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ABSTRACT We propose an extended-state-observer (ESO)-based robust position tracking control method
using nonlinear damping gain to improve the control performance under external disturbances and parameter
uncertainties for quadrotors. The proposed method consists of an ESO and a nonlinear damping controller
(NDC). The ESO is designed to estimate full state and disturbance. The external disturbance, velocity
dynamics, and the uncertainty of the input parameter are lumped in the disturbance. The NDC is developed
via backstepping procedure to suppress the output tracking error according to the disturbance estimation
error. The proposed method is simple and robust against external disturbance and parameter uncertainties.
In addition, only the nominal value of the input gain parameters are required. The closed-loop stability is
proven by using the input-to-state stability property. The position tracking performance of proposed method
was verified by performing hardware-in-the-loop simulations using a quadrotor platform.

INDEX TERMS Extended state observer (ESO), nonlinear damping contol (NDC), quadrotor, robust
position control, hardware-in-the-loop-simulation (HILS).

I. INTRODUCTION
Quadrotors are a type of the unmanned aerial vehicle. In
recent years, quadrotors have attracted considerable interest
owing to their various advantages, such as simplicity in struc-
ture, vertical take-off and landing capability, hover capability,
rapid maneuverability, and agility. In addition, quadrotors
are more effective than conventional helicopters in terms
of economics, safety, and size. Applying these advantages,
quadrotors have been widely used in fields, such as military
services, surveillance, fire fighting, and environmental mon-
itoring [1]–[3]. To accomplish the mission of these industrial
applications, the high precision attitude and position con-
trol should be necessary. However, it is difficult to control
quadrotors for autonomous flight due to high nonlinearity,
strong coupled states, and open-loop instability. A quadrotor
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is a typical underactuated system which the number of actu-
ators is less than the degrees of freedom. And obtaining
the exact values of parameters such as moment of inertia,
lift and drag coefficients is very hard. In addition, exter-
nal disturbances, such as fickle winds, degrade the control
performance of quadrotors because of their small and light
weight [28].

Proportional-integral-derivative controllers and linear
quadratic regulators have been widely used in represen-
tative linear control methods [4]–[6]. However, the con-
trol performance may deteriorate at outside of the region
around the equilibrium point owing to strong nonlinear terms.
Therefore, various nonlinear control methods have been
developed for quadrotors [7]–[25]. Feedback linearization
methods were developed to eliminate nonlinear term using
feedback [9], [10]. The Lyapunov redesign method was
proposed to improve the stability from effect of high
order nonlinear term and unmodeled dynamics [11]–[13].
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Sliding mode control methods were proposed to improve the
robustness in finite time [14]–[18]. Adaptive control methods
were developed to compensate for parameter uncertainties
such as mass variation [20]–[25]. Even though these meth-
ods improve stability and control performance, the exter-
nal disturbance such as wind gust was not compensated
for.

Disturbance observer (DOB)-based control algorithms
have been developed via backstepping procedure to compen-
sate for the external disturbances that do not satisfy matching
conditions [26]–[28]. Adaptive fuzzy based control methods
have been developed to compensate for the disturbances and
uncertainties [29]–[31]. However, the full state feedback is
required to apply these methods. Thus, an extended state
observer (ESO) has been developed to estimate full state
and disturbance. Various ESO-based control methods have
been implemented for quadrotors [32]–[35]. Only external
disturbances or partial unmodeled dynamics, such as the
gyroscopic effect are considered as the disturbance in atti-
tude dynamics. A nonlinear robust compensation method was
developed using robust filter [36]. A finite-time backstep-
ping controller was proposed to guarantee the finite-time
convergence using an augmented sliding mode observer [37].
A nonlinear augmented observer-based control was proposed
to reject the stochastic noise based on frequency analysis [38].
In [38], the external disturbance and model dynamics were
lumped into disturbance. In practice, it is difficult to estimate
the disturbance which include the external disturbance and
model dynamics. Therefore, a high observer gain is neces-
sary to obtain precise disturbance estimation performance.
However, a high observer gain may result in amplifying
high frequency measurement noise and inducing input sat-
uration [39], [40].

