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Abstract: The Hyers-Ulam stability of (α, β, γ)-derivations on Lie C∗-algebras is discussed by
following functional inequality

f (ax + by) + f (ax − by) = 2 f (ax) + b f (y) + b f (−y),

where a, b are nonzero fixed complex numbers.
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1. Introduction and preliminaries

The derivation theory of Lie algebras play a key role in Lie theory. In particular, Physically
motivated relations between two Lie algebras have been extensively discussed [27]. The problems for
the structures and characteristics of (α, β, γ)-derivations of Lie algebras have been extensively
investigated by a range of scholars, as for this, many scholars have made useful researches
(see [22, 28, 37]). The authors set up the structure and properties of (α, β, γ)-derivations of Lie
algebras.

In this work, The definition of a Lie C∗-algebra come from [29, 30, 34]). In [28], the definition of
(α, β, γ)-derivation can be found.

1940, the stability problem of group homomorphisms was raised by Ulam [38]. In 1941, Hyers [20]
answers this question with a qualified yes to the question of Ulam for additive groups in Banach spaces.
Hyers’ theorem was generalized by Aoki [2], Rassias [35] and Găvruta [17] for linear mappings. In
recent years, a lot of experts and scholars have studied in this area and made many achievements
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(see [1, 3, 6, 7, 9, 12, 23–25, 33, 39, 40]).
Gilányi [18] and [36] considered the functional inequality

‖2 f (x) + 2 f (y) − f (x − y)‖ ≤ ‖ f (x + y)‖ (1.1)

then f satisfies the Jordan-von Neumann functional equation

2 f (x) + 2 f (y) = f (x + y) + f (x − y),

respectively. The Hyers-Ulam stability of the above functional inequality is discussed by Fechner [16]
and Gilányi [19]. Park [31, 32] gave the definition of additive ρ-functional inequalities and discussed
the Hyers-Ulam stability of the additive ρ-functional inequalities in different spaces .

To obtain a Jordan and von Neumann type characterization theorem for the quasi-inner-product
spaces, Drygas [11] considered the functional equation

f (x + y) + f (x − y) = 2 f (x) + f (y) + f (−y), (1.2)

which solution is called a Drygas mapping. The general solution of the above functional equation was
given by Ebanks, Kannappan and Sahoo [13] as

f (x) = Q(x) + A(x),

here A is an additive mapping and Q is a quadratic mapping.
In this work, we consider the stability of (α, β, γ)-derivations on Lie C∗-algebras by the general

Drygas functional equation

f (ax + by) + f (ax − by) = f (2ax) + b f (y) + b f (−y), (1.3)

the coefficients a, b is complex number, the proof of stability of the (1.3) is difference in [13]. The
additive mapping A and quadratic mapping Q is constructed by the function relations, this method is
called “directed method”. In the (1.3), a, b action will cause difficulties for the stability of functional
inequalities. We can overcome the influence of a, b, the stability of (α, β, γ)-derivations using the fixed
method. The beautiful examples about (α, β, γ)-derivations can be found in [41].

The Hyers-Ulam stability analysis on C∗-algebras about functional equations have been discussed
by fixed point theorem (see [5, 8, 14, 15, 21]).

Next, the concept of the “generalized complete metric space” is introduced following
Luxemburg [26].

Definition 1.1. Let X be an abstract (nonempty) set, the elements of which are denoted by x, y, · · · and
assume that on the Cartesian product X × X a distance function d(x, y)(0 ≤ d(x, y) ≤ ∞) is defined,
satisfying the following conditions

(1) d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x)(symmetry),
(3) d(x, y) ≤ d(x, z) + d(z, y)( triangle inequality),
(4) every d-Cauchy sequence in X is d-convergent, i.e. limn,m→∞ d(xn, xm) = 0 for a sequence xn ∈

X(n = 1, 2, · · · ) implies the existence of an element x ∈ X with limn→∞ d(x, xn) = 0, (x is unique).
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By the concept, every two points in X may be have the infinite distance. The space is called a
generalized complete metric space.

We recall fixed point theorem that plays an key role to prove the stability of derivation.

Theorem 1.2. [4, 10] Let (X, d) be a complete generalized metric space and J : X → X be a strictly
contractive mapping with Lipschitz constant L < 1. Then for any x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, for all n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0 x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y.

Now, using some thoughts from ( [4, 10, 15]) we discuss the stability for (α, β, γ)-derivations and
Lie C∗-algebra homomorphisms on Lie C∗-algebras related to (1.3) via the above fixed point theorem.

