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1 Introduction
The study of fractional calculus, differential equation and inequalities got rapid develop-
ment in the last few decades. Comparatively, fractional derivatives and integrals express
physical phenomena and hereditary properties of various materials in a more precise way
than classical derivatives. Classical derivatives are not enough to solve modern problems
of engineering, physics, and other applied sciences because of involvement of fractional
equations and inequalities.

To overcome this difficulty, many researchers are working on this area of research, see
e.g. [1-4]. For more about the topic, we refer to the book [5].

The Hermite—Hadamard type inequalities are considered as one of important inequal-
ities in convex analysis.

The function g: ¢ — R is convex if the following inequality holds:

g(tp+ 1 -t)y) <tg(B)+ (1 -1)g(y) (1.1)

forall B,y e pand t € (0, 1).

Hermite—Hadamard type inequalities have been studied extensively by many re-
searchers, and a significant number of generalizations have appeared in a number of pa-
pers on convex analysis, inequality theory, and fractional integrals (see e.g. [6-9]).

The present paper is organized as follows:

In the second section we provide some preliminary material and basic lemmas. The third
section is devoted to the main results, whereas in the last section we give some applications
to means.
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We will start with some preliminaries and basic lemmas.

2 Preliminaries
Definition 2.1 ([10]) Let g: ¢ — R be an extended real-valued function defined on a
convex set ¢ C R”. Then the function g is convex on ¢ if

g(tB+1-1)y) <tg(B) + (1 - g(y) (2.1)
forall 8,y € ¢ and £ € (0, 1).

Definition 2.2 ([11]) Choose the functions g,/%: ¢ C R — R to be nonnegative. Then g is
called /-convex function if

g(tB+ (1 -1t)y) < h()g(B) + h(1 - t)g(y) (2.2)
forall 8,y €Jand t € [0,1].
Definition 2.3 ([12]) Let ¢ be an interval in real line R. A functiong:¢ = [8,y] = Ris

said to be generalized convex with respect to an arbitrary bifunction n(8,y): E x E — T,
where E, F € R, if

g(tB+1-t)y) =gv)+tn(g(B).g(r)) (2.3)
forall B,y € ¢, t € [0,1].
Definition 2.4 A function 7 is said to be additive if

n(Buv1) + 1B v2) = n(Br + oy v1 + ¥2) (2.4)
for all By, B2, y1, 2 € R.
Definition 2.5 A function 7 is said to be nonnegative homogeneous if

n(tB1, tB2) = tn(B, Pa) (2.5)
for all 81, B, € R.
Definition 2.6 ([13]) Letp > 1and }7 + é = 1.Iff and g are real functions defined on [B, y]

and if |f|?, |g|? are integrable functions on [8,y], ¢ > 1, then the following inequality is

called Holder inequality for integrals:

y Y 117 14 tll
[ Lf(x)g(x)|dx§( / lf(x)|"dx) ( [ lewras)’ 26)
B B B

with equality holding if and only if A|f(x)|” = B|g(x)|? almost everywhere, where A and B

are constants.
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Remark 2.7 1f we get |f||g] = (If|’l’)(lf| i lg|) in the Holder inequality, then we obtain the
following power-mean integral inequality as a simple result of the Holder inequality.

Definition 2.8 Letg > 1, if g and / are real functions defined on [8, y] and if |f|, |f]|g|? are
integrable unctions on [B, y], then the following inequality is called power-mean integral
inequality:

Y y 1-% y %
[ welas= ([ ealas) ([ llewiras)” (2.7)
B B B

Definition 2.9 ([14]) A function g: ¢ =[B,y] — R is called 5, convex function if

g(tB+ 1 -1)y) <gly) + h(O)n(g(B).g(»)) (2.8)

forall B,y € ¢, t €[0,1] and h:J — R is a nonnegative function.

