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With the emergence of next-generation sequencing (NGS) technology, there have been
a large number of metagenomic studies that estimated the bacterial composition via
16S ribosomal RNA (16S rRNA) amplicon sequencing. In particular, subsets of the
hypervariable regions in 16S rRNA, such as V1–V2 and V3–V4, are targeted using high-
throughput sequencing. The sequences from different taxa are assigned to a specific
taxon based on the sequence homology. Since such sequences are highly homologous
or identical between species in the same genus, it is challenging to determine the
exact species using 16S rRNA sequences only. Therefore, in this study, homologous
species groups were defined to obtain maximum resolution related with species using
16S rRNA. For the taxonomic assignment using 16S rRNA, three major 16S rRNA
databases are independently used since the lineage of certain bacteria is not consistent
among these databases. On the basis of the NCBI taxonomy classification, we re-
annotated inconsistent lineage information in three major 16S rRNA databases. For
each species, we constructed a consensus sequence model for each hypervariable
region and determined homologous species groups that consist of indistinguishable
species in terms of sequence homology. Using a k-nearest neighbor method and the
species consensus sequence models, the species-level taxonomy was determined. If
the species determined is a member of homologous species groups, the species group
is assigned instead of a specific species. Notably, the results of the evaluation on our
method using simulated and mock datasets showed a high correlation with the real
bacterial composition. Furthermore, in the analysis of real microbiome samples, such
as salivary and gut microbiome samples, our method successfully performed species-
level profiling and identified differences in the bacterial composition between different
phenotypic groups.
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INTRODUCTION

Metagenomics has been widely used to analyze microbial
communities without cultivating strains (Breitbart et al., 2003;
Schloss and Handelsman, 2003; Handelsman, 2004; Petrosino
et al., 2009; Qin et al., 2010; Peng et al., 2019; Yang L. et al., 2019;
Brumfield et al., 2020; Chung et al., 2020; Khachatryan et al.,
2020). Moreover, the 16S ribosomal RNA (16S rRNA) gene has
been regarded as an informative resource for the identification of
the species and the estimation of bacterial composition as it has
both well-conserved and hypervariable regions among different
species. Thus, the conserved regions can be used as primers
to target specific hypervariable regions using targeted amplicon
sequencing (Petrosino et al., 2009), whereas the hypervariable
regions can be used to identify bacterial taxonomy using the
sequence similarities between different species. Although the
16S rRNA gene is a useful material to identify bacteria, it is
challenging to completely discriminate species since 16S rRNA
genes are identical or highly homologous between some different
species. Genome comparisons by DNA–DNA hybridization or
genome sequence comparison (ANI analyses) were needed to
assign an exact species (Cho and Tiedje, 2001; Ciufo et al., 2018).

Using 454 pyrosequencing (Petrosino et al., 2009; Cummings
et al., 2013) and Illumina MiSeq technology (Wen et al., 2017;
Ravi et al., 2018; Sessou et al., 2019), 16S rRNA analysis
pipelines were built to estimate the bacterial composition of
different species (Turnbaugh et al., 2007; Jumpstart Consortium
Human Microbiome Project Data Generation Working Group,
2012). While attempts are being made to analyze the entire
16S rRNA sequence via long-read sequencing using PacBio
(Quail et al., 2012) or Oxford Nanopore (Winand et al., 2019)
technology, the high error rates and costs limit their practical
utility. When estimating bacterial composition using targeted
amplicon sequencing, the results might differ depending on
the choice of hypervariable regions, such as V1–V2 or V3–
V4. Therefore, selecting appropriate hypervariable regions for
analysis is important. Several studies have been conducted
to investigate the manner in which the analysis of different
variable regions affects the estimation of bacterial composition
(Sun et al., 2013; Johnson et al., 2019).

