each leaf sends the message that contains the number triggers (i.e., events triggered) in the leaf
to the root. At the end of this process, the root node knows that ŵ1 (≤ w1) triggers have occurred
in Round 1. Then, Round 1 is finished and Round 2 starts. Round 2 works in the same way, but the
threshold/parameters are adjusted to detect slightly less than w2 (= w1 − ŵ1) triggers.

If we repeat this work, the number of remaining triggers will gradually decrease and will be less
than or equal to n. Then, it goes to the final round: using the procedure of Section 2.4.4, we count the
number of triggers that have occurred exactly w and raise an alarm.

For better understanding, a detailed example for Rounds 1 and 2 is given in Appendix A.
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Figure 1. An example of DDR-coin in round 1 when n = 9 and w = 81.

2.3. Tree-Like Structure

In this section, we describe the tree-like structure used by DDR-coin. This structure is the complete
k-ary tree, where vertices are associated with nodes in the network. An example of the tree-like structure
in DDR-coin, when k = 3 and n = 9, is shown in the upper side of Figure 1.

We define level-l as follows; the root vertex is in level-0 and the vertices at level-(l + 1) are children
of vertices at level-l. Note that all the n nodes are related with n leaf vertices in level-h, where h is the
height of this tree-like structure, i.e., the maximal level, e.g., in Figure 1, h = 2. Internal vertices are
from level-0 through level-(h-1). We assume n = kh for ease of algorithm explanation and analysis.
Our algorithm can be easily extended to general cases (which may be hard to analyze mathematically).

Each node in the network (e.g., at the bottom of Figure 1) is associated with each leaf vertex in
this tree-like structure. For example, in Figure 1 below, node-3 in the network is associated with leaf
vertex-3 of the tree-like structure. Some nodes have dual roles: a node is associated with one leaf and
one internal vertex, e.g., in Figure 1, node-4 in the network is associated with leaf vertex-4 and root
vertex-4. From now on, “the node u in the tree-like structure” denotes the node u in the network where
the node u is associated with the vertex u of the tree-like structure.

Actually, we use this tree-like structure to associate the level of a tree with a node but the message
is not necessarily transmitted along the edge of the tree, e.g., as will be explained in detail in Section 2.4,
a node at level l sends a message to any node at level l − 1/l + 1 as well as parent/children.

At the beginning the DDR-coin protocol, the nodes for internal vertices are chosen among the n
nodes, e.g., in Figure 1, node-4, -5, -8, and -2 are chosen to be internal vertices. Even though we can
select any nodes to be the internal vertices, one simple approach may be selecting first (n− 1)/(k− 1)
nodes for the internal vertices.

2.4. DDR-coin Algorithm

DDR-coin works based on rounds. Overall operations in DDR-coin are as follows. Steps 1–3 are
for each round and Step 4 is for the final round.

1. (Coin generation routine) Recall that all n nodes are associated at leaf-level (level-h). When a
node detects a trigger, it generates a coin message with the probability of n/wi, where wi is the
number of not yet received triggers at the beginning of round i. (Initially w1 = w.) This coin
message is sent to the randomly-selected node at level-(h-1).
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2. (Coin propagation routine) The coin messages are propagated from leaves in the tree-like
structure to the root. Eventually, the node for the root vertex detects that n coins have been
generated at the leaf-level.

3. (End-of-round procedure) n nodes count the number of generated triggers up to now (using the
spanning tree). If the number of not yet detected triggers is greater than n, a new round starts
by going back to the coin generation routine again (Step 1). Otherwise, it goes to the final round
procedure (Step 4).

4. (Final round procedure) It counts the remaining triggers (the number of which does not exceed n).
Then, it raises an alarm.

2.4.1. Coin Generation Routine

Let wi be the number of the triggers that are not yet detected at the beginning of i-th round.
When i-th round begins, wi is calculated as follows; w1 = w and wi = wi−1 − ˆwi−1 (i ≥ 2), where ˆwi−1
is the number of counted (i.e., detected) triggers in (i− 1)th round.

Let nj (1 ≤ j ≤ n) be a node in the system and nj.trg be the number of received triggers in nj.
Initially, nj.trg (1 ≤ j ≤ n) is set to be zero.

When nj receives a trigger, it increases nj.trg by one and generates a coin message with the
probability of n/wi. The coin is sent to a randomly-selected node in level-(h-1) of the tree-like structure
(note that vertices for all the n nodes are in level-h so coins are sent from level-h to h-1), e.g., in Figure 1,
if node-4 detects a trigger, node-4.trg =node-4.trg + 1, it generates a coin message with the probability
of n/w1 = 1/9 and then it sends this coin to a randomly-selected node, e.g., node-2 at level-1. Figure 2
shows the algorithm for the coin generation routine.

1: When ith round begins:
2: If i = 1, then w1 = w.
3: Else wi is wi−1 − ŵi−1 (ŵi−1 is the number of received triggers in (i− 1)th round).
4: nj.trg← 0, where 1 ≤ j ≤ n.
5: Distribute κ

√
n coins randomly among nodes in level-(h-1).

6:

7: When nj receives a trigger in ith round:
8: nj.trg← nj.trg + 1.
9: Generate a coin message with probability n/wi.

10: If a coin is generated then
11: Send the coin to a randomly-selected node in level-(h-1).

Figure 2. Coin generation routine for node nj (1 ≤ j ≤ n) in ith round.

2.4.2. Coin Propagation Routine

The goal of the coin propagation routine is that the node for the root vertex detects that n
coins have been generated at the leaves. Let du be a node for internal vertex from level-0 to h-1
(1 ≤ u ≤ (n− 1)/(k− 1)). e.g., Figure 3 shows internal vertices (node-4, node-5, node-8, and node-2)
of tree-like structure of Figure 1.