In this study, we propose an ESO-based robust position
tracking control method using nonlinear damping gain to
improve the control performance under external disturbances
and parameter uncertainties for quadrotors. The proposed
method consists of an ESO and a nonlinear damping con-
troller (NDC). The ESO is designed to estimate full state
and disturbances. The disturbance is defined as including
external disturbance, model dynamics and the uncertainties
of input parameters. The NDC is developed via backstep-
ping procedure to suppress output tracking error according to
disturbance estimation error. Although poor disturbance esti-
mation performance may degrade the position tracking per-
formance, the nonlinear damping gain increases to enhance
the damping effect. The proposed method is simple and
robust against external disturbance and parameter uncertain-
ties. In addition, only nominal values of input gain parame-
ters are required. The closed-loop stability is investigated to
prove that the proposed method ensures the uniform ultimate
boundedness of position and attitude tracking errors using the
input-to-state stability (ISS) property. The position tracking
performance of proposed method is verified by performing
hardware-in-the-loop-simulation (HILS) using a quadrotor
platform.

FIGURE 1. Quadrotors model.

The main contributions of this study are as follows:
• An NDC is designed to suppress the tracking error
according to the disturbance estimation error.

• Only the nominal value of the input gain parameters are
required for the proposed method.

• The proposed method is simple and robust against exter-
nal disturbance and parameter uncertainties.

II. MATHEMATICAL MODEL AND PROBLEM
FORMULATION
In this section, the dynamics of quadrotors is explained [15].
A quadrotor can be simplified by considering only the
cross-shaped rigid frame with four rotors. The simplified
model of the quadrotor is shown in Fig 1. The inertia frame
with respect to earth is defined as PE = [XE ,YE ,ZE ], and
the body-fixed frame with respect to body is defined as PB =
[XB,YB,ZB]. Define ξ = [φ, θ, ψ]T and ω = [p, q, r]T ,
where φ, θ , and ψ denote the angle of roll, pitch, and yaw
with respect to the inertia frame, respectively, and p, q, and
r denote the angular velocity of roll, pitch, and yaw with
respect to the body-fixed frame, respectively. The coordinate
transform matrix, Rt , from PB to PE can be obtained as
follows: CψCθ CψSθSφ − SψCφ CψSθCφ + SψSφ

SψCθ SψSθSφ + CψCφ SψSθCφ − CψSφ
−Sθ CθSφ CθCφ


︸ ︷︷ ︸

Rt

(1)

where C∗ = cos(∗) and S∗ = sin(∗). The relationship
between ξ̇ and ω can be represented using the derivatives of
Rt with respect to time as follows:

ω =

 1 0 −Sθ
0 Cφ CθSφ
0 −Sφ CθCφ


︸ ︷︷ ︸

W (ξ )

ξ̇ . (2)

The dynamics of the quadrotor can be obtained by using the
Newton-Euler equations as follows:

MP̈ = e3Mg− FA + RtF

ω = W (ξ )ξ̇

J ω̇ = −ω × Jω − τgyro − τA + τ (3)

VOLUME 8, 2020 174559



S. You et al.: ESO Based Robust Position Tracking Control Using Nonlinear Damping Gain for Quadrotors With External Disturbance

where P = [x, y, z]T is the absolute linear position of the
quadrotor, e3 = [0, 0, 1]T is the unit vector, M is the mass
diagonal matrix of the quadrotor, FA and τA are the aero-drag
force matrices of translational motion and rotational motion
respectively, τgyro is the gyroscopic moment, and J is the
inertia diagonal matrix of the quadrotor. F ∈ R1 and τ ∈ R3

are control inputs which are defined as follows:

[
F
τ

]
=


U1
U2
U3
U4

 =

k(�2

1 +�
2
2 +�

2
3 +�

2
4)

lk(�2
4 −�

2
2)

lk(�2
3 −�

2
1)

b(�2
2 +�

2
4 −�

2
1 −�

2
3)

 (4)

where k is the drag force coefficient, b is the lift coefficient,
l is the arm length, and �a a ∈ [1, 4] denotes the rotor
speeds of the front, right, rear, and left rotors. The gyroscopic
moment, τgyro, is expressed as

τgyro = Jr (ω × e3)�̄ (5)

where Jr is the inertia of the rotor, and the �̄ is expressed as
�̄ = �1 + �3 − �2 − �4. For representing the state-space
equation, state X is defined as