The 16S rRNA analysis pipeline involves preprocessing,
clustering [operational taxonomic units (OTU) picking],
assigning taxonomy, and estimating the bacterial composition.
Although most of the sequencing errors are filtered out at
the preprocessing step, there are still some sequencing errors
that remain. To overcome these errors and strain variations,
processed reads are clustered into OTUs using a 97 or 99%
sequence similarity threshold. Since sequences belonging to
the same OTU are considered to be derived from the same
clade, OTU clustering directly affects the estimation of bacterial
composition. Therefore, several clustering algorithms have been
developed to overcome strain variation and sequencing errors.
For example, the UPARSE algorithm (Edgar, 2013) clusters
sequences on the basis of sequence similarity, whereas the
Minimum Entropy Decomposition (MED) (Eren et al., 2015)
and DADA2 (Callahan et al., 2016) algorithms cluster sequences
via the association of position-specific variations. For taxonomy

assignment, classifiers such as MEGAN (Huson et al., 2007),
RDP naïve Bayesian classifier (Wang et al., 2007), Kraken (Wood
and Salzberg, 2014), and SPINGO (Allard et al., 2015) were
developed. Thus, not only the classifier but also the 16S rRNA
database is important for accurate taxonomical classification.
There are currently three major 16S rRNA databases that are
widely used, namely GreenGenes (DeSantis et al., 2006), SILVA
(Quast et al., 2013), and RDP (Cole et al., 2014). However,
although new bacterial taxa continue to be reported, these three
databases have not been updated for over 2 years. Furthermore,
the lineage of some bacteria is not consistent among these three
databases (Balvociute and Huson, 2017; Edgar, 2018a).

In this study, we re-annotated the inconsistent or mislabeled
taxa in the three 16S rRNA databases on the basis of the
NCBI taxonomy classification. The 16S rRNA sequences were
combined from the re-annotated GreenGenes, SILVA, and NCBI
databases to include species that exist exclusively in each database
or were recently annotated. In the evaluation of taxonomy
classification, the classifier trained with all three databases
showed the best accuracy in terms of precision and recall rates.
Moreover, taxonomic separability was measured for the V1–
V2 and V3–V4 hypervariable regions at the genus and species
level. For each species, we constructed consensus sequences
for each hypervariable region and determined indistinguishable
species. By comparing the consensus sequences of each species,
homologous species groups in which the species share high
similarity were constructed for each hypervariable region, which
was then used for the species-level taxonomy assignment. The
evaluation performed using simulated datasets and mock datasets
showed a high correlation with the real bacterial composition.
Moreover, when analyzing real microbiomes, such as the salivary
and gut microbiome, our method successfully performed species-
level profiling to identify differences in bacterial composition
between different phenotypic groups.

MATERIALS AND METHODS

Re-annotating the 16S rRNA Sequence
Databases
To investigate the taxonomy consistency, GreenGenes v13.5,
SILVA v132, and RDP v11.5 databases were used. As quality
control, sequences whose length range in three times the
standard deviation from the mean without any ambiguous
nucleotide (e.g., N) were used. Out of 1,242,330, 1,861,373, and
3,196,041 sequences obtained from GreenGenes, SILVA, and
RDP databases, respectively, 1,191,315, 1,779,305 and 1,559,121
sequences were retained for the re-annotation after quality
control process (Supplementary Table 1).

To apply the latest version of NCBI taxonomy, NCBITaxa
class in the ete3 python package (Federhen, 2012; Huerta-Cepas
et al., 2016) was used with NCBI taxdump downloaded on
January 3, 2020. The taxonomy tree with seven taxonomic ranks
(superkingdom, phylum, class, order, family, genus, and species)
was used in this re-annotation.

Each 16S rRNA sequence was re-annotated using the taxon
at the lowest taxonomy rank in the database (Figure 1 and
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FIGURE 1 | The workflow of this study. (A) The taxonomy of 16S rRNA sequences in GreenGenes, SILVA, and RDP databases was re-annotated according to the
NCBI taxonomy. (B) GreenGenes, SILVA, and NCBI databases were combined. RDP database was excluded since they have no species annotation. (C) Consensus
sequences of each species were made by hypervariable region sequences extracted from the combined databases. By clustering consensus sequences within 99%
sequence similarity, homologous species groups were established. (D) OTU tables were made in a conventional manner. (E) The taxonomy assignment from phylum
to genus-level was processed by the RDP naïve Bayesian classifier re-trained using the combined database. (F) The species-level classification was processed by
searching sequences against the consensus database. Sequences were labeled as the representative species of the homologous species group that includes the
best hit of the sequence.

