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Abstract: A tuned mass damper (TMD) is a system that effectively reduces the vibrations of floating
offshore wind turbines (FOWTs). To maximize the performance of TMDs, it is necessary to optimize
their design parameters (i.e., stiffness, damping, and installation location). However, this optimization
process is challenging because of the existence of multiple local minima. Although various methods
have been proposed to determine the global minimum (e.g., exhaustive search, genetic algorithms,
and artificial fish swarm algorithms), they are computationally intensive. To address this issue, a novel
optimization approach based on a parent nested optimizing structure and approximative search is
proposed in this paper. The approximative search determines an initial parameter set (close to the
optimal set) with fewer calculations. Then, the global minimum can be rapidly determined using the
nested and parent optimizers. The effectiveness of this approach was verified with an FOWT exposed
to stochastic winds. The results show that this approach is 30–55 times faster than a conventional
global optimization method.

Keywords: parent nested optimizing structure; optimization; local minima; global minimum; floating wind
turbines; tuned mass damper

1. Introduction

Offshore wind farms experience approximately 90% greater wind speed than onshore wind
farms [1]. However, offshore wind farms located near coastlines suffer from visual and noise issues.
In addition, large seabed footprints are created by their foundations [2]. Floating offshore wind turbines
(FOWTs) are promising alternative structures for generating and harnessing offshore wind energy
that can overcome the aforementioned problems; furthermore, installing wind turbines on floating
platforms away from coastlines requires less space and enhances power generation. Additionally,
FOWTs are less dependent on seabed conditions than bottom-fixed structures because they do not rely
on the ocean floor for support [3]. However, FOWTs are exposed to strong dynamic loads caused by
harsh wave and wind conditions [4]. These loads cause considerable vibration, which is harmful to
the robustness of the entire structure. For example, the fatigue damage induced by tower bending
moments on spar-type FOWTs is 2.5 times that induced on onshore wind turbines [5]. This leads to
higher operational and maintenance costs.

To reduce the structural vibration of FOWTs, a tuned mass damper (TMD) system has been
studied. Murtagh et al. [6] constructed a dynamic model for FOWTs and calculated the vibration
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reduction effect of a TMD installed at the top of an FOWT. Their results showed structural vibration
reductions when the stiffness value was tuned to the dominant frequency of the structure. Based on the
wind turbine numerical simulator known as FAST (which stands for fatigue, aerodynamics, structures,
and turbulence) [7], Lackner et al. [8] developed a new wind turbine simulation tool named FAST-SC
(where SC stands for structural control). This tool is able to incorporate TMDs into the nacelle or
platform of the wind turbine for vibration reduction. Using this code, they presented more realistic
results for barge-type and monopile wind turbines. This study revealed that the optimized TMD
parameters (i.e., stiffness, damping ratio, and TMD location) are considerably different for these two
foundation types.

TMD optimization is necessary to minimize the structural vibration of FOWTs. However, finding
the optimal values for TMD parameters is difficult because numerous local minima exist for the
cost function employed for optimizing the TMD performance [9]. An exhaustive search has been
conducted to obtain a global optimal point [3,10,11]. Stewart et al. [3] used a genetic algorithm (GA) to
optimize the TMD parameters for various types of platforms (i.e., fixed monopile, floating spar-type,
floating barge, and tension leg platforms). GAs were also used in other studies to optimize TMD
parameters [12–14]. Moreover, several optimization methods were compared for maximizing TMD
performance. Si et al. [15] adopted a simplex coding genetic algorithm (SCGA) for the optimization
of various TMD parameters (i.e., spring coefficient, damping coefficient, and TMD location) for
FOWTs. An SCGA is a combination of a GA and the Nelder-Mead method, which is applied to
improve the quality of populations corresponding to the initial and all intermediate steps. They also
adopted other optimization methods, including exhaustive search and Tsai’s method, and compared
their performance. The results showed that SCGA is a more accurate and efficient optimization
method compared to other methods used in previous works. Jin et al. [16] used the artificial fish
swarm algorithm (AFSA) for a global search to optimize a TMD installed in a barge floating wind
turbine. The AFSA mimics several behaviors of fish, such as preying, swarming, randomly moving,
and following, based on a local search of individual fish [17]. However, this algorithm is likely to obtain
solutions corresponding to local minima [17]. In an attempt to overcome this limitation, He et al. [18]
applied an improved AFSA for TMD optimization. The improved AFSA used the crossover and
mutation strategies of the differential evolution algorithm, demonstrating a better performance when
solving complicated global optimization problems [19]. Although several methods have been proposed
to find a global minimum for TMD parameters, such methods remain computationally intensive and
risk confusing a local minimum with a global optimum.