X = [x1, · · · , x12]T

= [φ, φ̇, θ, θ̇ , ψ, ψ̇, z, ż, x, ẋ, y, ẏ]T ∈ R12. (6)

The dynamics of the quadrotor including external distur-
bances can be represented in a state-space, Ẋ = f (X ,U )
where

f (X ,U ) =



x2

a1x4x6 − a2x4�̄−
τAx

Ix
+
dφ
Ix
+ b1U2

x4

a3x2x6 + a4x2�̄−
τAy

Iy
+
dθ
Iy
+ b2U3

x6

a5x4x2 −
τAz

Iz
+
dψ
Iz
+ b3U4

x8

g+
1
m
[FAz + dz]+ b4U1

x10
1
m
[−FAx + dx]+ b5ux

x12
1
m
[−FAy + dy]+ b6uy


U = [u1, · · · , u6]T

=
[
U2 U3 U4 U1 ux uy

]T (7)

and a1 = (Iy − Iz)/Ix , a2 = Jr/Ix , a3 = (Iz − Ix)/Iy,
a4 = Jr/Iy, a5 = (Ix − Iy)/Iz, b1 = 1/Ix , b2 = 1/Iy,
b3 = 1/Iz, b4 = −(cos θ cosφ)/m, b5 = −U1/m and
b6 = U1/m, U is the input matrix, U1 is thrust force, U2,
U3, and U4 are the rotational torques with respect to roll,
pitch, and yaw, respectively, m is the mass of the quadro-
tor, Ix,y,z is the inertial diagonal matrix of the quadrotor,

and dext = [dx , dy, dz, dφ, dθ , dψ ]T denotes external distur-
bances. ux and uy are the orientations of U1, and they are
defined as follows:

ux = (sinψ sinφ + cosψ sin θ cosφ)

uy = (cosψ sinφ − sinψ sin θ cosφ). (8)

ux and uy are used as the virtual control inputs for the trans-
lational system to compute x1d and x3d . The uncertainty 1bi
and the nominal value boi of bi i ∈ [1, 6] are defined as

bi = 1bi + boi . (9)

The disturbances, di i ∈ [1, 6], which include the external
disturbances, dynamics, and the uncertainties of input param-
eters, are defined as

d1 = a1x4x6 − a2x4�̄−
τAx

Ix
+
dφ
Ix
+1b1U2

d2 = a3x2x6 + a4x2�̄−
τAy

Iy
+
dθ
Iy
+1b2U3

d3 = a5x4x2 −
τAz

Iz
+
dψ
Iz
+1b3U4

d4 = g+
1
m
[FAz + dz]+1b4U1

d5 =
1
m
[−FAx + dx]+1b5ux

d6 =
1
m
[−FAy + dy]+1b6uy. (10)

For simplification, (7) can be rewritten as

f (X ,U ) =



x2
d1 + bo1U2

x4
d2 + bo2U3

x6
d3 + bo3U4

x8
d4 + bo4U1

x10
d5 + bo5ux

x12
d6 + bo6uy



. (11)

III. EXTENDED STATE OBSERVER DESIGN
The ESO is designed to estimate full state and disturbances.
The extended state variable vector, Xe = [xe1 , · · · , xe18 ]

T
∈

R18, and the estimation state variable vector, X̂e =

[x̂e1 , · · · , x̂e18]
T
∈ R18, are defined as follows:

Xe= [φ, φ̇, d1, θ, θ̇ , d2, ψ, ψ̇, d3, z, ż, d4, x, ẋ, d5, y, ẏ, d6]T

X̂e= [φ̂, ˙̂φ, d̂1, θ̂ ,
˙̂
θ, d̂2, ψ̂,

˙̂
ψ, d̂3, ẑ, ˙̂z, d̂4, x̂, ˙̂x, d̂5, ŷ, ˙̂y, d̂6]T .

(12)

The ESO is designed as

˙̂Xe = AoX̂e + BoU + LC(Xe − X̂e) (13)
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where

Ao =


Io 03×3 03×3 · · · 03×3

03×3 Io 03×3 · · · 03×3
...

. . .
...

03×3 · · · Io

 ∈ R18×18

Io =

 0 1 0
0 0 1
0 0 0

 ∈ R3×3

Bo =


B1 03×1 03×1 · · · 03×1
03×1 B2 03×1 · · · 03×1
...