Each du has a Boolean array of length k, du.cns[1..k]. This array is initialized with false values at
the beginning of a round. This array has two meanings. First, recall that in Section 2.4.1, coins are sent
to the node du at level-(h-1). In level-(h-1), if du receives a v-th coin, du.cns[v] (1 ≤ v ≤ k) becomes true.
In this way, the array means du has received v coins from the node at leaf-level (level-h), e.g., in Figure 3,
currently 6 coins have arrived to the level-1: node-5 has one coin, node-8 has two coins, and node-2
has three coins.

Second, for node du from level-0 to h-2, if du.cns[v] (1 ≤ v ≤ k) is true, it means that all the nodes
in the v-th subtree of du are fully filled with coins (i.e., all entries in the arrays are true), e.g., Figure 3
shows that node-4 has set node-4.cns[3] as true, because the third subtree of node-4 (i.e., node-2) has
fully filled with k = 3 coins.
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When a coin arrives at du at level h-1, there are 3 cases:

1. If a coin arrives and du.cns[1...k] is not full (i.e., some entries are false), one entry with false is
changed to true.

2. Suppose that du has received k− 1 coins. When a new coin arrives at du, now du.cns[1...k] becomes
full (i.e., all entries are true). du sends a full-coin to its parent. Then, the parent node of du sets the
j-th entry of cns[1...k] as true where du is j-th child, e.g., in Figure 3, when a new coin is sent to
node-8, a full-coin is sent to node-4 and node-4.cns[2] is set true. If the parent’s array now also
becomes full, the full-coin is sent to the grandparent. This work can be repeated until the level-0.

3. If a coin arrives at du where du.cns[1...k] are already all true, du sends an overflow-coin to the
randomly chosen node dupper at the upper level. After receiving this, dupper finds a subtree j where
dupper.cns[j] is false. This means the corresponding subtree is not fully filled with coins. (If not
found, i.e., full, dupper sends this coin to randomly selected node of dupper’s upper level.) dupper

sends overflow-coin down to the root of j-th subtree. In this way, the overflow-coin is going down
again and it is eventually sent down to the node dv at level-(h-1) and dv puts this coin in the array
dv.cns[1...k]: false value in the entry is changed to true, e.g., when a new coin is sent to node-2
of Figure 3, because node-2.cns[1...k] is already full, the new overflow-coin is sent to a randomly
selected node in its upper level, e.g., in Figure 3, there is only node-4 in the upper level of node-2,
and the overflow-coin is sent to node-4. In Figure 3, node-4 knows that node-2 is full with 3 coins
as node-4.cns[3] is true, and node-5 and node-8 have rooms for another coins. node-4 forwards
overflow-coin to node-5. After node-5 receives the forwarded overflow-coin, node-5.cns[2] = true.

This process continues until all the nodes in the level-(h-1) vertices are fully filled with coins,
where the number of those coins is n. If fully filled, in the node for the root, droot.cns[1...k] are all
true and the root initiates the end-of-round procedure. Figure 4 shows the algorithm of the coin
propagation routine.

Figure 3. The internal vertices of Figure 1. Circles represent nodes and boxes in circles represent arrays
cns[]. The filled box means true while the empty box means false. Currently, 6 coins have arrived
at level-(h-1) (from level-h): 1 for node-5, 2 for node-8, and 3 for node-2. In the root node, node-4,
node-4.cns[3] = 1. This means that the third subtree of node-4 is fully filled with coins.
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1: When a node du receives an overflow-coin:
2: If du.cns[v] = f alse (1 ≤ v ≤ k), then
3: Send the overflow-coin to v-th child node.
4: Else if du is the root node then
5: Initiate the end-of-round procedure.
6: Else
7: Send the overflow-coin to (randomly-selected) one of the nodes in its upper level.
8:

9: When a node du receives a coin message or a full-coin message from v-th child node:
10: du.cns[v]← true.
11: If du.cns[1...k] are all true and du is the root then
12: Initiate the end-of-round procedure.
13: Else if du.cns[1...k] are all true then
14: Send a full-coin message to the parent.

Figure 4. The algorithm of coin propagation routine.

To increase the probability of going to the end-of-round procedure, in the beginning of each
round, after all arrays du.cns[] are initialized with false, κ

√
n coins are randomly predistributed among

the nodes at level-(h-1) in advance, i.e., κ
√

n entries in arrays are true (which is described in Line 5
of Figure 2). κ (�

√
n) is a security parameter to adjust the failure probability. We will analyze the

relation of κ and the failure probability in Section 3.1.

2.4.3. End-of-Round Procedure

In the end-of-round procedure, the root node sends aggregation-request messages to its children
nodes. These messages are recursively sent to the leaf nodes in level-h.

Recall that all the n nodes are in level-h. Each node nj (1 ≤ j ≤ n) sends the count-message
containing the number of received triggers (=nj.trg) to its parent node. The internal nodes of DDR-coin
aggregate the number of received triggers sent from its children nodes and send the sum to its parent
node. Finally, the total number of received triggers at round i, ŵi, can be calculated at the root node
of DDR-coin.

Let the number of received triggers by n nodes in ith round be ŵi. Then, in the root node, wi+1 is
calculated as follows; wi+1 = wi − ŵi. If wi+1 > n, the probability to generate a coin is changed to
n/wi+1 and (i + 1)th round begins. If wi+1 ≤ n, the final round begins. Figure 5 shows the algorithm
for the end-of-round procedure.

1: The end-of-round procedure:
2: At the root node, ŵi the number of received triggers in ith round
3: is aggregated using the tree-like structure of DDR-coin.
4: wi+1 ← wi − ŵi.
5: If wi+1 > n then
6: (i + 1)th round begins.
7: Else
8: Final round begins.

Figure 5. The end-of-round procedure.

2.4.4. Final Round Routine

Let w f ≤ n be the number of not yet detected triggers in the beginning of the final round. In the
beginning of the final round, n− w f coins are distributed among the nodes of level-(h-1) in advance.
In each node in level-h, the coin generating probability is set to one, i.e., each node generates a coin
whenever it receives a trigger.
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When w f coins are generated in the nodes in level-h, the number of coins in the nodes at level-(h-1)
is (n− w f ) + w f = n and the root of DDR-coin detects this and raises an alarm.