Definition 2.10 ([15]) Let (8,y) (—0o < B <y < 00) be a finite or infinite interval on the
real line R, and let o > 0. Also, let ¥ (x) be an increasing positive function on (8, y] with
continuous derivative ¥'(x) on (8, ). Then the left- and right-sided ¥ -Riemann—-Liouville
fractional integrals of a function g with respect to the function v on [B, y] are defined by

13V g(x) = / WO (%) - v () g0) dt, (2.9)

Y g(x) = / VO (W) - )" 'g(t)dt. (2.10)

The next remark provides the relations among convexities.

Remark 2.11 1.1f n(B8,y) = B — y, then (2.3) reduces to (2.1).
2. If h(t) = ¢, then (2.8) reduces to (2.3).
3.1f h(t) = t and n(B,y) = B — v, then (2.8) reduces to(2.1).

The next lemmas are useful in proving the main results.

Lemma 2.12 ([16]) Let g: [B,y] — R be a differentiable mapping on (B8,y) with 8 < y.
Also, let g € L1[B, y]. Then we have the following equality for fractional integrals:

gB)+gly) T(a+1)
2 2(y - B)

Y- ﬁ/ ((1- )¢ (LB + (1 - t)y) dt (2.11)

(157 5 oW W) + 5% @ov)(¥7'(B))]

Lemma 2.13 ([16]) Let g: [B,y] — R be a differentiable mapping on(B,y) with g < y. If
g € L1[B,v], then we have the following equality for fractional integrals:

Mo +1)
2(y - B

zgfo (k+ 1% — (1= 0")g (¢8 + (1 - 1)y) dt

ot — e i @M 0) + 1 -(gow)(w1<ﬂ))]—g(ﬂ;y)
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where
(2.12)

3 Main results
We are now in a position to establish some inequalities of Hermite—Hadamard type in-

volving 1/ -Riemann-Liouville fractional integrals with « € (0, 1) via n;, convex functions.

Theorem 3.1 Let o € (0,1), let g: [B,y] — R be a positive function with 0 < 8 <y and
g € Li[B,y], and let W be an increasing positive function on [B,y] having a continuous
derivative ' on (B,y). If g is an ny-convex function on [B,y] such that n is bounded above
ong([B,y]) xg([B,y]) i.e. n(x,y) < M. Then we have the following inequality for fractional

integrals:

,8+)/ 1 la—l
g( 2 )—h(§>M—aM/O " h(t)dt

Dl +1) ¢ 4 ~ : .
= 50~ g i @0 1% o) (7 (8))]

@B rey) @ [
- =+ M h(t) dt. 3.1
SR8 2 /O (o) de (3.1)

Proof Let x,y € [B,y]. Since g: [8,y] — R is a i, convex function, from 4.1 of [14] we

have

xX+y 1 g(x) +g(y) !
g(T) _h(§>M <SR EY) +M/0 h(e) dt, (3.2)

where M is an upper bound of 7,

M > n(g(x),g(»)) in the first inequality and M > n(g(ta + (1 - £)b),g((1 — t)a + tb)) in the
third inequality.

Letx=tB8+(1-t)y,y=ty + (1 —t)B and put %, y into (3.2), so we have

g(ﬂﬂ/)_h(})MSg(tﬂ+(1—t)y)+g(ty+(1—t)ﬂ) +M/1h(t)dt
2 2 2 0

B+y 1 !
Ae(2) (o [ woa]
<g(tB+A-t)y) +g(ty + 1-1)B)

xg(tB+1-t)y)+g(ty + 1 -1)B)

1
> 2|:g('3 ; V) _hG)M-M/O h(t)dt:|. (3.3)
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Multiplying both sides of (3.3) by t*~! and then integrating the resulting inequality with
respect to ¢ over [0, 1], we obtain

1 1
/ t“g(tB+(1-1)y) + / gty + 1 -0)B)
0 0

1 1 1
22[/0 t“‘lg(ﬂ%)—/o t“"lh<l)M—M/(; t“‘lh(t)dt],

1
/ t,3+ —t)y +f t* gty+(1—t;3)
0 0

IB+V 1 a-1
22[ ( ) ah<§>M_M/0t h(t)dt].