. . .
...

03×1 · · · B6

 ∈ R18×6

Bi =
[
0 boi 0

]T
∈ R3×1, i ∈ [1, 6]

L =


L1 03×1 03×1 · · · 03×1
03×1 L4 03×1 · · · 03×1
...

. . .
...

03×1 · · · L16

 ∈ R18×6

Ls =
[
ls ls+1 ls+2

]T
∈ R3×1, s ∈ {1, 4, 7, 10, 13, 16}

C =


Co 01×3 · · · 01×3
01×3 Co · · · 01×3
...

. . .
...

01×3 01×3 · · · Co

 ∈ R6×18

Co =
[
1 0 0

]
∈ R1×3

and L is the observer gain matrix. The estimation error matrix
of the extended state is defined as

X̃e = Xe − X̂e. (14)

The dynamics of X̃e becomes

˙̃Xe = (Ao − LC)︸ ︷︷ ︸
Aeo

X̃e + Bdδ (15)

where

δ =
[
δ1 δ2 δ3 δ4 δ5 δ6

]T
∈ R6

Bd =


Id 03×1 · · · 03×1

03×1 Id · · · 03×1
...

. . .
...

03×1 03×1 · · · Id

 ∈ R18×6

Id =
[
0 0 1

]T
∈ R3×1 (16)

and δi, i ∈ [1, 6] is the derivative of the disturbances. In most
practical systems such as quadrotors, vehicles, hydraulic
actuators, and motors, all state variables and external distur-
bances are physically bounded, as the inputs are bounded
in practical system [42]. Thus, assumptions 1 and 2 are
reasonable.
Assumption 1: The disturbance, d ∈ R6, and the derivative

of the disturbance, δ ∈ R6, are bounded. Thus, the upper
bound of |δ|, represented by δmax ∈ R6, is positive such that
sup

0≤t≤∞
|δ(t)| = δmax.

Assumption 2: X̃e ∈ Bx = ‖X̃e‖2 ≤ bx , where bx is an
unknown positive constant.
Theorem 1: Under Assumptions 1 and 2, if the observer

gain matrix, L, is selected such that Aeo = Ao− LC matrix is
a Hurwitz matrix, the perturbation term satisfies the condition
as

|δi| ≤ δmax <

√
λmin(Po)
λmax(Po)

ηbx
2λmax(Po)

(17)

for all t > 0, X̃e ∈ Bx and positive constant η < 1, where
Po > 0 is positive definite such that ATeoPo + PoAeo =
−I , λmax(Po) and λmin(Po) are the maximum and minimum
eigenvalues of Po, respectively. Then, for all ‖X̃e(to)‖ <
√
(λmin(Po))/(λmax(Po))bx . X̃e(t) satisfies

‖X̃e(t)‖2 ≤ k exp[ρ(t − to)]‖X̃e(to)‖ ∀to ≤ t < to + T

‖X̃e(t)‖2 ≤ k
2λmax(Po)δmax

η
∀t ≥ to + T (18)

for some finite T , where k =
√
(λmax(Po))/(λmin(Po)) and

ρ = −(1− η).
Proof:We define the Lyapunov candidate function Vo as

Vo = X̃Te PoX̃e. (19)

The derivative of Vo with respect to time is

V̇o = X̃e
T
[ATeoPo + PoAeo]X̃e + 2X̃e

T
PoBdδ

≤ −‖X̃e(t)‖22 + 2δmax‖Po‖2‖X̃e(t)‖2
= −(1− η)‖X̃e(t)‖22 − η‖X̃e(t)‖

2
2

+ 2δmaxλmax(Po)‖X̃e(t)‖2

≤ −(1− η)‖X̃e(t)‖22 for ∀‖X̃e(t)‖2 ≥
2λmax(Po)δmax

η
.