3. Analysis

In this section, we show that (1) when w or more than w triggers occur, the system detects this
with a very high probability and raises an alarm (i.e., the failure probability is negligible). (2) When the
system raises an alarm, the probability that the number of triggers is less than w is zero. (3) The average
message complexity is O(n logn(w/n)). (4) The average MaxRcvLoad is O(logn(w/n)). As discussed
in Section 4.4 in detail, we conduct analysis under the assumption that κ (�

√
n) is a small constant

positive integer (e.g., 4∼6).

3.1. Failure Probability

The success probability is defined as the probability that the system raises an alarm when w or
more triggers have occurred. The failure probability is the probability that it fails to raise an alarm for
this case, which is equal to 1—(success probability).

DDR-coin operates in multi-round, and raises an alarm when, in the last round, the number
of triggers that the root node has counted is not less than w. Therefore, failure means that it stops
before the last round or a problem occurs in the last round. The success probability can be derived by
multiplying the probability of successful execution of each round. If the success probability is obtained,
the failure probability can be easily calculated.

We first calculate the failure probability of each round and then we calculate the average number
of rounds. From this, we will obtain the success/failure probability of DDR-coin.

3.1.1. Failure Probability for each Round

In this subsection, we calculate the failure probability for each round. Each round works as follows.
First, κ

√
n coins are randomly sent to the nodes at level-(h-1) of the tree-like structure in advance.

Then, for each trigger, a coin is generated with a specific probability (and then is sent from level-h to
level-(h-1)). When n coins are in the nodes at level-(h-1), the root node detects this (by checking that the
array of the root node is full) and goes to the end-of-round procedure. Then, it goes to the next round.

Because the end-of-round routine eventually finishes for every case, the failure occurs in each
round when the leaf nodes at level-h have generated less than n− κ

√
n coin messages, which implies

that the root node’s array is not full and the root is waiting forever. Therefore, the failure probability
for each round is defined as follows; when the number of observed triggers in the n nodes is wi,
the probability of less than n− κ

√
n coin messages are generated.

We show that the failure probability for each round is negligible. Let wi triggers has observed
during round i (1 ≤ i). The random variable X denotes the number of generated coins in i-th round.
Theorem 1 shows that Pr(X < n− κ

√
n) is negligible with the security parameter κ.

Theorem 1. When wi triggers have been observed during round i, the probability of generating less than

n− κ
√

n coin messages is negligible: Pr(X < n− κ
√

n) < exp−
κ2
2 .

Proof. e1, . . . , ewi denote the triggers. Recall that for each trigger, a coin message is generated
with the probability of n

wi
(independent event). Let Xk (1 ≤ k ≤ wi) be the binary random

variable describing for generating a coin message, which is a Bernoulli trial. (1 means successfully
generated, 0 means not generated.) X = ∑wi

k=1 Xk. E(X) = n. By Chernoff–Hoeffding bounds [20],
Pr(X < n− κ

√
n) = Pr(X < (1− κ/

√
n)n) < e−n(κ2/n)/2 = e−κ2/2.

Theorem 1 shows that DDR-coin eventually finishes the round with the negligible failure
probability, e.g., if κ = 5, this probability is 3.726 ∗ 10−6.
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3.1.2. The Average Number of Rounds

We show that the average number of rounds in DDR-coin is O(logn (w/n)) by Theorem 2.

Theorem 2. If i-th round finishes with n− κ
√

n coin messages generated by triggers at the leaf-level (level-h),
the average number of triggers is (1− κ/

√
n)wi.

Proof. e1, . . . , ewi denote the triggers. Recall that for each trigger, the coin message is generated with
the probability of p = n

wi
(independent event). Suppose that n − κ

√
n coin messages have been

generated. Let Y be the number of triggers. Y has Pascal distribution (also known as negative binomial
distribution) [21]. The expectation, E[Y], is (n− κ

√
n)/p = (1− κ/

√
n)wi.

By Theorem 2, after ith round of DDR-coin, the average number of remaining triggers to be
counted is (κ/

√
n)iw. At the begining of the final round f , w f = (κ/

√
n) f−1w in average. In the

final round, in the worst case, w f = n. Therefore, the average number of rounds in DDR-coin is
O(logn (w/n)).

3.1.3. Failure Probability and Success Probability

By Theorems 1 and 2, we get the failure probability of DDR-coin as follows: if the
number of observed triggers is w, DDR-coin detects this with negligible failure probability:
1− (1− e−κ2/2)O(logn (w/n)), e.g., if n = 200, w = 10, 000, and κ = 5, the number of rounds in DDR-coin
is 5 and the failure probability is 1.863 ∗ 10−5. The success probability is 1—the failure probability.

3.2. False Positive Probability

In this paper, the false positive probability means the probability that the number of triggers is less
than w when the system raises an alarm. In DDR-coin, the false positive probability is 0 as DDR-coin
counts the number of triggers that have occurred in the final round and generates an alarm only when
the total number is not less than w.

3.3. Message Complexity

In the ith round of DDR-coin, the total number of messages exchanged among nodes is the
summation of the following.

(i) The number of coins (=κ
√

n), which are predistributed in the nodes at level-(h-1) in advance.
(ii) The average number of generated coins from the n leaf nodes at level-h.

(iii) The average number of overflow-coin messages.
(iv) The number of full-coin messages.
(v) The number of trigger-aggregation messages at the end-of-round procedure.

In the above numbers, (i), (ii), (iv), and (v) are all O(n), i.e., (i): κ
√

n, (ii): n − κ
√

n in
average, (iv): each internal node receives one full-coin message and the number of internal
nodes is (n− 1)/(k− 1), (v): the number of aggregation-request messages is the number of edges
in tree-like structure: (n − 1)/(k − 1) + n − 1 and the number of count-messages is the same:
(n− 1)/(k− 1) + n− 1.

By Appendix B, (iii) the average number of overflow-coin messages is O(n). Therefore, the number
of messages exchanged among nodes in ith round of DDR-coin is O(n) on average.

