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Abstract: The feasibility study of a 24 GHz industrial, scientific, and medical (ISM) band Doppler
radar antenna in electromagnetic aspects is numerically performed for near-field sensing of human
respiration. The Doppler radar antenna consists of a transmitting (Tx) antenna and a receiving (Rx)
antenna close to the human body for a wearable device. The designed slot-type Doppler radar antenna
is embedded between an RO4350B superstrate and an FR-4 substrate. To obtain the higher radiation
pattern of the antenna towards the human body, a ground plane reflector is placed underneath the
substrate. The measured −10 dB reflection coefficient (S11) bandwidth is 23.74 to 25.56 GHz and
the mutual coupling (S21) between Tx and Rx antennas is lower than −30 dB at target frequencies.
The Doppler radar performance of the proposed Doppler radar antenna is performed numerically by
investigating the signal returned from the human body. The Doppler effect due to human respiration
is investigated through the I/Q and arctangent demodulation of the returned signal. According to the
results, the phase variation of the returned signal is proportional to the displacement of the body
surface, which is about 0.8 rad in accordance with 1 mm displacement. The numerical experiments
indicate that the proposed Doppler radar antenna can be used for near-field sensing of human
respiration in electromagnetic aspects.

Keywords: doppler radar; slot antenna; I/Q demodulation

1. Introduction

As we rapidly become a super-aging society, the global medical device market is growing. Medical
devices can improve the quality of life by providing a health status to assist a patient by diagnosing
and treating the patient’s health condition. The Doppler radar, in particular, has been widely used
as a promising medical device for detecting vital signs [1–4]. The Doppler radar can diagnose the
health condition by detecting the movement of the human body surface. If the radiofrequency (RF)
signal transmitted from the Doppler radar reaches the human body, displacement due to body surface
movement results in the phase shift of the returned RF signal. The phase shift of the returned signal is
linearly proportional to the displacement by the Doppler effect [5,6]. Therefore, the Doppler radar
can indicate cardiopulmonary function by analyzing the phase changes associated with displacement.
Conventional 2.4 GHz Doppler radars have been studied for contactless applications and nowadays
higher-frequency band Doppler radars are widely studied. The K-band Doppler radar can especially
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provide several advantages compared to low frequency bands. It can have high sensitivity to small
displacements of the human body and can be miniaturized [7–10]. Note that one of unlicensed radio
bands is the 24 GHz industrial, scientific, and medical (ISM) band. However, conventional Doppler
radars for sensing human vital signs are usually used in limited spaces because they are installed
on fixed locations and operate remotely in the far field. Therefore, it is impossible to detect human
vital signs when a person leaves a stationary test site in the conventional Doppler radar system.
To overcome the limitation, the Doppler radar is necessary to be designed for wearable devices, which
allows detection of human vital signs without space limitations. Note that the wearable device directly
attached to the human body is not appropriate for near-field sensing of human vital signs due to zero
relative displacement. The wearable device with a strap wrapping the human body (e.g., an ID badge
holder or a wrist band) can be considered for near-field sensing of human vital signs, because the
Doppler radar does not move in relation to the human cardiopulmonary motion or pulse. When the
Doppler radar antenna is placed in the vicinity of the human body (whose electrical properties are
high permittivity and conductivity at 24 GHz), the antenna performance may be degraded. In other
words, the frequency response of the antenna may be distorted due to human body effects. Therefore,
the Doppler radar antenna for wearable devices should be less affected by human body effects.