(20)

The proof is completed by applying Theorem 4.18 in [43]. ♦

IV. NONLINEAR DAMPING CONTROLLER DESIGN
This section describes the design of the NDC via backstep-
ping to suppress the position tracking error when estimation
error increases owing to the disturbances. As the dynamics
of the quadrotor consists of six second-order single-input-
single-output systems (11), the general form is represented
as second-order system. The tracking error, denoted by e =
[e1 e2 · · · e11 e12]T ∈ R12, is defined as

ei = xi − xid , i ∈ [1, 12] (21)

where xid is yet to be defined. The estimated tracking error êi
is defined as

êi = x̂i − xid , i ∈ [1, 12]. (22)

The tracking error dynamics can be defined as

ėi = ei+1 + xi+1d − ẋid , i ∈ {1, 3, 5, 7, 9, 11}

ėi+1 = boi uj + di − ẋi+1d , j = [1, 6]. (23)
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To ensure the boundedness of the tracking error ei, the desired
state and NDC input are designed as

xi+1d = −kiei + ẋid , i ∈ {1, 3, 5, 7, 9, 11}, j = [1, 6]

uj =
1
boi

(
−ki+1ei+1 + ẋi+1d − d̂i

)
︸ ︷︷ ︸

ua

1
boi

(
−

(
kdi

√
ê2i +γi+kdi+1

√
d̂2i +γi+1

)
ei+1

)
︸ ︷︷ ︸

ub

(24)

where control gains ki, ki+1, kdi , kdi+1 , γi, and γi+1 are positive
constants. The control input uj in (24) consists of two parts,
i.e., the stabilization part, ua, and the nonlinear damping part,
ub. The nonlinear damping part is considered to suppress the
tracking error ei according to disturbance estimation error.
The disturbances include the external disturbances, unmod-
eled dynamics, and parameter uncertainties. Thus, it is diffi-
cult to accurately estimate di when the disturbance increases.
Generally, if ua is used exclusively, the tracking error, ei,
increases as much as the estimation error of disturbance, d̃i.
The nonlinear damping gain, ub, can improve the damping
effect of d̃i to ei, when êi and d̂i increase, because d̃i becomes
larger with the increase of di. We define nonlinear damping
gain kd (êi, d̂i) as

kd (êi, d̂i) =
(
kdi

√
ê2i + γi + kdi+1

√
d̂2i + γi+1

)
. (25)

Theorem 2: Consider the tracking error dynamics (23).
If the proposed control input (24) is applied to (23), the track-
ing error dynamics (23) is the serial interconnected system of
ISS systems with the following property:

|ei(t)| ≤ exp
(
−
ki
2
t
)
|ei(0)| +

2
ki

sup
0≤τ≤t

|ei+1(τ )|

|ei+1(t)| ≤ exp
(
−
ki+1
2
t
)
|ei+1(0)| + sup

0≤τ≤t
σ (τ ) (26)

where

σ =
|d̃i|

0.5ki+1 + kd (êi, d̂i)
. (27)

Proof: The tracking error dynamics (23) with the control
law (24) becomes

ėi = −kiei + ei+1, i ∈ {1, 3, 5, 7, 9, 11}

ėi+1 = −ki+1ei+1 − kd (êi, d̂i)ei+1 + d̃i. (28)

From (28), the derivative of
e2i+1
2 becomes

d
dt

(
e2i+1
2

)
= −ki+1e2i+1 − kd (êi, d̂i)e

2
i+1 + d̃iei+1

≤ −
ki+1
2
e2i+1 −

(
ki+1
2
+ kd (êi, d̂i)

)
|ei+1|(|ei+1| − σ )

≤ −
ki+1
2
e2i+1 ∀|ei+1| ≥ σ. (29)

FIGURE 2. Schematic of the HILS test.

We can derive the following result using [ [44], Th. C.2]:

|ei+1(t)| ≤ exp
(
−
ki+1
2
t
)
|ei+1(0)| + sup

0≤τ≤t
σ (τ ). (30)

From (30), we can show that the relationship between ei+1
and σ satisfies the ISS property. Similarly, the derivative of
e2i
2 becomes

d
dt

(
e2i
2

)
= −kie2i + eiei+1

≤ −
ki
2
e2i −

(
ki
2

)
|ei|(|ei| −

2
ki
|ei+1|)

≤ −
ki
2
e2i ∀|ei| ≥

2
ki
|ei+1|. (31)

Then,

|ei(t)| ≤ exp
(
−
ki
2
t
)
|ei(0)| +

2
ki

sup
0≤τ≤t

ei+1(τ ). (32)