Next,
F 1 o -
2()(/a +,3)l[ S @) + I, oWV B)]
T+l 1 [ a-l
2y - B @Uw-uﬂ) Oy - ge vl

v ly) o
+ / V() -B)" (gov)) dv:|
vL(B)

o[ (VO =y )\ ¥ )
- 2[/w-1<ﬂ> ( y—-pB ) g(lﬂ(V))y_ﬁdV
v ww—ﬁ)“l W'(v) }
_— d
+/¢/1<ﬁ> ( y—-B g(w(v))y—ﬁ ’

o 1 1 ! -1 :|
= — o 1 - d « 1 - d
5 |:f0 e g(tB+(1-1)y) t+/0 s g(sy + (1 -s)B)ds

a 1 1
— 1- d a-1 1- d
2[] 'g(tB+(1-1t)y) t+/0 gty + 1 -0)B) t:|

(52 )]

Mo +1) v ~
20— gy v @ VW) + I @o ) (v (B)]

B+y 1 b
2g< > )—h<§>M—aM/0t h(t) dt,

where (3.4) is used, so the left-hand side inequality in (3.1) is proved.

To prove the right-hand side inequality in (3.1), since g is a 1, convex function, then for
t[0, 1] we have

g(tB+1-1)y) <gly) +h®)n(egB).g(r))

Page 5 of 14
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and

gty + (1-1)B) <g(B) + h(On(g(y).g(B)).

Now,

gtB+ @ -t)y) +g(ty + 1-0B) < g(B) +g(y) + h(t)n(g(B).g(¥))
+h()n(g(y).g(B)). (3.5)

Multiplying both sides of (3.5) by *~! and then integrating, we obtain

1 1
/ t"'lg(tﬁ+(1—t)y)+/ gty + 1-0)B)
0 0

1
= ‘M ¥ /0 7 h@)[n(g(B).2()) + n(g(y),(B))] dt
So then
gr(,(/a +ﬁ1)1,[ o) (¥ () +1§L‘ﬁ(y),(go v ()]

_a la—l la—l
_5[/0 ¢ g(tﬂ+(1—t)y)dt+/0 ¢ g(ty+(1—t)ﬂ)dt}

1
< S[EPEE [t (a8 000) + ety a8

_8&B) +ey)

o 1
= / ()M dt.
2 2 Jo

The proof is completed. O

Remark 3.2 If we take h(t) = t and n(B,y) = B — ¥, then inequality (3.1) reduces inequality
(2) in [17].

Theorem 3.3 Let g: [B,v] — R be a positive function with 0 < 8 < y such that g €
L1[B,y], and let  be an increasing positive function on [B, y]| having a continuous deriva-
tive ' on (B,y). If i is an ny-convex function on [B,y] for some fixed h € (0, 1], then we
have the following inequality for fractional integrals:

[ i @)+ I @ow(wm)]-g(ﬂ;y)\

’ 2 2 / /
¢ (y ’(m i1 +1>+n(|g(f5)|,|g(y)|)

% 1
X [/ h@)(1+t* - (1-0)*)det+ f h@)((1 - +1-1%) dti| } (3.6)
0 1

2

Page 6 of 14
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Proof Using Lemma (2.13) and the 7;,-convexity of /1, we have

Mo +1)
2(y - B)”

- %/0 (ke = (1=8)")g (¢B + (1= t)y) dt

<V—/3{

158 e @ o) (¥ 1()/))+1]°f/§(y>(g01/f)(1/fl(ﬂ))]—g(ﬁ ;y>

2 fo%(l”a‘( 1-0°)[|g )]+ on(|g B)] | (v)])] at
et

v [ (- -0 [lg 0] + hon(lg

Ndal. { g ()] /02 [1+2 =@ -]t +n(|gB)]. ¢ ()])

)