2. The stability of (α, β, γ)-derivations

Now, suppose that s is complex fixed point andA is a Lie C∗-algebra with norm ‖ · ‖. The following
lemma is necessary to prove our main theorems.

Lemma 2.1. [30] Suppose X and Y are linear spaces, f : X → Y is an additive map satisfying
f (µx) = µ f (x), ∀x ∈ X and µ ∈ T 1 := {λ ∈ C : |λ| = 1}. Then f is C-linear.

Lemma 2.2. Assume f : A → A is a map satisfying

‖ f (ax + by) + f (ax − by) − f (2ax) − b f (y) − b f (−y)‖
≤ ‖s( f (ax − by) + f (ax + by) − f (2ax))‖

(2.1)

∀x, y ∈ A, |s| ≤ |1 − 2b| ≤ 1. Then f is additive.

Proof. If x = y = 0 in (2.1), then f (0) = 0. If x = b
ay in (2.1) with b , 0, one obtain f (−y) = − f (y).

Next, we discuss that f is additive. Since f (−y) = − f (y) in (2.1),

f (ax + by) + f (ax − by) − f (2ax) = 0

for ∀x, y ∈ A. So f is additive. �

Theorem 2.3. If there are a mapping φ : A2 → [0,∞)

1
2
φ(2x, 2y) ≤ Lφ(x, y), ∀x, y ∈ A; (2.2)

and a mapping ψ : A2 → [0,∞) with a constant 0 < L < 1

ψ
( x
2
,

y
2

)
≤ L2 1

22ψ(x, y), ∀x, y ∈ A. (2.3)
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Let f : A → A satisfy

‖ f (aµx + by) + f (aµx − by) − µ f (2ax) − b f (y) − b f (−y)‖
≤ ‖s( f (aµx − by) + f (aµx + by) − µ f (2ax))‖ + φ(x, y),

(2.4)

‖α f [x, y] − β[ f (x), y] − γ[x, f (y)]‖ ≤ ψ(x, y), (2.5)

∀x, y ∈ A, µ ∈ T 1, some α, β, γ, a, b and |s| ≤ |1−2b| ≤ 1. Then we can find a unique (α, β, γ)-derivation
δ : A → A satisfies (1.3) and

‖ f (x) − δ(x)‖ ≤
1

2(1 − |s|)(1 − L)
φ
( x
a
, 0

)
, ∀x ∈ A. (2.6)

Proof. Suppose Ω is a set of all mappings fromA intoA, on Ω, a generalized metric is introduced,

d(g, h) = inf
{
C ∈ R+ : ‖g(x) − h(x)‖ ≤ Cφ

( x
a
, 0

)
,∀x ∈ A

}
.

Then (Ω, d) becomes a generalized complete metric space. One define a map T : Ω→ Ω by

Tg(x) =
1
2

g(2x),∀g ∈ Ω, x ∈ A.

Let g, h ∈ Ω with d(g, h) ≤ C, here C ∈ (0,∞) is an arbitrary constant. Then we obtain ‖g(x) −
h(x)‖ ≤ Cφ

(
x
a , 0

)
,

‖Tg(x) − Th(x)‖ ≤
C
2
φ(2x, 0) ≤ LCφ(x, 0),∀x ∈ A,

i.e. d(Tg − Th) ≤ Ld(g, h),∀g, h ∈ Ω . Therefore, T is a strictly contractive self-mapping on Ω

associated with the Lipschitz constant L.
If x = y = 0 in (2.4), f (0) = 0.
If y = 0 and µ = 1 in (2.4), then

‖2 f (ax) − f (2ax)‖ ≤ |s|‖2 f (ax) − f (2ax)‖ + φ(x, 0), ∀x ∈ A.

Thus ∥∥∥∥∥ f (2x)
2
− f (x)

∥∥∥∥∥ ≤ 1
1 − |s|

1
2
φ
( x
a
, 0

)
for ∀x ∈ A. Then we have d(T f , f ) ≤ 1

2(1−|s|) . By Theorem 1.2, there is a unique fixed point of T ,
map δ, in the set Ω1 = {g ∈ Ω : d( f , g) < ∞},

δ(x) := lim
n→∞

1
2n f (2nx),∀x ∈ A, (2.7)

since limn→∞ d(T n f , δ) = 0. Again by Theorem 1.2,

d( f , δ) ≤
1

1 − L
d(T f , f ) ≤

1
2(1 − |s|)(1 − L)

,∀x ∈ A.
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Then (2.6) holds.
By (2.4) and (2.7) and the property of φ,

‖δ(aµx + by) + δ(aµx − by) − µδ(2ax) − bδ(y) − bδ(−y)‖

= lim
n→∞

1
2n ‖ f (2naµx + 2nby) + f (2naµx − b2ny) − µ f (2a2nx)

−b f (2ny) − b f (−2ny)‖

≤ lim
n→∞

1
2n ‖s( f (aµ2nx + b2ny) + f (aµ2nx − b2ny) − µ f (2a2nx))‖

+ lim
n→∞

1
2nφ(2nx, 0)

≤ ‖s(δ(µax + by) + δ(aµx − by) − µδ(2ax))‖ + lim
n→∞

Lnφ(x, 0).