Equation (32) shows that the relationship between ei+1 and
ei satisfies the ISS property. From (30) and (32), the ISS
property of the overall tracking error system is represented
by (26). Thus, the tracking error dynamics (28) is the serial
interconnected system of ISS systems. ♦
Remark 1: The expression for σ (27) includes kd (êi, d̂i)

in the denominator. Therefore, the σ decreases when êi and
d̂i increase because of external disturbance. In other words,
the nonlinear damping gain, ub, suppresses the effects of |d̃i|
to ei+1. According to the ISS property (26), as t →∞

|ei(∞)| ≤
2
ki

sup
0≤τ≤∞

|ei+1(τ )| ≤
2
ki

sup
0≤τ≤∞

σ (τ ). (33)

The tracking error, ei, can be effectively suppressed even
though |d̃i| increase.
Remark 2: The schematic of proposed method is shown

in Fig 2. As mentioned previously, a quadrotor is a typical
underactuated system in which the number of actuators is
less than the degrees of freedom. Thus, ux and uy are used
to generate the desired attitude as the virtual control input for
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the position control. Based on (8) and simple calculation, x1d
and x3d can be obtained as

x1d = arcsin(ux sin x5d + uy cos x5d )

x3d = arcsin
(
ux cos x5d − uy sin x5d

cos x1d

)
. (34)

V. ANALYSIS OF CLOSED-LOOP STABILITY
This section describes closed-loop stability analysis. Note
that only the output feedback is available. In (24), the actual
states must be substituted with in estimated state. The esti-
mated control input, ûj, j = [1, 6], is defined as

ûj =
1
boi

(
−ki+1êi+1 + ẋi+1d − d̂i

)
+

1
boi

(
−

(
kdi

√
ê2i + γi + kdi+1

√
d̂2i + γi+1

)
êi+1

)
.

(35)

As the output states are available, the same desired states (24)
designed by the backstepping control law are used in (35).
The estimated control input (35) is applied to (23), and the
closed-loop tracking error dynamics can be obtained as

Ėi = AeiEi + Beiξ i ∈ {1, 3, 5, 7, 9, 11} (36)

where

Ei =
[
ei ei+1

]T
Aei =

[
−ki 1
0 −ki+1

]
Bei =

[
0
1

]
ξ = −kd (êi, d̂i)ei+1 + di − d̂i + boi û− b

o
i u. (37)

The closed-loop system is represented as

Ėi = AeiEi + Beiξ (38)
˙̃Xe = AeoX̃e + Bdδ i ∈ {1, 3, 5, 7, 9, 11}. (39)

As the actual output states and the same desired states are
used in u (24) and û (35), the positive value, γ , can be defined
as ∣∣∣di − d̂i + boi û− boi u∣∣∣ ≤ γ ‖X̃e‖. (40)

Theorem 3: Consider the closed-loop tracking error
dynamics (36). Based on the estimated control input, û (35),
the closed-loop tracking error dynamics (36) is the serial
interconnected system of ISS systems with the following
property:

|ei(t)| ≤ exp
(
−
ki
2
t
)
|ei(0)| +

2
ki

sup
0≤τ≤t

|ei+1(τ )|

|ei+1(t)| ≤ exp
(
−
ki+1
2
t
)
|ei+1(0)| + sup

0≤τ≤t
σc(τ ) (41)

where

σc ≤
γ ‖X̃e‖

0.5ki+1 + kd (êi, d̂i)
. (42)

FIGURE 3. Quadrotor HILS testbed.

Proof: In (36), the dynamics of the ei+1 with estimated
control input becomes

ėi+1 = −ki+1ei+1 − kd (êi, d̂i)ei+1 + di − d̂i + boi û− b
o
i u.