Supplementary Figure 1). To identify the lowest rank, the
provided taxa were searched from species to superkingdom. For
each rank, the taxid was returned if it was found using the

get_name_translator() function in NCBITaxa class. Otherwise,
that rank was skipped. When the species name was specified
with the strain name at the species rank, only the species name
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was used. Since Escherichia and Shigella species have essentially
identical 16S rRNA sequences, sequences labeled as Escherichia
or Shigella were collectively labeled as Escherichia.Shigella.

Gathering the 16S rRNA Sequences
From the Genomes in the NCBI RefSeq
Database
The genomes assembled at the complete-level or chromosome-
level were downloaded from the ftp site of the NCBI RefSeq
database1. The information for each genome is listed in the
assembly_summary_refseq.txt file (downloaded on July 16, 2019).
In the generic feature file (GFF), the regions where the feature
is described as “rRNA” and the product as “16S ribosomal RNA”
were identified as the 16S rRNA sequences and extracted from the
genome. Thus, we obtained 78,270 16S rRNA sequences from the
16,337 genomes analyzed. As quality control, the same filtering
step was performed for the sequences extracted and 77,803 16S
rRNA sequences were retained to train the classifier and generate
consensus models.

Simulating the Hypervariable Regions
From the 16S rRNA Sequences
The 27F/308R and 337F/806R primer pairs are widely used
to target the hypervariable regions V1–V2 and V3–V4,
respectively, for Illumina MiSeq amplicon sequencing. The
fragment sequences of the hypervariable regions were simulated
by extracting the sequences between the forward and backward
primers from the 16S rRNA sequences using cutadapt (Martin,
2011). Moreover, an error level of 20% (i.e., 2–3 nt mismatches)
was allowed when matching the primer sequences. The mean
and standard deviation of the extracted fragment length were
also calculated. Fragments longer or shorter than twice the
standard deviation from the mean value were ignored. Fragments
containing “N” were also ignored (Supplementary Table 2).

Constructing Homologous Species
Groups for Each Hypervariable Region
To determine which species are distinguishable by their 16S
rRNA sequences, sequence similarities between species belonging
to the same genus were calculated. A consensus sequence of the
strains belonging to the same species was obtained using the
“cons” function in EMBOSS v6.6.0 (Olson, 2002) with the default
parameter settings. Pairwise sequence similarities were measured
between the consensus sequences of each pair of species using the
Needleman–Wunsch algorithm (Needleman and Wunsch, 1970)
implemented in the “needle” function in EMBOSS v6.6.0 with the
default parameter settings.

On the basis of the sequence similarity of the consensus
sequences, homologous species groups that shared 99% or
higher sequence similarity were constructed. The species in a
homologous species group were considered indistinguishable by
their 16S rRNA sequences. To name the homologous species
group, the species in the group with the largest number of strains
were selected and extended with a “+” sign.

1ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/

Simulating Amplicon Sequences From
the Bacterial Genomes
Amplicon sequences for the V3–V4 hypervariable region were
simulated from the bacterial reference genomes using Grinder
(Angly et al., 2012). To target the V3–V4 hypervariable
region, the 337F (CCTACGGGAGGCWGCAG) and 806R
(GACTACHVGGGTMTCTAAT) primer sequences were used.
For abundance models, the uniform, linear, and power-law with
parameter 1 and 2 models were used. Amplicon sequences were
simulated with a uniform 0.5% error model (-md uniform 0.5)
and a length distribution of 421 ± 11 bp (-rd 421 uniform 11).
Only the forward strands were used (-un 1), and the coverage fold
was set to 1,000 (-cf 1000). Moreover, we considered copy number
bias but not genome length bias (-cb 1 and -lb 0). All other
parameters (i.e., those not mentioned above) were set as default.