We already showed that the number of rounds in DDR-coin is O(logn(w/n)) in Section 3.1.2.
Therefore, the overall message complexity of DDR-coin is O(n logn(w/n)) on average.

3.4. MaxRcvLoad

In this subsection, we show that MaxRcvLoad of DDR-coin is O(logn(w/n)) with the
exponentially high probability when k = 2. In the ith round of DDR-coin, the maximal number
of messages in a node is the summation of the following.
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(i) The number of predistributed coins.
(ii) The number of generated coins from the n leaf nodes at level-h.

(iii) The number of overflow-coin messages.
(iv) The number of full-coin messages.
(v) The number of trigger-aggregation messages at the end-of-round procedure.

In the above numbers, (i)+(ii): n coins are independently arrive at n node in average and the
probability of receiving more than 2 coins in a node is Pr(X ≥ (1/n + 1/n)n) ≤ exp(−2/n) by
Chernoff–Hoeffding bounds [20]. (iv): each internal node receives one full-coin message so 1 is
maximum for each node. (v): the maximum number of aggregation-request messages sent/received in
each node is k. That of the count-messages is the same: k.

By Appendix B, (iii) each node at level-j forwards a overflow coin to upper level (j-1) with the
probability of less than 1/2 where the number of nodes at the upper level (j-1) is 1/k times smaller
than that of level-j. This implies that among all nodes, the root node receives the maximum number of
overflow coins: n ∗ ( 1

2 )
h−1, where h = logk(n), i.e., n( 1

2 )
logkn−1.

By summing (i)–(v) and then multiplying the average number of rounds, we get MaxRcvLoad
as follows: (2 + n( 1

2 )
logkn−1 + 1 + 2k)(O(logn (w/n))) = O((n( 1

2 )
logkn−1)(logn (w/n))) with the

exponentially high probability (=1− exp(−2/n)). Especially, if k = 2, MaxRcvLoad is O(logn(w/n))
with the exponentially high probability.

4. Experimental Results

In Section 4.1, we briefly describe the prototype implementation of DDR-coin using NetLogo,
which is one of the most widely used agent-based modeling tools. In Section 4.2, we compare the
analytic results of Section 3 and simulation results. In Section 4.3, we compare the previous work with
DDR-coin using NetLogo. In Section 4.4, we discuss some issues of DDR-coin algorithm.

4.1. Prototype Implementation

In this section, we describe prototype implementation of the proposed algorithm, DDR-coin.
We used NetLogo 6.1.1 (made by Northwestern University, IL, USA) [22] for the simulation. NetLogo
is one of the most widely used agent-based simulation tools. It can be used for a wide range of
topics, such as epidemic protocols, fractals, and topics in the social sciences [22]. In NetLogo, the Logo
programming language is used for modeling. The source code for the prototype implementation is
available at [23].

In NetLogo, simulations are conducted with discrete time steps called ticks. In the simulation
of DDR-coin, a trigger is generated at each tick of the simulation. Each node is represented as an
agent in the simulation. Each node (or agent) executes the algorithms in Section 2.4 at each tick.
We assume that a message sent by a node arrives at the destination node instantaneously. It is also
assumed that the order of messages sent from one node to another node during simulation is preserved.
However, the order of messages sent from multiple nodes to different nodes may change. The message
delay and loss will be handled in future work.

Our simulation code of DDR-coin has a main loop that runs repeatedly. In this main loop, a trigger
is invoked and a node is randomly selected to get this trigger. After receiving this trigger, the node uses
the algorithms in Section 2.4 to handle it: a coin message is generated with a predefined probability
and then sent to another node as described in Section 2.4.

In the set up procedure of the simulation, a k-ary tree-like structure is constructed. The number
of nodes n is defined as kL, where k and L can be selected by the user. In Figure 6, the simulation
screenshot for k = 2, n = 24, κ = 2, and w = 10, 000 is shown.
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Figure 6. An example of DDR-coin simulation using NetLogo when n = 24, κ = 2, and w = 10, 000.

4.2. Comparison of Simulation Results with Mathematical Analysis

In the simulation of DDR-coin, we conducted experiments for various number of nodes while
fixing κ and the number of triggers: w = 10, 000 and κ = 5, which implies the failure probability is
4.472 ∗ 10−5 (n = 64) ∼ 7.453 ∗ 10−6 (n = 2048). In our experiments, we used 3 values for k in k-ary
tree-like structure: 2, 3, and 5. The number of nodes was 2i1 , 3i2 , and 5i3 , where 6 ≤ i1 ≤ 11, 4 ≤ i2 ≤ 5,
and 3 ≤ i3 ≤ 4. We repeated 30 times to get the average value of message complexity, the number of
rounds, and MaxRcvLoad.

Number of rounds: Figure 7 shows the comparison results between the measured number of
rounds in simulation and the calculated one from analysis in Section 3. In this figure, we chose
k = 2, κ = 5, w = 10, 000, and n = 26 ∼ 211. X-axis corresponds to the number of nodes while
y-axis represents the number of rounds. In Figure 7, the dotted line represents the analysis results.
Recall that the number of rounds analyzed in Section 3 is O(logn(w/n)). Among diverse functions
for O(logn(w/n)), we choose 10 · logn(w/n) whose outputs are close to the measured numbers in
simulation, which are represented in the solid line in Figure 7. Similarly, Figure 8 shows the comparison
results on the number of rounds where k = 3, w = 10, 000, κ = 5 and n = 34, 35, 53, 54. As shown in
Figures 7 and 8, the number of rounds from simulation results and that from analysis of Section 3 are
close to each other.
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Figure 7. Numbers of rounds: the measured numbers from simulations and the analysis results from
Section 3 when n = 26 ∼ 211, w = 10, 000. The solid line represents the measured numbers from
simulation. The dotted line (analysis results) represents the function: 10 · logn(w/n).