In this paper, we study a 24 GHz ISM-band Doppler radar antenna suitable for near-field sensing of
human vital signs. As a proof of concept, we present the feasibility study of the Doppler radar antenna
close to the human body to sense human respiration in the viewpoint of antennas and propagation.
The Doppler radar antenna should be designed to provide good matching performance and low mutual
coupling for sufficient isolation between the transmitter and the receiver [11,12]. The slot-type antenna
is less affected by human body effects compared to other antennas [13]. Therefore, in this work, the
slot-type Doppler radar antenna with good performance is designed and fabricated. To demonstrate
the performance of the designed Doppler radar antenna, the Doppler radar antenna in front of the Duke
phantom’s abdomen [14] is simulated by using Sim4life [15], which is based on the finite-difference
time-domain (FDTD) method [16–18]. The performance is evaluated by analyzing the signal returned
from the phantom. The phase variation of the received signal is converted to displacement due to
human motion by using I/Q demodulation because quadrature receivers are commonly used in Doppler
radar to detect vital signs. Note that displacement can be obtained through the ratio of two I/Q channel
output signals in a quadrature receiver system, which is called by the arctangent demodulation. It is
found that the phase variation is linear with respect to displacement due to the Doppler effect. This
work considers simulations on scenarios with body-RF signals interaction that give a qualitative insight
of the feasibility of this antenna system for near-field sensing of human vital signs. Further work is
necessary to validate the Doppler radar for near-field sensing of vital signs, since it will be feasible
when the electromagnetic performance as well as the performance of other parameters in RF systems,
baseband systems, and the underlying signal processing are fully considered. The remainder of this
paper is organized as follows. We first present the design and measurement results of the slot-type
Doppler radar antenna. Next, we investigate the performance of the designed Doppler radar antenna
close to the human body and conduct a feasibility study of the 24 GHz ISM-band Doppler radar
antenna for near-field sensing of human respiration. Finally, concluding remarks are provided.

2. Slot-Type Doppler Radar Antenna Design

As alluded previously, the slot-type Doppler radar antenna [19] is designed in this work, since
slot antennas are less affected by human body effects compared to other antennas. Figure 1a shows the
overall view of the designed slot-type antenna. Both Tx port (Port 1) and Rx port (Port 2) are fed by the
end-launch K-connectors and they are connected to the microstrip line through via-holes. The slotted
aperture is embedded between the superstrate and the substrate, which are Rogers RO4350B (thickness
= 0.254 mm, εr = 3.48, tan δ = 0.0037) and FR-4 (thickness = 1.6 mm, εr = 4.4, tan δ = 0.02), as depicted
Figure 1b. The FR-4 substrate is employed for rigidity because the antenna on Rogers RO4350B may be
easily bent. The antenna has a slot of 0.8 × 2.8 mm2, as shown in Figure 1c. The radiation pattern of
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slot antenna is basically omnidirectional pattern. In order to obtain a higher radiation pattern towards
the human body than the back side, the slot antenna has a reflector underneath the FR-4 substrate as
shown in Figure 1d. Figure 2 shows the microstrip line-based feed circuit. The microstrip lines are
printed on the top layer of Rogers RO4350B superstrate and ground planes with slotted aperture are
mounted on bottom layer of Rogers RO4350B superstrate. The width of microstrip line is 0.5 mm and
its length is 7.3 mm.
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The surface current is induced around the slotted aperture by electromagnetic coupling with
the microstrip line. Therefore, the slotted apertures work as a slot antenna [20]. The impedance
characteristic of the slot antenna can be controlled by modifying the length and width of the microstrip
line. The surface current distributions at 24.125 GHz is shown in Figure 3. The designed slot-type
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Doppler radar antenna is fabricated and measured in Figure 4. As shown in Figure 4, simulation
and measurement results are obtained by considering the slot-type Doppler radar antenna system
composed of Tx and Rx antennas, not just only one antenna. Figure 5 shows the simulated and
measured S-parameters of the Tx antenna. The simulated reflection coefficient (S11) of the slot-type
antennas is below −10 dB from 23.2 to 24.78 GHz (bandwidth BW = 1.58 GHz). The simulated
mutual coupling (S21) from the Tx antenna to the Rx antenna is lower than −27.4 dB over the target
frequency band. The measured −10 dB S11 bandwidth is 23.74 to 25.56 GHz (BW = 1.82 GHz) and
the measured S21 is lower than −30 dB over the target frequency band. The discrepancies between
simulation and measurement are regarded as error by the manufacturing process. Although the
resonant frequency is shifted to a higher band, the fabricated antenna still covers the target frequency
band. The simulated and measured radiation patterns of the Tx antenna are shown in Figure 6, when
port 1 is excited. The simulated realized gain and front-to-back ratio (FBR) along z-axis are 4.24 dBi
and 9.23 dB, respectively. The simulated cross polarization (X-pol) level is significantly lower than
the simulated co polarization in the front side. The measured realized gain and FBR along z-axis are
2.1 and 33.3 dB, respectively. The discrepancies between simulation and measurement in terms of
radiation patterns are caused by the same reasons for S-parameters. It should be also noted that the
radiation pattern of the designed slot-type antenna is different from that of the basic slot antenna since
the designed antenna works as a radiator based on a combination of the slot, the microstrip, and the
grounds. 2.5 × 102
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3. Feasible Study of Doppler Radar Antenna for Respiration