Preprocessing of the Illumina Amplicon
Sequencing Reads
The 16S rRNA genes were sequenced using the Illumina MiSeq
sequencer, and paired-end reads were generated and merged
on the basis of their overlapping region. Each read pair was
assembled using FLASH (Magoc and Salzberg, 2011) with the
default parameter settings except for a minimum overlap of 20 bp
(-m 20) and maximum overlap of 300 bp (-M 300). Assembled
contigs (including “N”) were removed using an in-house script.
Merged fragments longer than twice the standard deviation from
the mean of the hypervariable region length (mean and standard
deviation of the V3–V4 region were 421 and 11 nt, respectively)
were also removed using Sickle. The mean and standard deviation
of the V3–V4 region length were calculated from the sequences in
the GreenGenes database.

Constructing the OTUs and Determining
Their Taxonomy Assignment
The classification of the 16S rRNA sequence was performed
according to the conventional classification approach (Figure 1).
Preprocessed reads were clustered into OTUs using cd-hit-
est (Fu et al., 2012). Cd-hit-est was used with the following
parameter settings: no memory limitation (-M 0), word size 10
(-n 10), cluster into the most similar cluster (-g 1), and a 99%
sequence similarity threshold (-c 0.99). The other parameters
were set as default. Each representative sequence was classified
using the RDP naïve Bayesian classifier trained with our
combined database.

RESULTS AND DISCUSSION

Refinement of Inconsistent Taxonomy
Annotation in 16S rRNA Databases
Using the 16S rRNA sequences from three major 16S rRNA
databases, we investigated the consistency of the taxonomic
lineage annotation. When we compared the taxonomic lineage
annotations provided by the three 16S rRNA databases, we
found that the same genus or species was often annotated with
a different lineage. Out of the 1,122, 4,985, and 2,191 genera
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included in the GreenGenes v.13.5, SILVA v.132, and RDP
v.11.5 databases filtered, respectively, 183, 2,794, and 68 were
exclusive to each database (Supplementary Figure 2A). Notably,
out of the 853 genera included in all three databases, only 288
were annotated with the same lineage. Moreover, 112 genera
were annotated with different lineages in all three databases.
For example, the order of Mycobacterium was annotated as
Actinomycetales in the GreenGenes and RDP databases but
as Corynebacteriales in the SILVA database. The order of
Corynebacterium was also annotated as Actinomycetales in the
GreenGenes and RDP database but as Corynebacteriales in the
NCBI taxonomy classification. Taxonomy reclassification also
resulted in inconsistent taxonomic lineage annotation among the
three databases. For example, Propionibacterium was originally
identified as Bacillus but was later renamed as Propionibacterium
(Douglas and Gunter, 1946). However, it was recently reclassified
as Cutibacterium (Dreno et al., 2018).

We re-annotated the three major 16S rRNA databases based
on NCBI taxonomy since inconsistencies between the databases
could produce different bacterial composition profiles depending
on the choice of database. Using the sequences filtered from
GreenGenes, SILVA, and RDP databases, 667,528 (56%), 907,944
(51%), and 1,275,668 (82%) sequences were re-annotated in
this study, respectively (Supplementary Table 1). As a result,
we obtained 879 genera with the same lineage annotation
among three databases (Table 1, Supplementary Figure 2B),
compared to the 288 genera identified before the refinement step
(Supplementary Figure 2A). Only four genera existed exclusively
in the GreenGenes, 15 genera in the RDP, and 955 genera in the
SILVA database (Supplementary Figure 2B).

After the re-annotation, the sequences from GreenGenes
and SILVA databases were used in our classification method
(Figure 1B). The RDP database was excluded since species-
level annotation was not provided. In addition, the 16S rRNA
sequences extracted from the complete genomes in the NCBI
RefSeq database were included. In total, 823,937, 1,306,532,
and 77,410 sequences with the genus-level annotation from
GreenGenes, SILVA, and NCBI, respectively, were used in our
classification method (Supplementary Table 1).

Genus-Level Profiling Using the
Combined Database
For the genus-level taxonomy assignment, the RDP naïve
Bayesian classifier was retrained with the sequences re-annotated

TABLE 1 | The number of taxa for each taxonomic rank after re-annotation.