Figure 8. Numbers of rounds: the measured numbers from simulations and the analysis results from
Section 3 when n = 34, 35, 53, 54, w = 10, 000. The solid line represents the measured numbers from
simulation. The dotted line (analysis results) represents the function: 8 · logn(w/n).

Message complexity: Figure 9 shows the comparison results between the measured message
complexity in simulation and the calculated one from analysis in Section 3. In this figure, we chose
k = 2, κ = 5, w = 10, 000, and n = 26 ∼ 211. X-axis corresponds to the number of nodes where y-axis
represents message complexity. In Figure 9, the dotted-line represents the analysis results. Recall that
message complexity analyzed in Section 3 is O(n logn(w/n)). Among functions for O(n logn(w/n)),
we choose 55 · n logn(w/n) whose outputs are close to the measured numbers in simulation, which are
represented in the solid line in Figure 9. Similarly, Figure 10 shows the comparison results on message
complexity where k = 3 or 5, w = 10, 000, κ = 5 and n = 34, 35, 53, 54 (we chose 35 · n logn(w/n) for
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the dotted line). As shown in Figures 9 and 10, message complexity from simulation results and that
from analysis of Section 3 are close to each other.

Figure 9. Message complexity: the measured numbers from simulations and the analysis results from
Section 3 when n = 26 ∼ 211, w = 10, 000. The solid line represents message complexity measured from
simulation. The dotted line (analysis results) represents the function: 55 · n logn(w/n).

Figure 10. Message complexity: the measured numbers from simulations and the analysis results
from Section 3 when k = 3 or 5, w = 10, 000, and n = 34, 35, 53, 54. The solid line represents message
complexity measured from simulation. The dotted line (analysis results) represents the function:
35 · n logn(w/n).

MaxRcvLoad: Figure 11 shows the comparison results between the measured MaxRcvLoad
from simulation and the calculated one from analysis in Section 3. In this figure, we chose
k = 2, κ = 5, w = 10, 000, and n = 26 ∼ 211. X-axis corresponds to the number of nodes while y-axis
represents MaxRcvLoad. In Figure 11, the dotted-line represents the analysis results. Recall that



Sensors 2020, 20, 6446 15 of 24

MaxRcvLoad analyzed in Section 3 is O(logn(w/n)). Among functions for O(logn(w/n)), we choose
100 · logn(w/n) whose outputs are close to the measured numbers in simulation, which are represented
in the solid line in Figure 11. Similarly, Figure 12 shows the comparison results on the number of
rounds where k = 3 or 5, w = 10, 000, κ = 5 and n = 34, 35, 53, 54. As shown in Figures 11 and 12,
MaxRcvLoad from simulation results and that from analysis of Section 3 are close to each other.

From measured message complexity, the average number of exchanged messages for each node is
35 · logn(w/n) ∼ 55 · logn(w/n). Compared with this, the measured MaxRcvLoad, 100 · logn(w/n) ∼
130 · logn(w/n), is not so big, which implies that (roughly speaking) message load is evenly distributed
among nodes.

Figure 11. MaxRcvLoad: the measured numbers from simulations and the analysis results from
Section 3 when n = 26 ∼ 211, w = 10, 000. The solid line represents MaxRcvLoad measured from
simulation. The dotted line (analysis results) represents the function: 100 · logn(w/n).

Figure 12. MaxRcvLoad: the measured numbers from simulations and the analysis results from
Section 3 when k = 3 or 5, w = 10, 000, and n = 34, 35, 53, 54. The solid line represents MaxRcvLoad
measured from simulation. The dotted line (analysis results) represents the function: 130 · logn(w/n).
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4.3. Comparison with Previous Work

In this section, we compare the simulation results of DDR-coin with those of previous work.
Among the previous schemes, we chose CoinRand [2], TreeFill [17], and RingRand [2], which show
the best performance in terms of message complexity and MaxRcvLoad. In the simulation, we set
the parameters as follows: w = 10, 000, n = 2i (5 ≤ i ≤ 11), and κ = 5, which implies the failure
probability of DDR-coin is 1.178 ∗ 10−4 (n = 32) ∼ 7.453 ∗ 10−6 (n = 2048).

Figure 13 shows the number of rounds measured in simulations of TreeFill, DDR-coin, CoinRand,
and RingRand. For n ≤ 64, DDR-coin has the largest number of rounds since small n violates our
assumption, κ �

√
n.

Except for this region, the number of rounds in DDR-coin is significantly smaller than that of
CoinRand. CoinRand requires 2.3 to 7.3 times more than DDR-coin. We think that DDR-coin uses a
complex tree-like structure and probabilistic algorithms, both of which reduce the number of rounds.

In Figure 13, if n ≥ 64, the number of rounds in TreeFill is about 0.85 ∼ 2 times bigger than that
of DDR-coin. If the number of nodes is relatively small (i.e., less than about 90), TreeFill has smaller
number of rounds than DDR-coin. As the number of nodes increases, DDR-coin uses fewer rounds
compared to TreeFill.

Note that in RingRand, the number of rounds is O(log w) for all n [2]. In the simulation results,
the measured number of rounds is about 14∼15, which fits well with log2(10000) = 13.3. For n > 256,
we were unable to conduct experiments on RingRand due to rapid increase of message complexity.

Figure 13. Comparison of the numbers of rounds of DDR-coin, TreeFill, CoinRand, and RingRand
when the number of nodes are 2i where 5 ≤ i ≤ 8. The number of triggers is w = 10, 000.

Figure 14 shows the total number of messages used in TreeFill, DDR-coin, CoinRand, and
RingRand. As shown in this figure, when n < 152, among them TreeFill uses the smallest number
of messages. For n ≥ 152, DDR-coin has the smallest number of messages. As the number of
nodes increases, the difference in message complexity also increases. Especially, RingRand shows the
fastest increase.