To address the aforementioned limitations of previous methods, a more robust optimization
method which focuses on the TMDs employed in FOWTs was developed in this study. In the parameter
space of the TMD, if one of the parameters is fixed as a constant, a single minimum exists for the
remaining parameters. Thus, the global minimum can be easily obtained with a small number of
iterations. This was achieved using the parent nested optimizing structure. Additionally, an initial guess
close to the optimal parameters was rapidly estimated by introducing an approximative cost function.

This paper is organized as follows. Section 2 describes the mathematical model of a spar-type
FOWT derived using Lagrange’s equation. The model validation, which was conducted by comparing
the model prediction and the results obtained from FAST-SC, is presented in Section 2. Section 3
describes the mathematical definition and properties of the optimization problem considered in this
study. Then, the proposed optimization approach is described in Section 4. In Section 5, the performance
of the newly proposed optimization approach and case studies on the optimization of various TMDs
are shown and discussed. Finally, the main conclusions of this study are outlined in Section 6.

2. Mathematical Model

In this study, a mathematical model was established to predict the motion of a FOWT and its
TMD. Various dynamic loads were considered: thrust force, hydrodynamic load, gravitational force,
buoyancy force, and interaction with mooring lines [4]. The model is composed of the rotor-nacelle
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assembly, tower, and platform, as shown in Figure 1. This study focuses on pitch, surge, and heave
motions of the tower and platform. The deformation of the structure was not incorporated into the
model because it is very small compared to the pitch, surge, and heave motions. Note that a spar-type
FOWT was investigated in this study. However, this approach could be applied to other types of
FOWTs if the model parameters are replaced by the appropriate parameters associated with the FOWT
type to be investigated.
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Figure 1. Schematic of the floating offshore wind turbine model.

2.1. Equations of Motion

The dynamics of the FOWT with the TMD can be described with four variables, yc, zc, θ, and u,
where yc is the surge displacement at point C, at which the structure meets the water surface, as depicted
in Figure 1; zc is the heave displacement of C; θ is the pitch angle; and u is the displacement of the
TMD mass with respect to its equilibrium position. The dimensions and mechanical properties of the
FOWT were obtained from the 5 MW OC3-Hywind model [20,21]. The equations of motion can be
derived using Lagrange’s equation [3,9,18,22]:
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where T and V are the sum of the kinetic energy and total potential energy, respectively, of the FOWT
structure and TMD assembly. Fy, Fz, and Mθ are the forces and moment along y, z, and θ, respectively;
these forces and moments include the thrust force (or aerodynamic load), the hydrodynamic load
caused by waves, and the force interacting with the mooring lines. To consider the OC3-Hywind
mooring system, Jonkman et al. provided a mathematical model of the force acting between the
platform and the mooring lines [20]; the mooring force comprises the weight of the mooring lines and
the linearized restoring forces. Details of a simplified mooring line are provided in the Supplementary
Material. c is the damping coefficient of the TMD. The stiffness of the TMD was considered in evaluating
V. Details regarding the energy and forces in Equation (1) are provided in the Supplementary Material.
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The solution of Equation (1) was numerically obtained with the ode15i function in MATLAB. Note that
the TMD is installed inside the platform, and thus in this study TMD displacement u is constrained to
±4 m using a virtual spring and damper. Table 1 presents the values of the structural parameters used
in this study which are provided in [20].