Green genes SILVA RDP NCBI

Superkingdom 1 1 1 1

Phylum 40 62 49 40

Class 72 85 73 72

Order 163 210 173 164

Family 355 495 380 358

Genus 1,030 3,239 2,154 1,206

Species 570 15,335 0 3,029

Number of sequences 1,191,315 1,779,305 1,559,121 77,869

in this study. Classifiers were tested using the V3–V4 region
sequences extracted from the NCBI database. In the evaluation,
the classifier trained with our combined database showed the
best performance in terms of precision and recall rates from
the phylum to genus level (Figure 2 and Table 2). Notably,
the classifier trained with one database (i.e., GreenGenes) had
precision and recall rates of 89.33 and 81.85%, respectively,
whereas the classifier trained with all three databases had
precision and recall rates of 97.88 and 96.39%, respectively.

To evaluate the classification performance for the newly
annotated bacteria, the gut microbiome of mice (Chung et al.,
2020) were profiled using the classifier trained with our combined
database (Supplementary Figure 4). In the previous report,
the profiling of the bacterial composition of the samples using
metagenomic reads revealed that Muribaculaceae and its genera
were the most abundant taxon, whereas profiling via the 16S
rRNA amplicon sequencing reads showed that Barnesiellaceae
was the most abundant. This difference was explained by the
different versions of the databases used (Chung et al., 2020).
Sequences annotated with these two genera were not included in
the GreenGenes database and RDP database, since Muribaculum
andDuncaniellawere first reported in the NCBI repository in July
2016 and March 2018, respectively. Notably, the classifier trained
in our study correctly predicted the sequences as Muribaculaceae
at the family rank, suggesting that the relative abundance of
Duncaniella is similar to that obtained via metagenomic analysis.
Although Duncaniella was well classified, Muribaculum was still
reported with a low confidence score. This result suggests that
there might be some genera belonging to the Muribaculaceae
family that are still unknown.

Species-Level Profiling Using
Homologous Species Groups
In conventional microbiota profiling, reads are clustered into
OTUs based on sequence similarity. Most OTUs are created
using a 97 or 99% sequence similarity threshold. These thresholds
are based on the empirical observation of 94% or higher 16S
rRNA sequence similarity within a genus and 97% or higher
16S rRNA sequence similarity within a species (Schloss and
Handelsman, 2005). Note that, many studies have reported that
species cannot be completely discriminated using such thresholds
(Stackebrandt, 2006; Edgar, 2018b). We measured the taxonomic
separability (i.e., how well different taxa are separately assigned
to different OTUs) using the V1–V2 region, the V3–V4 region,
and the entire 16S rRNA gene. OTUs were created using a 99%
sequence similarity threshold to measure the proportion of OTUs
that were assigned to multiple taxa (Supplementary Figure 5).

Most of the OTUs created consisted of sequences from one
genus, whereas multiple species were assigned to the same OTU.
Out of the 84,169, 127,223, and 179,039 OTUs created from
the V1–V2 region, the V3–V4 region, and the entire 16S rRNA
gene in the GreenGenes database, 3.58, 1.51, and 0.29% of the
OTUs contained multiple species, respectively (Supplementary
Figure 5A). In the SILVA database, out of the 118,404, 191,585,
and 299,556 OTUs created, 20.26, 25.62, and 18.94% contained
multiple species, respectively. Moreover, in the 16S rRNA gene
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FIGURE 2 | Performance of the genus-level classification with the combined database.

sequences obtained from the NCBI database, 13.01, 19.54, and
13.44% of the 3,137, 2,746, and 3,987 OTUs created contained
multiple species, respectively. While most of the sequences from
different genera were assigned to different OTUs, almost half
of the sequences from different species were assigned to the
same OTU in the SILVA and the NCBI database (Supplementary
Figure 5B). This result indicates that reads from such species are
clustered together when OTUs are created using a 99% sequence
similarity threshold.

To investigate species separability using the 16S rRNA
sequences, a species network was constructed with the
sequences of the V3–V4 region from our combined database

TABLE 2 | Accuracy of the taxonomy classification when using the
combined database.