In the case of CoinRand and DDR-coin, if n < 64, DDR-coin uses more messages due to violation
of our assumption, κ �

√
n. If the number of nodes increases, DDR-coin uses a much smaller

number of messages than CoinRand. When the number of nodes is 256, DDR-coin uses about 1/3 less
messages than CoinRand. If the number of nodes is 512, CoinRand uses about 4 times the messages
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compared to DDR-coin. The reason why CoinRand requires more messages is that CoinRand uses
(about 2.3∼7.3 times) more rounds than DDR-coin.

TreeFill uses less messages than DDR-coin if n < 152. For large n, DDR-coin uses fewer messages
than TreeFill. When the number of nodes is 512, DDR-coin uses 68.4% of messages compared to TreeFill.
From this, we think that TreeFill is better than DDR-coin for the case when the number of nodes is not
so large.

Figure 14. Comparison of the numbers of messages of DDR-coin, TreeFill, CoinRand, and RingRand
when the number of nodes are 2i where 5 ≤ i ≤ 10. The number of triggers is w = 10, 000.

Figure 15 shows the comparison of MaxRcvLoad of TreeFill, DDR-coin, CoinRand, and RingRand.
For 64 ≤ n ≤ 2048, CoinRand uses 1.42 ∼ 3.37 times MaxRcvLoad compared to DDR-coin, and this
difference increases as the number of nodes increases. MaxRcvLoad is affected by the number of rounds
because it is the maximum of the number of messages received by each node while the algorithm is
running. As shown in Figure 13, CoinRand requires 2.3 ∼ 7.3 times more the number of rounds than
DDR-coin. DDR-coin uses more messages for each round than CoinRand but the number of rounds is
smaller, which explains that MaxRcvLoad of DDR-coin is about 1.42 ∼ 3.37 times smaller compared to
that of CoinRand.

TreeFill shows a smaller MaxRcvLoad than that of DDR-coin when n is less than about 180.
However, as the number of nodes increases, DDR-coin uses fewer rounds than TreeFill, and thus
MaxRcvLoad is also smaller than TreeFill. As for RingRand, MaxRcvLoad is much larger than
other algorithms. We think that this is partially because our implementation is not fully optimized.
Aside from implementation inefficiencies, we expect that MaxRcvLoad of RingRand is much higher
than other algorithms since the analytic result of MaxRcvLoad is O(n log n log w) [2], which is much
higher than other schemes.
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Figure 15. Comparison of MaxRcvLoad of DDR-coin, TreeFill, CoinRand, and RingRand when the
number of nodes is 2i where 5 ≤ i ≤ 8. The number of triggers is w = 10, 000.

4.4. Discussion

In this subsection, we discuss some issues on DDR-coin algorithm: no-message drops, mean
time to detect the global changes, relation of κ and message complexity, and demerit of DDR-coin.
As for no-message drops, this assumption is adopted from most of the previous work [2,17,18] due
to simplification of analysis. If the DTC algorithm is designed to allow message drops, message
complexity will be higher and sometimes it has two-sided failures: even if less than w triggers are
detected, it produces a false alarm. One of the easiest ways to allow some message drops is to establish
reliable communication, e.g., challenge-and-response and retransmission. Otherwise, we can send
coin messages for multiple nodes for redundancy, which also incurs extra communication overhead.
(We leave the enhancement of DDR-coin to allow message drops while minimizing communication
load for future work.)

For mean time to detect the global changes, inherently all DTC algorithms have some delay:
when w triggers occurs, they detect this after some time. This is because all DTC algorithms have
no false positives and focus on minimizing message complexity, MaxRcvLoad, and MaxMsgLoad.
If we try to minimize this delay, it will cause additional communication overhead or lose accuracy.
Therefore, this trade-off is another important research topic, which we also leave for future work.

κ affects the failure probability and message complexity. In DDR-coin algorithm, as κ is increased,
message complexity also is increased, which is shown is Figure 16. (MaxRcvLoad has the similar
property.) However, in the practical point of view, we do not need to use large κ: if the number of nodes
is not too small and if we choose appropriate κ (e.g., κ = 4, 5, 6), the failure probability is extremely low
while message complexity is much lower than the previously known best algorithms [2,17], which is
shown in Section 4.3.

Compared to the previously-known best algorithms [2,17], the DDR-coin algorithm has the
disadvantage that if n is not significantly greater than κ2 (e.g., κ = 5, n ≤ 32 ∼ 64), message complexity
and MaxRcvLoad is similar or even bigger.
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Figure 16. Message complexity over different κ values in DDR-coin: n = 23 ∼ 211, w = 10, 000.

5. Related Work

DTC algorithms can be used as a building block for consistent global snapshots [3]. By using
efficient DTC algorithms, the message complexity for storing global snapshots can be largely reduced
compared with conventional global snapshot algorithms [12–16]. In conventional global snapshot
algorithms, the message complexity of channel state recording is typically O(n2). By using DTC
algorithms, we can reduce the cost for channel state recording in global snapshots, where the message
complexity is O(n log(w/n)) [3].

Garg et al. proposed three DTC algorithms and proved the lower bound of message complexity for
general DTC algorithms [3], where the lower bound of DTC algorithms is O(n log(w/n)). One of their
algorithms shows an optimal message complexity, but it uses a centralized approach and MaxRcvLoad
of this DTC algorithm is not bounded.

Chakaravarthy et al. proposed a near optimal DTC algorithm called LayeredRand [1]. The message
complexity and MaxRcvLoad of this algorithm are O(n log n log w) and O(log n log w), respectively [1].
In [2], they proposed two DTC algorithms, which can be considered as an improvement of [1].
The DTC algorithms they proposed are called CoinRand and RingRand, respectively [2]. The message
complexity and MaxRcvLoad of CoinRand are O(n(log w + log n)) and O(log w + log n), respectively.
This algorithm is based on a network topology similar with binary trees. They use a randomized
technique in CoinRand during the message-aggregation process. As a result, it shows better
performance than their previous work, LayeredRand [1]. The message complexity and MaxRcvLoad
of RingRand are O(n log n log w) and O(log n log w), respectively.

Kim et al. proposed an optimal DTC algorithm [17]. The message complexity and MaxRcvLoad
of their algorithm are O(n log(w/n)) and O(log(w/n)), respectively. This is also based on a network
topology similar with the tree structure.