That is, δ is additive by Lemma 2.2. Next, letting y = 0, we get 2δ(aµx) = µδ(2ax) and so the map δ
is C-linear. Therefore, by the property of ψ, (2.5) and (2.7), then

‖αδ[x, y] − β[δ(x), y] − γ[x, δ(y)]‖

= lim
n→∞

4n‖α f (
[x, y]
2n · 2n ) − β[ f (x/2n), y/2n] − γ[x/2n, f (y/2n)]‖

≤ lim
n→∞

4nψ
( x
2n ,

y
2n

)
≤ lim

n→∞
L2nψ(x, y) = 0

for ∀x, y ∈ A, some α, β and γ ∈ C. Thus

αδ[x, y] = β[δ(x), y] + γ[x, δ(y)],∀x, y ∈ A,

for some α, β and γ ∈ C . Hence δ is an unique derivation satisfying (2.6). �

Corollary 2.4. If r, k and θ belong to real numbers, 0 < r < 1, 0 < k < 2 and θ ≥ 0. Let the map
f : A → A satisfy

‖ f (aµx + by) + f (aµx − by) − µ f (2ax) − b f (y) − b f (−y)‖
≤ ‖s( f (aµx − by) + f (aµx + by) − µ f (2ax))‖ + θ(‖x‖r + ‖y‖r),

‖α f [x, y] − β[ f (x), y] − γ[x, f (y)]‖ ≤ θ(‖x‖k + ‖y‖k)

for ∀x, y ∈ A, µ ∈ T 1 and |s| ≤ |1− 2b| ≤ 1. Then we can find a unique (α, β, γ)-derivation δ : A → A,

‖ f (x) − δ(x)‖ ≤
1

(1 − |s|)|a|r(2 − 2r)
‖x‖r

for ∀x ∈ A.

Proof. Let φ(x, y) = θ(‖x‖r + ‖y‖r), ψ(x, y) = θ(‖x‖k + ‖y‖k) and L = 2r−1 in Theorem 2.3, the desired
result is obtained. �
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Theorem 2.5. If there exists a map ψ : A2 → [0,∞) satisfying (2.3). Let a map f : A → A satisfy

‖ f (aµx + by) + f (aµx − by) − µ f (2ax) − b f (y) − b f (−y)‖
≤ ‖s( f (aµx − by) + f (aµx + by) − µ f (2ax))‖,

(2.8)

‖α f [x, y] − β[ f (x), y] − γ[x, f (y)]‖ ≤ ψ(x, y) (2.9)

for ∀x, y ∈ A, µ ∈ T 1 and |s| ≤ |1 − 2b| ≤ 1. Thus the map f : A → A is a (α, β, γ)-derivation.

Proof. Let µ = 1 in (2.8), the map f is additive by Lemma 2.2. Let y = 0 in (2.8), we get

‖2 f (aµx) − µ f (2ax)‖ ≤ 0

for ∀x ∈ A, µ ∈ T 1. So f (µx) = µ f (x),∀x ∈ A and µ ∈ T 1. The map f is C-linear by Lemma 2.1. On
account of f is additive, by (2.9),

‖α f ([x, y]) − β[ f (x), y] − γ[x, f (y)]‖

= lim
n→∞

4n‖α f
(

[x, y]
2n · 2n

)
− β

[
f
( x
2n

)
,

y
2n

]
− γ

[ x
2n , f

( y
2n

)]
‖

≤ lim
n→∞

L2nψ(x, y) = 0

for ∀x, y ∈ A. Thus

α f ([x, y]) = β[ f (x), y] + γ[x, f (y)],∀x, y ∈ A.