1

) h(t)[(l—t)“+1+t°‘]dt}

B 1 1 ,
—{|g( )|( mem)H?( (
x/;h(t)[ut“-(l—t)“]dt

» 1 11
WOl (g av1*2)

1
+n(lg'(B)], 1€ ()]) /; hO[A -7 +1+%] dt}

g

_v-8 £ 11 1 1 11

— —— + + - + =

STy 18NS Tl T T 20@rl) axl 2
1

), /(y)|)UO2h(t)(1+t“-(1-t)“)dt

n(|lg'(B

1

HO(@-p+1-1) dt):| }
’r( +1
2(y - B)

)
_:3 / 2 2 /
< VT{LQ )’)’(m m‘Fl) +’7(|g(,3)

% 1
x[/o h(t)(1+t°‘—(1—t)”‘)dt+/% h(t)((l—t)“+1—t°‘)dt)”.

[ o (W () + 1%, (goxm(w-l(ﬁ))]—g(ﬂ;y)‘

g 0)])

The proof is completed. g
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Remark 3.4 1f we take h(f) = t and n(8,y) = B — ¥, then Theorem 3.3 will be reduced as a

result of classical convexity.

Theorem 3.5 Let g: [B,y] — R be a positive function with 0 < B <y such that g €
L,[B,y], and let  be an increasing positive function on |8,y having a continuous deriva-
tive ' on (B,y). If 1¢'|%(q > 1) is an ny,-convex function on [B,y] for some fixed h € (0,1],
then we have the following inequality for fractional integrals:

I +1) , w

‘ 2 — ) v L @MW)+ 1Y @ow) (¥ (B)] g( )‘
1 P((1,,

S(V‘ﬂ)(w) {<2|g( |+n(|g B /(;h dt)

1 i
: g/(y)lq)fl h(t)dt) } (3.7)

2

< (Sl n(le®)

where L =1 -1,
p q

Proof Using Lemma (2.13) and the Holder inequality via the n;,-convexity of |g’'|%(g > 1),

we have
Fa+1) e ) Bey
2y - ﬁ)"‘[ b @V ) + [N @ov)(¥ l(ﬂ))]—g( 2 )

- ﬂ/ (k+t* = (1=0")g (tB + (1 -t)y) dt

= ﬁ{/ L+ -1 -0)")|g(¢B + A~ t)y) dt|dt

2 0

[ - a0 0o alal
<* ﬂ{(/ (1”&_(l_t)u)pdt>ﬁ</z|g’(tﬂ+(1—t)y)dthdt>q

0
’ 1 1

(/ (1 t)Dt+1 ) dt) (‘/1 |g,(t,3+(1—t))/)dt|th> }

f—ﬂ( L+ -(1-0°) dt)ﬁ

1

V)ar)’

")]dt)%}

|
(f

N

/ [lg€|* +h@)n(|g

(g [* + m@n(|g 8",

+

\

1

</2(1+t°‘—(1—t)“)pdt>ﬁ
0

<
=

=

N ‘

Page 8 of 14
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1

% / q / q % q
x{(/o lg'()|" dt +n( )/0 h(t)dt)

1 1 :
+( / )| dt + (g B |¢ [ / h(t)dt) }

Next,
S%(/oz(l+t“—(l—t)“)pdt>ﬁ
1 3 7
x {(ilg’(y)lqdﬂn( / q)/o h(t)dt)
1 1 7
(5|g<y)|th+n( |)/% h(t)dt) }
- 5 51 5 i
5%(219/0 t“”df) {<§|g’(y)|qdf+'7( ’ ")/0 h(t)dt)
1 0
( g )| de+n(lg B, |)ﬂ h(t)dt) }
1 }_17 1 / / ] % %
SW_ﬂ)(W) {<§|g()/)|q+'7( q;|g(7/)\q)/(; h(t)dt>
1 1 7
(3ol ntewr o) [ o)’}
The proof is completed. O

Remark 3.6 When we take /(t) = t and n(8,y) = 8 — ¥, Theorem 3.5 will be reduced as a
result of classical convexity.