Emek and Korman proposed DTC algorithms with more generalized assumptions on
communications between nodes [18]. They proposed two DTC algorithms. The message complexity
of one algorithm they proposed is O(n log w(log log n)2), but MaxRcvLoad of this algorithm is not
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analyzed. The message complexity and MaxRcvLoad of the other algorithm are O(n(log w log n)2)

and O((log w log n)2), respectively.
Kshemkalyani proposed a hypercube-based algorithm for global snapshots [24]. The number

of messages used in the hypercube-based algorithm is O(n log n), which is lower than the
optimal message complexity of DTC algorithms, O(n log(w/n)). However, the message size in
hypercube-based algorithm is O(n) whereas that of DTC algorithms is O(1).

Tsai proved the lower bounds of message complexity for global snapshot algorithms based on the
general grid interconnection network, which is generalization of hypercube-based network [25].

Chang et al. proposed a DTC algorithm for arbitrary network topology [19]. The algorithm they
proposed is mainly focused on wireless sensor networks (WSNs) in which network topology cannot be
known in advance. In the worst case, their algorithm uses x(ndlog w−n

n2−n / log n
n−1e+ n2 − 1) messages

to solve the DTC problem, where x is twice the number of edges in a WSN.

6. Conclusions

In this paper, we proposed an efficient probabilistic Distributed Trigger Counting (DTC) algorithm,
DDR-coin (Deterministic Detection of Randomly generated coins). Even though DDR-coin has a
negligible (one-sided) failure probability, the number of exchanged messages to detect w trigger is
lower than that of optimal deterministic DTC algorithms: the message complexity of DDR-coin
is O(n logn(w/n)) on average and the MaxRcvLoad of DDR-coin is O(logn(w/n)) on average.
We implemented prototype of DDR-coin using NetLogo 6.1.1 and then measured the message
complexity and MaxRcvLoad to compare analytic results, which shows that the analytic results are
close to the measured data. We also implemented CoinRand, RingRand, and TreeFill using NetLogo
6.1.1 for comparison. Experimental results show that DDR-coin shows the best performance for
most of the cases. When the number of nodes is small, TreeFill is better than DDR-coin. In our
experiments, message complexity and MaxRcvLoad of RingRand are greater than those of other
algorithms. Our algorithm can be useful for taking global snapshots for large scale distributed systems
and for detecting significant events in the distributed system with sensors. The future work includes
precise analysis on the number of overflow-coin messages and implementation of library packages
to cope with diverse real-life issues (including node failure, message delay/lost, and limitation on
network topology).
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Appendix A

In this appendix we show a detailed example of Rounds 1 and 2 of our DDR-coin algorithm.

• Initial condition: w = 81, n = 9, κ = 2. The tree-like structure is shown in Figure 1.
• Round 1 starts:

– (Section 2.4.1:) w1 = w = 81.
– (Section 2.4.2:) κ

√
n = 2

√
9 = 6 coins are pre-distributed at level-1, which is shown in

Figure 3. As node-2 has 3 coins, its array, d2.cns[], is full and a full-coin is sent to the
root (node-4).

– (Section 2.4.1:) Note that in Round 1, for each detected trigger, a coin is generated with the
prob. of n/w1 = 9/81 = 1/9.
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– (Section 2.4.1:) Suppose that all nodes have detected 9 triggers, which implies that a coin is
generated and sent to level-1, e.g., node-5.

– (Section 2.4.1:) Suppose that all nodes have detected 9 triggers, which implies that a coin is
generated and sent to level-1, e.g., node-8. Now, node-8’s array, d8.cns[], is full, so a full-coin
is sent to node-4 (Section 2.4.2).

– (Section 2.4.1:) Suppose that all nodes have detected 9 triggers, which implies that a coin is
generated and sent to level-1, e.g., node-2. Since node-2 is already full, an overflow-coin is sent
to node-4 (Section 2.4.2). This coin is forwarded to node-5. After receiving this coin, node-5’s
array, u5.cns[], is now full. Hence, a full-coin is sent to the root, node-4.

– The root, node-4, has received 3 full-coins and its array, u4.cns[], is full. (Section 2.4.2:)
Therefore, node-4 initiates the end-of-round procedure.

– In End-of-round procedure (Section 2.4.3), the root knows that in Round 1, ŵ1 = 27 triggers
have been detected. w2 = w1 − ŵ1 = 81− 27 = 54. It goes to Round 2.

• Round 2 starts:

– (Section 2.4.1:) w2 = 54.
– (Section 2.4.2:) κ

√
n = 2

√
9 = 6 coins are predistributed at level-1, which is shown in Figure 3.

As node-2 has 3 coins, its array, d2.cns[], is full and a full-coin is sent to the root (node-4).
– (Section 2.4.1:) Note that in Round 2, for each detected trigger, a coin is generated with the

prob. of n/w2 = 9/54 = 1/6.
– (Section 2.4.1:) Suppose that all nodes have detected 6 triggers, which implies that a coin is

generated and sent to level-1, e.g., node-5.
– (Section 2.4.1:) Suppose that all nodes have detected 6 triggers, which implies that a coin is

generated and sent to level-1, e.g., node-8. Now, node-8’s array, d8.cns[], is full, so a full-coin
is sent to node-4 (Section 2.4.2).

– (Section 2.4.1:) Suppose that all nodes have detected 6 triggers, which implies that a coin is
generated and sent to level-1, e.g., node-2. As node-2 is already full, an overflow-coin is sent
to node-4 (Section 2.4.2). This coin is forwarded to node-5. After receiving this coin, node-5’s
array, u5.cns[], is now full. Therefore, a full-coin is sent to the root, node-4.

– The root, node-4, has received 3 full-coins and its array, u4.cns[], is full. (Section 2.4.2:) Hence,
node-4 initiates the end-of-round procedure.