Recall Precision F1-score

Superkingdom 1 1 1

Phylum 0.9997 0.9995 0.99962

Class 0.9896 0.9989 0.99422

Order 0.9923 0.9981 0.99517

Family 0.9659 0.9954 0.98045

Genus 0.9832 0.9666 0.97482

Species 0.7696 0.7994 0.78423

(Supplementary Figure 6). In the network, each node is a
consensus sequence of a species. If two species share 99% or
higher sequence similarity, the nodes of those species were
connected. Notably, many species from the same genus were
clustered owing to the fact that their 16S rRNA sequences
have 99% or higher similarity. Among the Staphylococcus
species, seven groups were clustered, the largest of which
consisted of 10 species (Supplementary Figure 6A). Moreover,
15 groups were clustered from the Streptococcus species, the
largest of which consisted of eight species (Supplementary
Figure 6B). The homologous species groups were constructed
from the network analysis, which corresponded to the connected
components in the graph.

In the homologous species groups, the consensus sequences
of the included species had 99% or higher sequence similarity.
Figure 3 shows the homologous species groups in the arc of
the same color, which resulted from the network analysis of
two genera, Staphylococcus and Streptococcus (Supplementary
Figure 6). Notably, some strain-level heterogeneity (i.e., 99%
or higher sequence similarity between strains in different
homologous species groups) was also observed (Figure 3). For
example, some sequences belonging to Staphylococcus aureus
and Staphylococcus epidermidis (labeled in blue and red) were
connected. Such strain-level heterogeneity could be caused by
either distinct strains in a specific species or incorrect annotation.
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FIGURE 3 | Homologous species groups of the species in (A) Staphylococcus and (B) Streptococcus. The width of each track is proportionate to the number of
non-redundant strains included in the database. Homologous species groups (i.e., species whose consensus sequences have more than 99% sequence similarity)
were labeled with the same color. Strains that share 99% or higher sequence similarity in different species were linked by an edge.

To assign a species-level taxon to the OTUs, the representative
sequence of each OTU was searched against our species
consensus sequence database using BLAST search (Altschul et al.,
1990). Similar to the k-nearest neighbor method, the species
was determined by considering the most k homologous species.
In this study, k was set to 1 among the sequences with >97%
sequence similarity and an e-value of <1.0e-10. When no hit met
the criteria, it was reported as unclassified. If the assigned species
were from the homologous species groups, the query sequence was
labeled as the name of the homologous species group.

Evaluation Using Simulated Datasets
To test the performance of our species-level profiling method,
simulated datasets were generated using a set of bacteria
reported as the constituents of the Human Microbiome
Project (HMP) gut microbiome (Supplementary Table 3).
The reported strains were downloaded from the NCBI
RefSeq database, and the non-existing or updated strains
were replaced with the latest strains of the same species.
Candida albicans ATCC MY-2876 was not included since
it is a fungus. Four simulated datasets were generated
with the abundance models of uniform, linear, and power-
law parameters with 1 and 2 (Supplementary Table 3).
Methanobrevibacter and Propionibacterium (Cutibacterium)
were excluded from the simulation since the 806R primer
could not extract the region sequences from their genomes.
The simulated datasets were analyzed using our species-level
profiling method.

Regardless of the abundance model, the genus-level
composition was almost perfectly profiled using our method

(Figure 4A). Among the species in the simulated dataset,
Bacillus cereus, Bacteroides vulgatus, Clostridium beijerinckii,
Escherichia coli, Lactobacillus gasseri, Listeria monocytogenes,
Neisseria meningitidis, Pseudomonas aeruginosa, S. aureus,
S. epidermidis, and Streptococcus pneumoniae created the
homologous species groups with other species. For instance,
the V3–V4 region of B. cereus was identical to that of Bacillus
mobilis. These species are technically indistinguishable in
terms of their V3–V4 region. Similarly, the V3–V4 sequence
of S. pneumoniae differs by only one nucleotide from that
of Streptococcus infantis. Notably, our method based on the
homologous species groups was able to accurately estimate the
species-level composition in the simulated datasets (Figure 4B).
Pearson’s correlation coefficient values between the simulated
and estimated bacterial composition were 0.9781 and 0.9790 for
the genus- and species-level classification results. Therefore, our
homologous species groups method could reasonably perform
accurate species-level profiling.