Table 1. Structural parameters of OC3-Hywind.

Parameter Value

Tower length 77.6 m
Platform length 130 m

Taper length 8 m
Submerged length 120 m

Platform diameter above taper 6.5 m
Platform diameter below taper 9.4 m
Tower diameter (top, bottom) 3.87 m, 6.5 m

Platform mass 7,466,330 kg
RNA mass 350,000 kg
Tower mass 249,718 kg

2.2. Validation

To validate the established model, its free response was compared with the response obtained
with the FAST-SC simulator [22–24]; notably, the FAST-SC simulators [7] have been extensively used to
study the dynamics of wind turbines and TMDs. The motion predicted from the established model
is almost identical to that of FAST-SC, as shown in Figure 2. The free response was calculated with
four different initial conditions. First, the initial platform pitch angle θ is 5◦ and the initial surge
displacement yc is 0 m (Figure 2a); the coefficient of determination (R2) is 0.999. Second, the initial
θ is 10◦ and the initial yc is 0 m (Figure 2b); R2 is 0.998. Third, the initial θ is 0◦ and the initial yc is
10 m (Figure 2c); R2 is 0.999. Lastly, the initial θ is 0◦ and the initial yc is 20 m (Figure 2d); R2 is 0.994.
These high coefficients of determination suggest that the model is capable of accurately predicting the
dynamics of the FOWT and TMD
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Figure 2. Free decay response comparison. (a) pitch angle with the initial value of 5◦; (b) pitch angle
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initial value of 5 m.

3. Optimization Problem

3.1. Optimization Problem Specification

The TMD optimization problem can be specified as:

minimize h(x1, x2, x3),
subject to x1 ≥ 0,

x2 ≥ 0,
20 ≤ x3 ≤ 100,

(2)

where h =

√
1
t f

∫ t f
0 θ2

AC(τ)dτ and

θAC(t) = θ(t) −
1
t f

∫ t f

0
θ(τ)dτ.

In this problem, x1 is the natural frequency of the TMD (Hz), x2 is the damping ratio of the TMD
(dimensionless), and x3 is the installation position of the TMD (m). Specifically, the TMD performance
is determined by its stiffness, damping coefficient, and mass. Note that the TMD performance increases
monotonically with the TMD mass; therefore, mass is not used as an optimization variable. Instead,
the TMD mass is fixed as 322,640 kg in the present optimization approach (Section 4), which corresponds
to 4% of the total FOWT mass. This mass ratio is referred to as mass ratio γ. Note that the TMD mass
is also subsequently varied to consider its effects; this is elucidated in Section 5. The stiffness and
damping coefficients can be replaced by the natural frequency and the damping ratio of the TMD,

which are defined as 1
2π

√
k
m and c

2
√

mk
, respectively. θAC represents the FOWT pitch angle fluctuation

about the mean value of the pitch. Thus, the cost function h specifies the FOWT vibration motion
intensity; note that strong fluctuations lead to a large h. t f is the simulation time. The response was
predicted for 1000 s because the period of the first mode is about 125 s. Accordingly, the response in
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the first 400 s was not considered for calculating the cost function because this response is transient.
Therefore, the motion corresponding to the remaining 600 s was employed to study the performance
of the TMD. Thus, t f is determined as 600 s. The motion of the FOWT structure was obtained for
stochastic winds and waves because the FOWT is operated under such environmental conditions.
The average wind speed is determined as 11 m/s, because the thrust force is the strongest under this
condition due to the control of the blade pitch angle.