(43)

The derivative of
e2i+1
2 is obtained from (43), in a similar

manner as the aforementioned proof of theorem 2, as follows:

d
dt

(
e2i+1
2

)
≤−

ki+1
2
e2i+1

−

(
ki+1
2
+kd (êi, d̂i)

)
|ei+1|(|ei+1| − σc) (44)

where

σc =

∣∣∣di − d̂i + boi û− boi u∣∣∣
0.5ki+1 + kd (êi, d̂i)

≤
γ ‖X̃e‖

0.5ki+1 + kd (êi, d̂i)
. (45)

Thus, equation (30) becomes

|ei+1(t)| ≤ exp
(
−
ki+1
2
t
)
|ei+1(0)| + sup

0≤τ≤t
σc(τ ). (46)

From equation (46), we can show that the relationship
between ei+1 and σc satisfies the ISS property. From equa-
tion (46) and (32), the ISS property of the overall closed-loop
tracking error system is shown in equation (41). Thus,
the closed-loop tracking error dynamics (36) is the serial
interconnected system of ISS systems. ♦
Remark 3: σc (42) depends on the magnitude of estima-

tion error. From equation (17) and (20), the upper bound of
estimation error is determined by bx and eigenvalue of Po.
Generally, as bx is unknown and constant, a high observer
gain is required to decrease the upper bound of estimation
error. However, a small bx and a high observer gain are not
necessary to obtain a small σc in the proposed method. This
is because, when êi and d̂i increase with ‖X̃e‖, and hence,
kd (êi, d̂i) increases. In other words, even though estimation
performance is insufficient, a small σc can be obtained from
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FIGURE 4. State estimation performance of ESO in Case 3.

kd (êi, d̂i). Based on the ISS property (41), the closed-loop
tracking error system (36) is the serial interconnected system
of ISS systems. As t →∞,

|ei(∞)| ≤
2
ki

sup
0≤τ≤∞

|ei+1(τ )| ≤
2
ki

sup
0≤τ≤∞

σc(τ ). (47)

VI. EXPERIMENTAL RESULTS
The effectiveness of the proposed method is evaluated by
performing HILS using quadrotor platform manufactured by
Quanser Co., based on MATLAB/Simulink. -The quadrotor
is operated by four DCmotors. The attitudes are measured by
three encoders located on the central axis of the platform. The
virtual position dynamics is developed by utilizing Aerospace
Simulink toolbox with various realistic environments such
as sensor dynamics, gravity, and aerodynamic force. The
WGS84 Taylor series gravity model and COESA atmosphere
model provided by the Aerospace Simulink toolbox are used
to describe the variation in environmental variables with posi-
tion. The HILS environment testbed is shown in Fig. 3. The
nominal parameters of quadrotors are m = 1.39 kg, g =
9.81 m/s2, l = 0.197 m, k = 0.0036 N ·m/v, b = 0.119 N/v,
Ix = Iy = 5.52× 10−3 kg ·m2, and Iz = 1.1× 10−2 kg ·m2.
The following three cases were examined:

Case 1: Conventional backstepping control.
The control gains were selected as k1 = 400, k2 = 1.2,

k3 = 400, k4 = 1.2, k5 = 100, k6 = 1, k7 = 2.5, k8 =
1.5, k9 = 2.5, k10 = 2.5, k11 = 2.5, and k12 = 2.5. The
desired states were same as those in (35). The control input
is designed as follows:

U2 =
1
bo1

(
−k2e2 + ẋ2d − a1x4x6 + a2x4�̄

)
U3 =

1
bo2

(
−k4e4 + ẋ4d − a3x2x6 − a4x2�̄

)

U4 =
1
bo3

(
−k6e6 + ẋ6d − a5x4x2

)
U1 =

1
bo4

(
−k8e8 + ẋ8d − g

)
ux =

1
bo5

(
−k10e10 + ẋ10d

)
uy =

1
bo6

(
−k12e12 + ẋ12d

)
. (48)

Case 2: ESO-based backstepping control.
The disturbances, ESO, and control input were defined

as in (10), (13), and (35), respectively. The same control
gains as those for Case 1 were used. The nonlinear damping
gains were selected as kdi = 0, and γi = 0, i ∈ [1, 12].
The ESO gains were selected as ls = 53, ls+1 = 895 and
ls+2 = 4875, s ∈ {1, 4, 7, 10, 13, 16}. The initial values used
in the simulations are as follows: xi(0) = 0, i ∈ [1, 12] and
x̂ej (0) = 0, j ∈ [1, 18].
Case 3: Proposed method.
The disturbances, ESO, and control input are defined as

in (10), (13), and (35), respectively. The control gains were
selected as k1 = 400, k2 = 1, k3 = 400, k4 = 1, k5 = 100,
k6 = 1, k7 = 2.5, k8 = 1, k9 = 2.5, k10 = 2, k11 = 2.5,
and k12 = 2. The nonlinear damping gains were selected as
kdi = 1, and γi = 0.1, i ∈ [1, 12]. The same ESO gains and
initial values are the same as those used in Case 2.