�

Corollary 2.6. If k and θ belong to real numbers with 0 < k < 2 and θ ≥ 0. Assume a map f : A → A
satisfies

‖ f (aµx + by) + f (aµx − by) − µ f (2ax) − b f (y) − b f (−y)‖
≤ ‖s( f (aµx − by) + f (aµx + by) − µ f (2ax))‖,

‖α f [x, y] − β[ f (x), y] − γ[x, f (y)]‖ ≤ θ(‖x‖k + ‖y‖k)

for ∀x, y ∈ A, µ ∈ T 1 and |s| ≤ |1 − 2b| ≤ 1. Then the map f is a (α, β, γ)-derivation.

Lemma 2.7. If f : A → A is a map satisfying

‖ f (ax + by) + f (ax − by) − f (2ax) − b f (y) − b f (−y)‖
≥ ‖s( f (ax − by) + f (ax + by) − f (2ax))‖

for ∀x, y ∈ A, |s| ≥ |1 − 2b| ≥ 1. Then f is additive.

Proof. Using the same technique with the Lemma 2.2, we can show that the Lemma 2.7. �
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Theorem 2.8. Assume the map φ : A2 → [0,∞) satisfies (2.2) and a map ψ : A2 → [0,∞)
satisfies (2.3). Let the map f : A → A satisfy

‖ f (aµx + by) + f (aµx − by) − µ f (2ax) − b f (y) − b f (−y)‖
≥ ‖s( f (aµx − by) + f (aµx + by) − µ f (2ax))‖ − φ(x, y),

‖α f [x, y] − β[ f (x), y] − γ[x, f (y)]‖ ≤ ψ(x, y)

for ∀x, y ∈ A, µ ∈ T 1, some α, β, γ, a, b, and |s| ≥ |1 − 2b| ≥ 1. Then we can find a unique derivation δ
satisfying (1.3), and

‖ f (x) − δ(x)‖ ≤
1

2(1 − |s|)(1 − L)
φ
( x
a
, 0

)
for ∀x ∈ A.

Proof. In a similar vein of Theorem 2.3, the theorem can be proved. �

Corollary 2.9. Suppose r, k, θ ∈ R and 0 < r < 1, 0 < k < 2, θ ≥ 0, let the map f : A → A satisfy

‖ f (aµx + by) + f (aµx − by) − µ f (2ax) − b f (y) − b f (−y)‖
≥ ‖s( f (aµx − by) + f (aµx + by) − µ f (2ax))‖ − θ(‖x‖r + ‖y‖r),

‖α f [x, y] − β[ f (x), y] − γ[x, f (y)]‖ ≤ θ(‖x‖k + ‖y‖k)

for ∀x, y ∈ A, µ ∈ T 1, some α, β, γ, a, b, and |s| ≥ |1−2b| ≥ 1. Then there is only one (α, β, γ)-derivation
δ : A → A satisfying

‖ f (x) − δ(x)‖ ≤
1

(1 − |s|)|a|r(2 − 2r)
‖x‖r

for ∀x ∈ A.

Proof. In Theorem 2.8, let φ(x, y) = θ(‖x‖r + ‖y‖r), ψ(x, y) = θ(‖x‖k + ‖y‖k), ∀x, y ∈ A and L = 2r−1,
then the Corollary is proved. �

Theorem 2.10. If the map ψ : A2 → [0,∞) satisfies (2.3). The map f : A → A satisfies

‖ f (aµx + by) + f (aµx − by) − µ f (2ax) − b f (y) − b f (−y)‖
≥ ‖s( f (aµx − by) + f (aµx + by) − µ f (2ax))‖,

‖α f [x, y] − β[ f (x), y] − γ[x, f (y)]‖ ≤ ψ(x, y)

for ∀x, y ∈ A, µ ∈ T 1, some α, β, γ, a, b, and |s| ≥ |1 − 2b| ≥ 1. Then the map f : A → A is a
(α, β, γ)-derivation.

Corollary 2.11. If k, θ ∈ R, 0 < k < 2, θ ≥ 0, assume the map f : A → A satisfies

‖ f (aµx + by) + f (aµx − by) − µ f (2ax) − b f (y) − b f (−y)‖
≥ ‖s( f (aµx − by) + f (aµx + by) − µ f (2ax))‖,

‖α f [x, y] − β[ f (x), y] − γ[x, f (y)]‖ ≤ θ(‖x‖k + ‖y‖k)

for ∀x, y ∈ A, µ ∈ T 1, |s| ≥ |1 − 2b| ≥ 1. Then the map f : A → A is a (α, β, γ)-derivation.
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3. Conclusions

In this work, the general Drygas functional equation is introduced, the Hyers-Ulam stability of
(α, β, γ)-derivations on Lie C∗-algebras is discussed by general Drygas functional inequality with the
participation of coefficient a and b.
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