Corollary 3.7 Let g: [8,y] — R be a positive function with 0 < B <y such that g €
L,[B,y], and let ¥ be an increasing positive function on [B, y]| having a continuous deriva-
tive ' on (B,y). If 1g'|%(q > 1) is an ny-convex function on [B,y] for some fixed h € (0,1],
then we have the following inequality for fractional integrals:

| Mo +1)
2(y - B

1 ’ ,
<0G ) { (10
+ (n(l /

where L =1 -
»

1% 6o 007 ) + 5%, o] -a( 257 )|
“lg |7 /0 " () dt) ’

1 q 1
I g/(y)|q)/1 h(t)dt> +2"a|g

| os

1

q

Proof We consider inequality (3.7), and we let a; = %|g’(y)|q, by =n(lg'(B)9, g (y)|7) x
1

f02 h(t)dt, ay = %|g/(y)|q, by =n(Ig' (B)14, | (¥)|9) f%l h(t)dt. Here, 0 < % <1forg>1.Using

Page 9 of 14
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the inequality X/ (a; + b;)" < X a} + XL bl forO<r<1,a;>0,b;>0,i=1,2,3,...,n, we
obtain the required result. This completes the proof. O

Theorem 3.8 Let g: [B,y] — R be a positive function with 0 < 8 < y such that g €
Li[B,y], and let  be an increasing positive function on [B,y] having a continuous deriva-
tive ' on (B,y). If 1¢'|%(q > 1) is an ny,-convex function on [B,y] for some fixed h € (0,1],
then we have the following inequality for fractional integrals:

’ Mo +1)
2(y - B

y=B( 1 \"i/a-1 1\'4 a1 1 1
=5 <a+1> <2 +2—a> {(\gw <§‘m+7za<a+1))

1
n(|¢

N e - - “d)a

)/0 O1+t* -1 -0)*]dt
1 1 1

(€0 (e s)

: ;
B g’(y)!")/1 hO[(1-% +1-¢] dt) } (3.9)

2

(1% el D 0) + 1%, o) -¢( 257

n(lg'(8)
Proof Using Lemma (2.13) and the power-mean inequality via the n,-convexity of |g’|?

(g > 1), we have

Mo +1)
2(y - B)”

- %/0 (k+"=(1-6))g (B + (1-1)y)dt

[ o) (¥ 1<y))+1§;"’1(y)@ow)(w-%ﬂ))]—g(ﬁ ;V>

1

{/02 (L+6* =1 -0)%)|g (¢B + (1 -t)y) dt| dt

<
=

=

[\J ‘

1

o =+ (1 -0)7) g (B + 1 - t)y) de] dt}

2

1

A

/ L+ -1 -0%)|g B+ (1~ t)y)dt|th>

1

1-3
1 t*+(1- t)"‘) )

=

<

=

1-1
1+ =(1-0)") dt) !

1

\

1

/ 1-t"+(1-1)")|g (B + (1~ t))/)dt|th> }
( 1+t“—(1—t)“)dt)

/2 1+ =@ =) [lgWN|" + ke (g B ¢ ”)]dt)q

/\

/\

{(

Page 10 of 14
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+ (/ (=" +1-*)[|gW|" + hO)n(

: %
\ q /( q,‘g/()/)|q)]dt) }
_ 1 g
Syzﬁ(oil) (azl 2101) {( ‘/ Lt = (-0 ]de

1
+n(|¢

q)/zh(t)[1+t —(1—t)°‘]dt>q
0
1
+ (‘g/(y)ri"/1 [(1—t)"‘+1—t"‘]dt
1 g
+n(|¢ q)/1 h(t)[(l—t)"‘+1—t"‘]dt) }
_v-B( 1 “ila-1 1\ N TEn 1
) (a+1> (2 +2_a) {(igy|<§_m+2a(a+1))
(g q)/zh(t)[1+t“—(1—t)“]dt>q
0
a1 11
(e (5 3)

+n(l¢

1

1 q
Llgw)| )/ DIEDR +1—t°‘]dt> } (3.10)

This completes the proof. d

Remark 3.9 1f we take h(f) = ¢ and (8, y) = B — ¥, then Theorem 3.8 will be reduced as a
result of classical convexity.