To evaluate the control performance of the proposed
method, the control gains of in Case 1 and 2 were set to be
larger than the control gains in Case 3. Wind was injected
along the X -Y axis as the external disturbance, as follows:

dx =

{
0, 0 ≤ t ≤ 30
−0.5(1− e−0.5t ), 30 ≤ t.
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FIGURE 5. Disturbance estimation performance of ESO in Case 3.

dy =

{
0, 0 ≤ t ≤ 30
0.5(1− e−0.5t ), 30 ≤ t.

(49)

The desired positions were defined such as

xd =

{
0, 0 ≤ t ≤ 2.5
(1− e−0.5t ) sin(0.1π t), 2.5 ≤ t

yd =

{
0, 0 ≤ t ≤ 7.5
(1− e−0.5t ) cos(0.1π t), 7.5 ≤ t

zd =

{
(1− e−0.5t ), 0 ≤ t ≤ 1.5
(1− e−0.5t )+ 0.02t, 1.5 ≤ t.

(50)

The estimation performances of proposed methods are
shown in Figs. 4 and 5. The position, velocity, attitude, and
angular velocity were accurately estimated using only nom-
inal input gain parameters. The estimated disturbances are
shown in Fig. 5. After t = 30 s, the offset is observed in d5
and d6 because of the injected wind. In addition, a small wave
is observed in d5 and d6 because of air drag force. The desired
and actual trajectories of the quadrotor in Cases 1-3 are shown

FIGURE 6. Quadrotor trajectories in Cases 1-3.

FIGURE 7. Position tracking errors in Cases 1-3.

in Fig. 6. The quadrotor takes off from the origin of the inertial
reference frame, PE , and follows the desired a cylindrical spi-
ral trajectory. The position tracking performance in Case 3 is
better than those in Cases 1 and 2. The position tracking
errors in Cases 1-3 are shown in Fig. 7. In Case 1, a large
steady-state error was observed at t = 30 s, because the wind
disturbance is not compensated for. In contrast, steady-state
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errors were significantly reduced by the ESO in Cases 2 and
3. The X tracking error in Case 3 was smaller than that in
Case 2 at t = 46s, 58s, and 68s, because the nonlinear
damping gain (25) was simultaneously increased as much as
increment of estimated disturbance. Similar to the X tracking
error, the Y tracking error in Case 3 was smaller than that
in Case 2, because the increase in external disturbance leads
to the increase in nonlinear damping gain (25) in order to
indirectly suppress the effect of the disturbance. Z tracking
error in Case 3 was reduced by the nonlinear damping gain at
hovering. In addition, the settling time for Case 3 was smaller
than that for Cases 1 and 2. Videos of the HILS experiments
are available at the following web-site.

Case 1: https://youtu.be/FOW_w5BJmLU
Case 2: https://youtu.be/BMs28YT90RY
Case 3: https://youtu.be/_RLg3J2gbRw
Error comparison of Cases 1-3: https://youtu.be/4ZcLG5s

DIPk

VII. CONCLUSION
We proposed an ESO-based robust position tracking con-
trol method using nonlinear damping gain to improve con-
trol performance under external disturbance and parameter
uncertainties. The ESO was designed to estimate full state
and disturbances, which included the external disturbance,
model dynamics and the uncertainties of the input parame-
ters. An NDC was developed via backstepping to suppress
position and attitude tracking error according to disturbance
estimation error. In experimental results, showed that the
ESO accurately estimated the actual states and disturbances.
Therefore, the tracking errors of ESO based control methods
did not have steady-state error by compensating for esti-
mated disturbance. In addition, when the external distur-
bance increased, the nonlinear damping gain simultaneously
increased to suppress the effect of the disturbance. There-
fore, the position tracking error of proposed method was
lesser than that of the conventional backstepping control and
ESO-based backstepping control with larger control gains.
In future work, we will focus on setting up a real quadrotor
experimental environment with a position sensor which has
centimeter resolution, i.e., real-time kinematic global navi-
gation satellite system, and evaluating the proposed control
strategy via outdoor flight experiments.
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