The effects of the TMD mass and location on the stability were studied before focusing on the
vibration of the FOWT platform. The stability of the FOWT depends on the restoring moment τR

caused by gravitational force and buoyancy. When the restoring moment is calculated about the center
of mass G, it can be approximated as τR = FblBG sinθ because the range of the TMD displacement is
very small compared to the distance lBG. Here, Fb is the buoyancy force, and lBG is the distance between
the center of mass and the center of buoyancy, as shown in Figure 3a. Thus, the change in stability can
be evaluated using FblBG. This product is referred to as Sb, which can be affected by the TMD mass
ratio γ and the installation position x3. The detailed mathematical relations between Sb, γ, and x3 are
provided in the Supplementary Material. Figure 3b shows the ratio of Sb,0 and Sb,T, where Sb,0 is the
value of Sb in the absence of TMD and Sb,T is the value in the presence of TMD. If this ratio is larger
than 1, the stability of the FOWT is increased by the TMD. The results showed that the TMD improves
the stability of the platform for various values of γ and x3. Thus, the dynamic benefits of the TMD can
be confirmed based on whether it can considerably reduce the platform vibration.

In order to evaluate the TMD performance, a performance index, Pv, is defined as:

Pv =

(
1−

h
h0

)
× 100 (%), (3)

where h0 is the vibration intensity value in the absence of the TMD. If the FOWT motion is not affected
by the TMD (i.e., h = h0), Pv is 0%. If the TMD completely absorbs the FOWT vibrations (i.e., h = 0),
Pv is 100%.
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Figure 3. Restoring effect due to buoyancy force. (a) Buoyancy force and gravitational force acting on
FOWT platform. (b) Changes in stability due to tuned mass damper.

Before performing the optimization, the TMD parameters were roughly determined and the
corresponding results were obtained to demonstrate the necessity of the optimization; the parameters
can be determined such that the natural frequency of the TMD is highly similar to the natural frequency
associated with the pitch motion of the FOWT structure under a small damping ratio [9]. Then,
the parameters are determined as x1 = 0.0342, x2 = 0.2, and x3 = 100. Figure 4 shows the FOWT
response with this TMD when stochastic winds and waves were applied (with the average wind speed
of 11 m/s). As shown in Figure 4, when the TMD parameters were simply determined using the FOWT
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natural frequency, the fluctuation reduction owing to the TMD is negligible; the vibration intensity
was 1.1373 and 1.1062 without and with the TMD, respectively, and the performance index was very
small (2.73%). This small change suggests that the TMD optimization is indeed needed.
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3.2. Existence of Multiple Local Minima

If the cost function h(x1, x2, x3) has multiple local minima, the optimization process becomes
challenging. To verify this possibility, a gradient-based optimization was carried out with several initial
parameter sets. The interior-point method (the fmincon function in MATLAB) was employed because
it is commonly used in convex optimization problems. If the function h contains a single minimum,
every set of initial parameter values will converge to the same solution. Otherwise, different initial sets
will return different solutions.

Unfortunately, numerous local minima were found in the case of this TMD, as shown in Figure 5,
where the hollow circles represent the local minima. The black stars, triangles, and diamonds represent
examples of initial points; the gray stars, triangles, and diamonds are their corresponding solutions.
Note that there is no specific reason to select the initial points shown in Figure 5; they were randomly
chosen for visualization. Based on this result, it is confirmed that the TMD parameters have multiple
local minima, and thus an optimization approach to obtain a global minimum is needed.
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3.3. Mathematical Properties of the Cost Function

Distinct cost function characteristics were observed with the value of the cost function in the
parameter space. First, if one parameter is fixed, the cost function h shows a single minimum point with
respect to the other parameters. For example, if x3 is fixed, there is only one optimal set for x1 and x2,
as shown in Figure 6a. The same characteristic is observed when x1 or x2 are fixed. To mathematically
represent this optimization under this constraint, a parent function g was defined as:

g(x3) = min
x1,x2

h(x1, x2; x3). (4)
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Note that x3 is fixed for the minimization in Equation (4). Second, the parent function g is convex
with respect to the fixed parameter-i.e., x3, as shown in Figure 6b. Furthermore, this behavior was
found for different TMD mass ratios.