Evaluation Using Mock Datasets
Six mock datasets consisting of 49 bacteria and 10 archaea
(Supplementary Table 4) were downloaded from the EBI
sequence repository2 (Schirmer et al., 2015). The V3–V4 region
was sequenced by Illumina MiSeq2 using the 341F forward
primer and two kinds of reverse primers (806rcb and 805RA).
The mock datasets were analyzed using our method (Figure 5).
Since this mock data set provided a list of microbiome
constituents without their relative abundance, we evaluated the

2http://www.ebi.ac.uk/ena/data/view/PRJEB6244
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FIGURE 4 | Estimating the bacterial composition of the simulated datasets. (A) Genus level and (B) species level profiling. Simulated datasets with four different
abundance models were analyzed using the proposed 16S rRNA classification pipeline. The names of the species that were contained in the simulated datasets
were re-annotated according to the homologous species groups of the V3–V4 hypervariable region to compare the results.

FIGURE 5 | Estimating the bacterial composition of the mock datasets. (A) Genus level and (B) species level profiling. Six mock samples were analyzed using the
proposed 16S rRNA classification pipeline. The names of the species that were contained in the mock datasets were re-annotated according to the homologous
species groups of the V3–V4 hypervariable region to compare the results.

results of our method by checking whether the specified genus
and species were identified.

In total, 31 out of 38 genera were identified, accounting for
an average of 90.7% of the microbiota population. In the case
of Burkholderia, there were reads classified as Paraburkholderia.
Moreover, Anaerocellum could not be identified owing to
the lack of databases. On an average, 5.9% of the reads
were misclassified as Anabaena, Brevundimonas, Dickeya,
Flavobacterium, Hungateiclostridium, Stenotrophomonas, and
Streptococcus. For the species-level classification, 31 out of
41 species were identified, of which 21 were assigned with
specific species and 10 were assigned with homologous species
groups. In total, 73.21% of the microbiota population on
average was profiled at the species level. However, six species,

namely Anaerocellum thermophilum, Burkholderia xenovorans,
Clostridium thermocellum, and Erwinia chrysanthemi, could not
be identified owing to the lack of databases.

A Case Study Using the Salivary
Microbiome
In total, 90 salivary microbiome samples stratified by the oral
hygiene index were downloaded from the DDBJ Sequence
Read Archive (SRA) under the accession number DRA005425.
A previous study reported that Streptococcus and Veillonella
were the most abundant genera in these samples and that
their proportions are associated with the hygiene index
(Mashima et al., 2017). However, details regarding species-level
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information were not provided. To profile the species-level
composition, we re-analyzed the same salivary microbiome
samples (Figures 6A,B). Notably, all of the Streptococcus and
Veillonella OTUs were assigned to a species or homologous species
groups (Figures 6C,D). With the exception of a few OTUs,
most of the OTUs were assigned to the species groups. The
S. pneumoniae group was identified as the most abundant species
among all samples. Moreover, although the S. pneumoniae group
was identified in both the good and poor hygiene groups, its
abundance in the good hygiene group was more than twice that
of the poor hygiene group.

In total, eight major Streptococcus OTUs were identified from
the sample data by considering the size of the OTUs (number
of reads in OTU >10,000): two OTUs with the S. pneumoniae
group, three OTUs with the Streptococcus gordonii group, one

OTU with the Streptococcus sanguinis group, one OTU with
the Streptococcus thermophilus group, and one OTU with the
Streptococcus parasanguinis group (Figure 6C). Two OTUs (OTU
221 and OTU 236) assigned to the S. pneumoniae group were
equally similar to all Streptococcus species in the S. pneumoniae
group, with the exception of S. pneumoniae as five species in
the S. pneumoniae group have identical sequences in the 16S
rRNA V3–V4 region, whereas S. pneumoniae differs by one
nucleotide. Two OTUs (OTU 203 and OTU 411) assigned to the
S. gordonii group also showed a similar pattern: they were equally
similar to three species in the S. gordonii group. As shown in
this case study, many OTUs were indistinguishable among the
species in the species group but were distinguishable among the
species group. Most of the Veillonella OTUs were assigned to
the Veillonella parvula, Veillonella dispar, or Veillonella atypica

