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Abstract: Currently particulate matter (PM) is one of the major threats to public health and safety
in urban areas such as Seoul, South Korea. The limited amount of air-quality monitoring systems
may not provide sufficient data or coverage, in particular on the spots of urban forest. Considering
urban forest as a possible contributor to mitigate PM in an urban area, this study investigated the
relationship between the size and topography of urban forests near the air-quality monitoring stations
and PM measurements from those stations. The average of PM measurements during the study period
of August 2017 to July 2019 was computed into three different domains by using three concentric
buffers from 25 monitoring stations distributed across Seoul. To estimate PM concentrations, multiple
linear regression models were developed by using satellite-borne multi-spectral band data retrieved
from Moderate Resolution Imaging Spectroradiometer onboard Terra (MODIS) and Landsat 8 in
conjunction with meteorological data sets. Overall, PM10 and PM2.5 measurements significantly
varied with season and tended to be lower with large urban forests than small ones by 5.3% for
PM10 and 4.8% for PM2.5. Overall, PM10 and PM2.5 measurements were lower at the domains
encompassing high urban forests in elevation than those of relatively flattened forests by 9.1% for
PM10 and 3.9% for PM2.5. According to the findings from this study, the topographical difference
among urban forests could exert a more significant influence on PM mitigation. The result from
correlation analysis between the PM estimates from Landsat 8-based models and ground-based
PM measurements was considered reliable based on Pearson’s coefficients of 0.21 to 0.74 for PM10
and −0.33 to 0.74 for PM2.5. It was considered that using a satellite imagery-derived PM model
could be effective to manage urban forest over a large area which in general implies the limitation of
data collection.

Keywords: ambient particulate matter; Landsat 8 imagery; MODIS imagery; topography; urban
forest area; urban forest buffer

1. Introduction

There have been growing concerns about reducing ambient air pollutants, including particulate
matter (PM) whose threats to public health and safety are anticipated to be increasing globally and
regionally over time [1–4]. As one of the major elements in an urban environment, urban forest is
expected to provide fundamental and natural solutions to such anthropogenic issues. There have been
increasing efforts to identify the role of urban forest in mitigating air pollutants across urban areas:
for example, directly removing atmospheric particles and absorbing various gaseous pollutants by
leaves, waxes, and chemical composition of trees; changing local microclimates and trapping pollutants
by various tree configurations; transpiring, lowering temperature, and reducing ozone production;
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and indirectly reducing pollutants by reducing building energy use [5–7]. Since urban forest is the
assemblage of woody plants within varied coordination of horizontal and vertical structures and
external environmental factors, the mitigation performance might vary with vegetation composition,
meteorological environment, ventilation-friendly forest structure, and topographical settings [5,8–11].

Although ambient air quality has been systemically monitored by the network of air-quality
monitoring stations in many industrialized regions, the limited number and locations of monitoring
sites have been an obstacle to secure adequate sampling coverage on a local scale such as monitoring
and managing urban forest [12,13]. To overcome such limitation, there have been satellite-based
approaches to remotely and extensively collect the atmospheric information of the areas where even
monitoring stations are not located in proximity. NASA has been providing a variety of aerosol
information by operating a coordinated series of satellites, including Terra and Landsat series [14,15].
The imageries retrieved from Moderate Resolution Imaging Spectroradiometer onboard Terra (hereafter
MODIS) have been often used for estimating PM concentrations over a vast area; its 10 km and 3 km
aerosol products include Aerosol Optical Depth (AOD) that was converted to MODIS air-quality
products including PM estimates by a suite of algorithms [14–17]. Recently, there have been more
frequent approaches to survey small urban areas by using finer-resolution sensor-derived products;
the imageries retrieved from Operational Land Imager (OLI) onboard Landsat 8 (hereafter Landsat 8)
have been used in some aerosol studies in urban settings [18–22]. However, it is still necessary to
develop a site-specific manual for using the fine-resolution imagery when necessary.

As for developing an effective way to investigate urban forest characteristics regarding PM
mitigation, there have been few relevant studies conducted focusing on Seoul. This study was
aimed at (i) analyzing the spatio-temporal changes in PM10 and PM2.5 measurements, (ii) identifying
relationships between characteristics of urban forest and PM measurements, and (iii) examining a
potential for using Landsat 8 imagery-based PM mapping on urban forest.

2. Materials and Methods

2.1. Study Area

The study area, Seoul, is the most populated metropolis in South Korea consisting of 25 districts
and approximately 9.7 million people in an area of 600 km2. It has been faced with the on-going
problem of increasing non-point air pollutant emissions such as traffic congestion [23,24]. In terms
of land use, the study area consists of densely distributed urban surfaces and features that take a
major portion of city coverage and sporadically distributed flat and hilly urban forests across the city,
which are described in Figure 1 [25,26].
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the monitoring stations were computed. To do so, the influence area of urban forests was defined in 
landscape metrics based on the approach developed by Choi et al. [28]; at each sample site, domains 
were designed by the three given distances from the location of each monitoring station: 1 km, 500 
m, and 300 m in radius, which form circular areas called “buffer” in this study. 