In general, quadrature receiver systems are widely used in Doppler radar to detect vital signs,
because the performance of single-channel receivers is limited [21]. Two orthogonal output signals of
the quadrature receiver system can measure relative phase information. The two signals are represented
as the in-phase (I) channel and the quadrature-phase (Q) channel. The magnitude and phase of the
I-and Q-channel signals can be displayed via the I/Q plot. Note that the time-varying phase shift is
linearly proportional to the displacement caused by human body surface movement. Displacement
can be obtained by applying arctangent demodulation to the I and Q signals ratio [22]. Note that we
assume that RF and baseband systems are perfect since we focus on the feasibility study of a near-field
Doppler radar in terms of antennas and propagation.

As a proof of concept, in this work, we consider human respiration. Toward this purpose, let us
assume that the Doppler radar antenna is embedded in the ID badge holder. The designed Doppler
radar antenna is placed in front of the abdomen of Duke phantom in Sim4life. The dielectric properties
of human tissues can be found in [23]. The distance between the Doppler radar antenna and the human
body is changed from 5 to 15 mm because respiration is accompanied by movement of the upper
body surface and its movement is usually about 10 mm [24,25]. Figure 7 shows a simulation setup of
the designed Doppler radar antenna with Duke phantom in Sim4life. The pulse signal is excited to
analyze the frequency response of the designed Doppler radar with the Duke phantom. The total time
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spent on simulation is about 5 h by using a DELL T7910 workstation with an NVIDA Tesla K40 GPU
accelerator. Figure 8 shows the simulated reflection coefficients. It is observed that that the designed
Doppler radar antenna placed at a distance of 5 mm has a reflection coefficient of −9.2 dB and the rest
is less than −10 dB at 24.125 GHz.
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In order to accurately analyze the phase information by the Doppler effect, the direct signal from
the transmitter must be excluded from the signal received at the receiver. Note that the direct signals
can be subtracted from the received signals by the calibration in the actual Doppler radar system.
Before proceeding with the Doppler performance, it is worthy to investigate the antenna fidelity factor
and the system fidelity factor [26,27]. The fidelity factors can be obtained as follows:

TN(t) =
T(t)[∫

∞

−∞

∣∣∣T(t)∣∣∣2dt
]1/2

(1)

RN(t) =
R(t)[∫

∞

−∞

∣∣∣R(t)∣∣∣2dt
]1/2

(2)

F = max
∫
∞

−∞

TN(t)RN(t + τ)dt (3)