4. New Optimization Approach

Based on the mathematical properties of the cost function, a new optimization approach was
developed. This approach reduces the computation time for the optimization process by introducing a
parent nested optimizing structure and approximative search.

4.1. Parent Nested Optimizing Structure

The optimization of h can be effectively achieved using a parent nested optimizing structure
because of the characteristics described in Section 3.3. The nested optimizer is a low-level optimization
engine that minimizes h when x3 is fixed, whereas the parent optimizer is a high-level optimizer to
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search for minimum values among the results of the nested optimizer. As previously observed, h has a
single minimum set when x3 is fixed. Thus, this minimum set can be easily obtained via a gradient
descent. Then, the value of x3 is updated via the minimization procedure of the parent function defined
in Equation (4). Because the parent function is convex with respect to x3, as shown in Figure 6b,
the optimal value of x3 can be rapidly obtained using the gradient descent method.

4.2. Approximative Search of the Initial Set

To reduce computation time, it is necessary to select initial parameter values that are close to
an optimal set. Generally, this initial set can be estimated via a cost function evaluation with several
sets. However, if the calculation time for the cost function is not short, this search requires substantial
computational efforts. For example, the FOWT cost function h should be calculated based on the FOWT
motion for 1000 s, as mentioned in Section 3.1. Accordingly, a large number of function evaluations are
required to obtain the motion for 1000 s.

An approximative search can address this issue. Instead of calculating exact function values,
an approximative function can be derived and employed to estimate the initial guess. For this purpose,
three strategies were developed. First, the long transient state prediction computation was replaced
by a substantially short calculation. Previously, the motion of the system was calculated for 1000 s
by setting all initial conditions to zero. The first 400 s in the simulation correspond to the transient
state. Although this transient motion was not used in the optimization, it is needed to calculate
the TMD effects after the transient. To reduce the computation time dedicated to the transient state,
the equilibrium state was used as the initial condition, and the simulation for the transient state was not
conducted. The static solution for surge and pitch under constant wind speed conditions (i.e., 11 m/s)
was used as the initial condition in this study.

Second, the motion for only a short period was considered; instead of considering the motion for
1000 s, the motion for only 125 s is calculated. Although this short simulation provides an inaccurate h
value, this period is long enough to obtain an initial set close to the optimal set, as shown in Figure 7.
Note that the first and second strategies were only used at the beginning of the optimization. Once the
nested optimizer is operated, the initial guess can be obtained with another strategy; the minimum set
obtained in the previous iteration of the parent optimizer can be used as the initial guess in the current
iteration, as shown in Figure 8. This strategy can be used from the 2nd iteration onward, and it is more
effective than the first and second strategies.
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4.3. Detailed Optimization Procedure

The approximative search and parent nested optimizing structure were combined to achieve fast
optimization. Figure 8 shows the flowchart for the newly developed optimization approach. First,
the value of x3 is arbitrarily determined and the initial values of x1 and x2 are obtained with the
approximative search. Next, the optimal values of x1 and x2 for a fixed x3 are obtained via gradient
descent. Then, the value of x3 is updated based on the previous and current values of the parent
function g(x3). Afterwards, x3 is fixed with the updated value, and the initial values of x1 and x2 are
replaced with the previous solution of the nested optimizer. Finally, the nest optimization is performed
again with the new x3 and initial values. This procedure is repeated until the parent function minimum
is determined. Note that the proposed approach was used in an optimization problem with three
parameters. However, this approach can be extended to more complex problems, with four or more
parameters. More details are provided in the Supplementary Material.
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5. Results

5.1. Performance of the New Optimization Approach

The TMD optimized using the new approach provides less fluctuating pitch motion when
compared with the unoptimized TMD. This significant performance improvement is demonstrated in
Figure 9. The parameters of the unoptimized TMD were determined based on the natural frequency of
the FOWT. It is worth noting that such TMD parameter selection is a widely used approach in the
study of FOWTs [9]. However, the TMD optimized with the load conditions reduces vibrations more
effectively. This suggests that performing optimization by considering the load conditions is necessary
for FOWTs.
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Figure 9. Motion fluctuation of the FOWT before and after optimization.