FIGURE 6 | Classification of the salivary microbiome samples obtained from three different hygiene index groups. (A) The relative abundance of the top 10 abundant
genera and (B) the relative abundance of the species belonging to the Streptococcus and Veillonella genera are presented. The assignment results for (C) the
Streptococcus and (D) the Veillonella genera are represented by the network. Reference sequences are colored in purple and labeled using their species name.
Each node except the reference node represents one OTU, and the bacterial composition of samples from the three hygiene index groups is plotted as a pie-chart
(blue for good, orange for moderate, and green for poor). All OTUs are represented as being proportional to their log-scaled size, and all OTUs with a size of 10,000
or more are labeled with their OTU number.
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group (Figure 6D). In the V. parvula group, OTU 853 and OTU
276 were equally similar to multiple species in the group. These
results might be inevitable when hypervariable regions are used
at the species level. In addition, some novel species that are
not stored in the 16S rRNA database but are equally similar to
multiple known species could exist in the microbiome.

A Case Study Using the Gut Microbiome
of Colon Cancer Patients
In total, 105 gut microbiome samples, consisting of 35 samples
each from control, adenoma, and cancer patients, were
downloaded from the SRA under the accession number
SRP131074. Bacteroides, Escherichia, and Prevotella were
reported as the most abundant genera in the previous study that
analyzed these samples (Yang T. W. et al., 2019). Our results also

showed that these three genera were the most abundant and in
the same order (Supplementary Figure 7). Among the abundant
genera, the abundance of Megamonas, Pseudomonas, Morganella,
Aeromonas, Megasphaera, Fusobacterium, Veillonella, Roseburia,
Sutterella, Subdoligranulum, and Eubacterium was found to
differ by threefold between any two samples from the control,
adenoma, and cancer groups (Figure 7A). Although most of
the OTUs were assigned to a specific species without ambiguity,
Pseudomonas, Veillonella, Fusobacterium, and Aeromonas
OTUs were assigned to the homologous species groups. Notably,
Aeromonas and Fusobacterium were the most abundant
in the samples from the cancer group. For the Aeromonas
OTUs, most of the dominant OTUs in the cancer group were
assigned to either the Aeromonas veronii or Aeromonas caviae
group (Figures 7B,C). Moreover, Fusobacterium mortiferum,
Fusobacterium necrophorum, and Fusobacterium nucleatum

FIGURE 7 | Classification of the bacterial composition of gut microbiome samples obtained from the stool of control, adenoma, and cancer patients. (A) The relative
abundance of the genera that were found to have an abundance more than three times that of the average relative abundance in at least one pair among the control,
adenoma, and cancer groups and (B) the relative abundance of the species belonging to the Aeromonas and Fusobacterium genera are presented. The assignment
results for the (C) Aeromonas and (D) Fusobacterium genera are represented by the network. The reference sequences are colored in purple and labeled using their
species name. Each node except the reference node represents one out, and the bacterial composition of samples from each type of patient is plotted as a
pie-chart (blue for control, orange for adenoma, and green for cancer). All OTUs are represented as being proportional to their log-scaled size.
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were found to be abundant in samples from the cancer group,
whereas Fusobacterium ulcerans was abundant in samples from
the adenoma group (Figures 7B,D). Therefore, this indicates
that our species-level profiling and network analysis based
on homologous species groups could produce more specific
and reliable information, which is higher resolution than
the genus-level, to show differences in bacterial composition
among patient groups.

CONCLUSION

In the microbiome studies, one of the important tasks is
profiling of the bacterial composition, which helps understand
the biological functions of the microbiome. The species-level
taxonomic assignment is critical, but an optimal solution has not
been available thus far since the 16S rRNA sequences are highly
homologous between the species in the same genus in many cases.
We combined all the sequences from the GreenGenes, SILVA,
and NCBI databases to include species that exist exclusively in
each database. Even in the evaluation of genus-level taxonomy
classification, the classifier trained with the sequences combined
showed the best accuracy in terms of precision and recall rates.
For each species, we constructed a consensus sequence model
and determined homologous species groups, which was used for
the species-level taxonomy assignment. The evaluation using
simulated datasets and mock datasets showed a high correlation
with the real bacterial composition. When analyzing real gut
microbiomes, our method successfully performed species-level
taxonomic assignment and identified differential abundance
between different phenotypic groups.
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