The TN(t) and RN(t) are the normalized pulses to compare the shape between the two pulses.
The fidelity factor F is the maximum value of the correlation between the normalized pulses. The antenna
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fidelity factor is obtained by calculating with the cross-correlation of the radiated E- field and the
input signal. As shown in Figure 9a, the good antenna fidelity factor is observed for all angles.
The system-fidelity factor is calculated by the cross-correlation between the transmitted pulse and the
received pulse. Figure 9b shows the correlation between the transmitted pulse signal and the received
pulse signal at the distance of 11 mm. As shown in the Figure 9b, the maximum value of the correlation
is almost one and thus the very high system fidelity is expected. Figure 9c shows the system fidelity
versus the distance. The results show that the system fidelity factors are very good at all distances and
thus the designed slot-type antenna is suitable for Doppler radar applications.
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Next, we plot the amplitude and phase of the signal returned from the phantom over a distance
of 5 to 15 mm at 24.125 GHz in Figure 10. The phase of the returned signal is almost linear, and a
displacement of 1 mm corresponds to a phase change of about 0.8 rad. The amplitude of the returned
signal fluctuates, since the designed Doppler radar operates in near field. However, human body
displacement is only related to the phase information and thus this non-flat amplitude response is
not problematic for the Doppler radar. The I/Q data are obtained by mixing the returned signal with
the transmitting signal. Figure 11 shows I/Q data corresponding to Figure 10. Although the I/Q trace
is not a perfect circle (due to non-flat amplitude response), the phase response is almost linear to
displacement, as expected.
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Until now, we analyze the returned signal from the human body in a stationary position. However,
the displacement of the human body is not stationary when breathing and thus the time-varying
returned signal must be investigated. In this work, to emulate the movement of the human body
in breathing, it is assumed that the displacement of the human body changes linearly with time.
In specific, the one exhale time is 2 s and the one inhale time is 2 s and thus respiration is periodic to
4 s, as shown in Figure 12. Note that the movement of the human body by actual breathing is complex
with respect to time, but the purpose of this work is to investigate the phase-shifted returned signal
and thus this linear assumption is appropriate for this work.
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Figure 13a shows the I/Q data for the time-varying returned signal and it is observed that the
period of I/Q data is 4 s, same as respiration. Next, the converted displacement is calculated by
arctangent demodulation. Ideally, the converted displacement of 0 mm (10 mm) corresponds to the
distance between the antenna and the object of 5 mm (15 mm). According to Figure 13b, the converted
displacement is 0 mm to 9 mm. Note that the difference between maximum and minimum converted
displacement (9 mm) is not the same as human body movement (10 mm) since the abdomen of the
phantom is not flat and the human body is not perfectly electric conductor (PEC). We also calculate
theoretically the converted displacement of a flat PEC in far field. As shown in the Figure 13, the
converted displacement in this case is exactly the same as the movement of the human body. It should
be noted that the respiration rate is successfully obtained by the near-field Doppler radar, albeit with
little discrepancy of displacement. Numerical experiments show that the designed Doppler radar
antenna can sense human respiration in near field in electromagnetic aspects.
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4. Conclusions

In this paper, a feasibility study of the 24 GHz ISM-band Doppler radar antenna for near-field
sensing of human respiration in electromagnetic aspects is presented. Since the Doppler radar antenna
is assumed to be used in wearable devices, it is designed and fabricated as the slot-type antenna that is
less affected by human body effects. The designed slot-type Doppler radar antenna is satisfied with
−10 dB reflection coefficient at the target frequency band and lower than −30 dB mutual coupling
between the transmitter and the receiver. To study the performance of the designed Doppler radar
antenna for near-field sensing human respiration, the Doppler radar antenna is placed in front of
the Duke phantom’s abdomen and it is simulated while the distance between the Duke phantom
and the antenna is varied from 5 to 15 mm. It is observed that the phase of the returned signal is
linearly proportional to the displacement, and the phase change of the returned signals is about 0.8
rad corresponding to 1 mm of displacement. Moreover, time-varying returned signals are analyzed
using I/Q and arctangent demodulation. Numerical examples demonstrate that the designed Doppler
radar can successfully sense human respiration in electromagnetic aspects. It should be noted that
the Doppler radar for near-field sensing of human vital signs will be practically feasible when the
electromagnetic performance as well as the performance of other parameters in RF systems, baseband
systems, and signal processing (e.g., to mitigate DC offset or clutter interference) are fully considered.
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