To quantitatively assess the performance of the proposed optimization approach, the results
obtained using this approach were compared with those obtained using the exhaustive search method.
Accuracy is evaluated using the final value of the cost function. The optimization speed was
estimated using the number of cost function evaluations required to find the optimized parameters.
The accuracy and speed obtained for various TMD mass ratios and wind conditions are presented
in Tables 2 and 3, respectively. As mentioned before, the mass ratio defined as the ratio of the TMD
mass to the FOWT mass. The optimization performed with the proposed approach was completed
after 1000–1800 cost function evaluations. When a computer equipped with a 14-core processor
(2.4 GHz) and 64 GB memory is used, approximately 0.852 s is required to obtain the value of the cost
function. Thus, it takes approximately 47,200 s to conduct optimization using the exhaustive method,
which requires 55,500 evaluations of the cost function. In contrast, when the proposed approach is
used, the optimization can be completed after 1000–1800 cost function evaluations, which corresponds
to only 852–1540 s. This is a noticeable improvement, considering that the conventional method
requires 55,500 cost function evaluations. Furthermore, the value of the vibration intensity (i.e., the cost
function) obtained using the new approach is very similar to the value obtained using the exhaustive
search. This suggests that the proposed approach can accurately provide optimized parameters under
various environmental conditions.



J. Mar. Sci. Eng. 2020, 8, 876 12 of 15

Table 2. Comparison between the exhaustive method and the proposed approach for various
TMD masses.

Mass Ratio Method Number of Function Evaluations Vibration Intensity
h

2%
Exhaustive search 55,449 1.0133

New approach 1375 1.0127

3%
Exhaustive search 55,449 0.9667

New approach 1020 0.9666

4%
Exhaustive search 55,449 0.9199

New approach 1567 0.9185

5%
Exhaustive search 55,449 0.8682

New approach 1865 0.8676

Table 3. Comparison between the exhaustive method and the proposed approach for various
wind conditions.

Mean Wind
Velocity Method Number of Cost

Function Evaluations
Vibration Intensity

h
Performance Index

Pv(%)

9 m/s Exhaustive search 55,449 1.2304 19.406
New approach 1375 1.2301 19.422

11 m/s Exhaustive search 55,449 0.9199 19.181
New approach 1020 0.9185 19.238

13 m/s Exhaustive search 55,449 1.0263 30.763
New approach 1567 1.0262 30.769

5.2. Case Study

Owing to the fast and accurate computation ability of the new approach, several studies on
FOWTs can be conducted. In this study, the mass ratio was varied between 1% and 7% so that its effect
could be investigated, as presented in Table 4. First, as the mass ratio increased, the performance of the
TMD improved: whereas the performance index is 6.2% for a TMD mass ratio of 1%, the performance
index increases to 29.7% for a TMD mass ratio of 7%. Interestingly, the performance index increases
linearly with mass. Second, the optimal values of x1 and x2 are almost the same for the different mass
ratios. However, the value of x3 noticeably increases over the mass ratio. Note that x3 is the installation
location (Lt) of the TMD, as shown in Figure 1. This result suggests that the location of the TMD has to
be determined taking its mass into account.

Table 4. Optimized parameters and TMD performance for various mass ratios.