Corollary 3.10 Let g : [B,v] — R be a positive function with 0 < B <y such that g €
L1[B,y], and let  be an increasing positive function on [, y] having a continuous deriva-
tive ' on (B,y). If 1¢'|%(q > 1) is an ny-convex function on B, y] for some fixed h € (0,1],
then we have the following inequality for fractional integrals:

I +1) o a -
D ol )+ %, o 9] - 52|
v=B( 1\ a=1 1\"4(,, 11 1 \¢
=7 (a+1> ( 2 +2_a) {'g(”)|[(§_m+2a(a+1))
1 1 1\ b}
+<m—a+1+§> ]+b1 +b2}, (311)

where

1

q)/o2 WO[1+ 1% — (1 - 1)) dt
g )/ O[Q-0%+1-¢*]at.

=n(|g'(

=n(lg'®)|"
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Proof We can obtain the result using the technique in the proof of Corollary 3.7 by con-
O

sidering inequality (3.9).

4 Application to some special means
Bivariate means are with respect to two elements. Consider the following bivariate means

(see [18]) for arbitrary m,n € R, m # n:

the harmonic mean

m,n € R\{0},

H(m,n) = T
T

NIl

the arithmetic mean

m+n
A(m,n) = — m,n R,

the logarithmic mean

lm| 7 |n|, mn 0,

’

Lim, n) n-m
mm)= ——————
In |n| — In |m|

and the r-logarithmic mean

1

nr+1 _ mr+1 7
, reZ\{-1,0},mneR,m+n.

Lo, m) = [m

Now we give some applications to the special means of a real number.
Proposition 4.1 Letm,ne R, m<n,reZ, |r| >2,he(0,1],and q > 1. Then

() (L 1)+ (= )
U h@)(1+ 8 = (1= £)) dt

+ [ O -0 + 1= ) dr]),

(1= m) (i) (20 (D) + (ol L)

|LL(m,n) = A" (m,n)| < 1 1 1 1
x Jo h(®)dt)a + (n(lrm', [ra" 1) [1 W(e) di)a},

(=) (Lyp 2prm Y A(L)7, (1)7)
+ (=Y, V) [ O + £ — (1 - £)*] db)
+ Ol ) [ HOUL -0 +1 - 2] dD) 1),

where L =1-1
p q

Proof Applying Theorem 3.3, Corollary 3.7, and Corollary 3.10 respectively for g(x) = x”,
O

¥)(x) =x, and & = 1, we immediately obtain the result.
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Proposition 4.2 Letm,n e R, m<n,reZ, |r| >2,he€(0,1],and q > 1. Then
’L’l(m,n) —H’(m_l,n_1)|

(5" m){2| 2|+77(| 12| | 2|)
X [fo B+ —(l—t)a)dt+f1 O -~ +1-¢t*)dt]},

(n— m)((p+1)2p+1)p{2p(|n2|)+(77(|m2| |n2|)

< X ()dt)q+( 151151 fl t)dt
(me )p{z|nz|A<< )i, (L)1)
+ 051 15D i RO+~ (1 - ] de)
011 15D [T RO -0 + 1= 241 dpy7),
where}j:l—%.

Proof Applying Theorem 3.3, Corollary 3.7, and Corollary 3.10 respectively for g(x) = %,
¥)(x) =x, and @ = 1, we immediately obtain the result. O

5 Conclusion

In this article we established the Hermite—Hadamard type inequalities for 1) convex func-
tions. The main motivation of the article is [16]. The Hermite—Hadamard inequality de-
rived here involved ¥ -Riemann—Liouville fractional integrals. We also give some applica-
tion of our results. Hopefully, the idea used in this paper will be interesting for the research
of integral inequality and fractional calculus.
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