– In End-of-round procedure (Section 2.4.3), the root knows that in Round 1, ŵ2 = 18 triggers
have been detected. w3 = w2 − ŵ2 = 54− 18 = 36. It goes to Round 3.

Appendix B

In this appendix, we show that when the number of nodes is n, the average number of
overflow-coin messages sent in each round is O(n).

Lemma A1. When a node receives a coin/an overflow coin from the lower level, the probability of sending an
overflow-coin to the upper level is less than 1/2.

Proof. (sketch) Recall that on the k-ary tree-like structure, the average number of coins arrives at the
level-(h-1) nodes is n.

First, we show that the probability of occurring an overflow-coin message when a coin arrives
at a node at level-(h-1) is less than 1/2. There are n/k nodes in level-(h-1), and each node has an
array of size k. When a coin arrives at a node, an overflow-coin occurs if the array is already full
(i.e., all entries are true). The overflow-coin goes up to the upper level and eventually is put in an
empty (=false) entry in the array of another node at level-(h-1). Because the node is randomly selected
when going-up, this overflow-coin enters a randomly selected one of the empty entries in the arrays of
level-(h-1) nodes.

For the same n, if the k value in the k-ary tree-like structure decreases, the probability of generating
an overflow-coin message increases (e.g., in the extreme case, if k = n, there is 1 node and the array
size is n so no overflow occurs at all. If reduced to k = 3, the number of nodes is n/3. The array size of
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each node is 3. If 3 coins arrive at one node, it is full, and overflow occurs when another coin arrives.
If k is further reduced to 2, the probability increases.).

Consider the case where k = 1 (even though we cannot build the tree-like structure and this does
not exactly match our scheme, we can still calculate the probability of occurring overflow because we
only focus on the bottom level). If we show that the expected value of the probability of an overflow is
less than 1/2, then, for all k > 1, we can see that this probability is also less than 1/2.

Assume k = 1. There are n nodes at level-(h-1). Because k = 1, the array size is 1 and when a coin
arrives at a node, the array becomes full. When two or more coin messages are received for each node,
overflow occurs and coins (except for the first one) are delivered to another nodes.

When the first coin arrives at a node, the probability of overflow occurring is 0. When the second
coin arrives, the probability that an overflow will occur is (1/n) because it accidentally goes to the
node containing the first coin, and the overflow-coin goes to the randomly selected one of the not-yet
fully filled nodes. When the third coin arrives, the probability that an overflow will occur is (2/n)
(when entering one of the two nodes for the preceding two coins), and then the overflow-coin goes to
the another not-yet fully filled node.

Therefore, the expected value of the probability of occurring an overflow when n coins has arrived
is (0 ∗ 1 + 1 ∗ 0) + ((1/n) ∗ 1 + ((n− 1)/n) ∗ 0) + ((2/n) ∗ 1 + ((n− 2)/n) ∗ 0) + . . . + ((n− 1)/n ∗
1 + (1/n) ∗ 0) = (1/2)(n− 1)/n < 1/2. Therefore, when k > 1, the probability of overflow-coins
occurring at level-(h-1) level is less than 1/2.

Now, when an overflow-coin arrives at a node of level-(h-2), we show that the probability that
the overflow coin will be forwarded to the upper level is also less than 1/2. There are n/k2 nodes in
level-(h-2), and the size of the array of each node is k. One entry in the array becomes true when a
full-coin arrives. A full-coin means that the corresponding subtree is full (the array of all nodes of
the subtree’s level-(h-1) is full with true). As mentioned in the above, as subtrees are randomly filled,
a full-coin arrives randomly at one of the level-(h-2) nodes. (The total number of full-coins arriving is
exactly n/k.)

When an overflow-coin arrives at a node, the coin is forwarded to the upper level when the
array is full (with true). For the same n, the probability of forwarding the overflow-coin increases as k
becomes smaller, which is just the same as at level-(h-1), i.e., if the value of k increases, the sizes of
each subtree grows and the probability that k subtrees are full decreases.

For ease of analysis, we assume that k overflow-coins occur together and are processed together
(actually, they are generated/processed one by one. When we analyze this for each overflow-coin
we would complete full-proof, which we leave as future work). k overflow-coins arrive together at a
randomly selected node of level-(h-2) and if it is full, it is eventually forwarded together to another
node at level-(h-2) that is not yet full and then one entry in the array in that node is filled with the
true value.

Consider the case when k = 2. The number of nodes at level-(h-2) is n/4, the array size of each
node is 2. The number overflow-coins arriving at level-(h-2) is at most n ∗ (1/2). Therefore, the number
of 2-overflow-coins is n/4, so this is exactly the same case for the level-(h-1) when k = 2 and the
number of nodes is n/2. Thus, the probability of forwarding an overflow-coin is less than 1/2 for k = 2
and when k > 2, the probability that an overflow coin is forwarded is also less than 1/2.

Similarly, it can be analyzed in the same way at all level-j (1 ≤ j ≤ h− 1) and the probability of
forwarding an overflow-coin to the upper level is less than 1/2.

From Lemma A1, we can prove the following theorem on the average number of
overflow-coin messages.

Theorem A1. When the number of nodes is n, the average number of overflow-coin messages in each round
is O(n).
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Proof. Let F̄ be the random variable which represents the number of overflow-coin messages when
an overflow-coin is initially forwarded from a node in level-(h-1), repeatedly forwarded to a node in
level-(h−m), and then eventually sent to a node in level-(h-1).

From Lemma A1, when a coin is forwarded from level-(h-1) to level-(h − m) and to
level-(h-1) again, the number of overflow-coin messages is 2m and the probability for this case is
Pr(F̄ = 2m) < 1/2m.

We can get the bound of E(F̄) as follows,

E(F̄) <
h

∑
m=1

2m(1/2)m = 4− 21−hh− 22−h < 4.

Because nodes at level-(h-1) receive n coins (from level-h), nF̄ is the number of coin forwardings
when n coins are sent to nodes at level-(h-1), and E(nF̄) < 4n. This implies that the average number of
overflow-coins for each round is O(n).
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