Optimized Parameters TMD Performance

Mass Ratio x1 x2 x3 Pv(%)

1% 0.0834 1.0511 20 6.216
2% 0.0843 1.2521 20 10.956
3% 0.0826 1.1988 26.541 15.012
4% 0.0810 1.2231 34.167 19.238
5% 0.0792 0.8502 43.203 23.714
6% 0.0808 1.0092 48.261 27.143
7% 0.0768 0.9248 57.592 29.746

The optimized parameters and corresponding TMD performance under various wind conditions
are presented in Table 5. The mass ratio was fixed as 4% for this investigation. The platform vibration
was reduced by 20–30% compared with the vibration without the TMD. Note that x1 is the maximum
when the average wind speed is 11 m/s. The thrust force caused by the rotation of the blades is almost
the maximum at 11 m/s due to the pitch control of the blades. Consequently, the platform will be
considerably tilted at this wind speed. This tilted posture will cause the TMD mass to move closer
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to the wall of the platform. This dynamic behavior will narrow the range of the TMD displacement,
thereby degrading the performance of the TMD. Thus, the value of the TMD spring coefficient is
the largest under this wind condition to ensure that the distance between the TMD and the wall
is increased.

Table 5. Optimized parameters and TMD performance for various wind conditions.

Optimized Parameters TMD Performance

Average Wind Velocity x1 x2 x3 Pv(%)

9 m/s 0.0719 1.301 100 19.406
11 m/s 0.0810 1.2231 34.167 19.238
13 m/s 0.0727 1.6043 100 30.763
15 m/s 0.0697 0.9533 80.532 22.976

The effects of sea states can be considered using the wind condition. Specifically, the probability
distribution of wave depends on the average wind speed. Details on this correlation is provided
in Supplementary material. Moreover, the wind (and sea) condition should be selected based on a
candidate site for FOWT. If the average wind speed does not considerably change in the site, a single
condition is sufficient to optimize the TMD. If the seasonal changes in the wind speed are large,
the TMD parameter should be determined by considering several wind (and sea) conditions. In this
case, the probability of average wind speed has to be considered in the optimization.

6. Conclusions

The vibrations of FOWTs should be reduced because they negatively affect the stable operation
and lifespan of FOWTs. Although TMD is a promising solution to address this problem, the design
of TMDs is challenging owing to the existence of multiple minima. Although several mathematical
techniques have been applied to resolve this issue, they require heavy computations.

To address this problem, this paper proposes a novel and specialized optimization approach.
The newly developed approach can provide accurate results with relatively short computation times.
Interestingly, when one of the TMD parameters is fixed as a constant, an optimal set for the other
parameters can be easily obtained. To further utilize this cost function property, a parent nested
optimizing structure was developed. Additionally, an approximative search was proposed to rapidly
obtain a good initial guess for optimization. The performance of this method, in terms of accuracy
and optimization speed, was compared with that of a previous method (i.e., the exhaustive method)
for validation purposes. The new approach outperformed the previous method regarding both
metrics used.

The proposed optimization approach is especially useful when several factors have to be considered
to design floating offshore wind turbines (FOWTs) and TMDs. Although several environmental and
design factors were assumed to be invariant during the optimization, these factors can change and have
to be taken into account in practice. Then, the optimization should be conducted several times to study
the effects of the environmental and design factors. For example, the optimization should be performed
over various wind conditions, wave forces, dimensions, dimensions of structures, and masses of
structures, etc. Thus, when a large number of optimizations should be conducted, the proposed
approach (which is approximately 50 times faster than the exhaustive search) is very useful.

The new method was also applied to study the effects of TMD mass and wind conditions on TMD
design. This case study revealed that the performance of the TMD linearly increases with its mass.
Thus, the TMD mass has to be determined considering the vibration intensity and cost of the TMD.
Additionally, it was found that a light TMD showed a high performance when installed close to the
mean sea water level, whereas a heavy TMD operates more effectively when installed close to the
bottom of the platform. The TMD performance also varied over the average wind speed. Specifically,
the vibration reduction capability of this single TMD is maximum when the average wind speed is
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approximately 13 m/s. Furthermore, the proposed method could be useful in other studies, such as the
optimization of TMDs with multi-TMD systems.

Supplementary Materials: A supplementary document is available online http://www.mdpi.com/2077-1312/8/11/
876/s1.
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