2.2.2. Satellite Imagery Data 

To survey the areas that the monitoring stations are not close to, remotely sensed data were used 
for obtaining regional atmospheric information. From pre-testing MODIS imagery compared with 
Landsat 8 imagery, Landsat 8 imagery with a finer spatial resolution was selected for this study. 
Standard Landsat 8 Level 1 product in 30 m resolution (LC08_L1XX) from the imagery retrieved on 
November 1, 2018 and December 19, 2018 was downloaded from USGS online archive 
(https://earthexplorer.usgs.gov/). The acquisition time of Landsat 8 images over the study area was 
approximately 02:00 UTC (11:00 a.m. in local time). Multi-spectral band data, from band 2 to band 7, 
extracted from the Landsat 8 images, were pre-processed with simple dark-object subtraction and 
radiometric and atmospheric correction to estimate AOD values based on the algorithms used in 
earlier aerosol studies [18,19,29–31]. From pre-testing the entire multi-spectral band data collected for 
the Landsat 8 images, band 7 for PM10 models and band 4 for PM2.5 models were excluded due to 
lack of sensitivity of their AOD values to the changes in PM concentration. The software ENVI version 
5.1 (Exelis Visual Information Solutions, Boulder, CO, USA) and ArcMap version 10.2 
(Environmental Systems Research Institute, Redlands, CA, USA) were used for image processing. 
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The study area consists of 25 districts, and ambient air quality along the districts is monitored by
the metropolitan ambient air-quality network [27] that offers calibrated concentrations of PM10 and
PM2.5 (hereafter PM measurements) with hourly mean values per monitoring site (Figure 1).

2.2. Data Collection

2.2.1. Urban Forest Buffer

Geographical information of urban forest located within Seoul was obtained from the Seoul
metropolitan government (http://data.seoul.go.kr/). To investigate the relationship between urban
forest and PM measurement in the vicinity of them, the sizes of urban forest in proximity of each of
the monitoring stations were computed. To do so, the influence area of urban forests was defined in
landscape metrics based on the approach developed by Choi et al. [28]; at each sample site, domains
were designed by the three given distances from the location of each monitoring station: 1 km, 500 m,
and 300 m in radius, which form circular areas called “buffer” in this study.

2.2.2. Satellite Imagery Data

To survey the areas that the monitoring stations are not close to, remotely sensed data were
used for obtaining regional atmospheric information. From pre-testing MODIS imagery compared
with Landsat 8 imagery, Landsat 8 imagery with a finer spatial resolution was selected for this
study. Standard Landsat 8 Level 1 product in 30 m resolution (LC08_L1XX) from the imagery
retrieved on 1 November 2018 and 19 December 2018 was downloaded from USGS online archive
(https://earthexplorer.usgs.gov/). The acquisition time of Landsat 8 images over the study area was
approximately 02:00 UTC (11:00 a.m. in local time). Multi-spectral band data, from band 2 to band 7,
extracted from the Landsat 8 images, were pre-processed with simple dark-object subtraction and
radiometric and atmospheric correction to estimate AOD values based on the algorithms used in earlier
aerosol studies [18,19,29–31]. From pre-testing the entire multi-spectral band data collected for the
Landsat 8 images, band 7 for PM10 models and band 4 for PM2.5 models were excluded due to lack of
sensitivity of their AOD values to the changes in PM concentration. The software ENVI version 5.1
(Exelis Visual Information Solutions, Boulder, CO, USA) and ArcMap version 10.2 (Environmental
Systems Research Institute, Redlands, CA, USA) were used for image processing.

2.2.3. PM and Meteorological Data

Hourly mean ground-based PM10 and PM2.5 concentrations (hereafter PM measurements) across
the study area were collected from August 2017 to July 2019 through the website of AirKorea (https:
//www.airkorea.or.kr/eng) (Figure 1). The hourly measurements of temperature (◦C), wind speed (m/s),
wind direction (0~360◦), and relative humidity (%) from August 2017 to July 2019 were obtained from
25 automatic weather stations located across the study area to examine meteorological influences on
PM, which were downloaded from the data archive offered by the Korea Meteorological Administration
(https://data.kma.go.kr).

2.3. Data Analysis

2.3.1. Satellite Imagery-Based PM-Estimation Modeling

To improve the PM model accuracy compared to previous MODIS-based models, single-day
models derived from Landsat 8 imagery were examined. The modeling approach suggested by earlier
studies was applied to the process of this study [18,19,22]. In a single day, Landsat 8 scenes contained
25 monitoring sites as sample sites of PM measurements. The multi-spectral band information from
Landsat 8 and meteorological data were used to develop single-day models for PM10 and PM2.5
estimates. The correlation analysis was conducted between PM10 or PM2.5 measurements and AOD
values. Multiple linear regression models were developed by using the AOD values at 0.55 µm and
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meteorological data sets as the major inputs and independent variables, and PM measurements as the
ground-truth and dependent variable. The model-derived PM10 and PM2.5 concentrations (hereafter
PM10 and PM2.5 estimates) at the pixels that spatially overlap with the monitoring sites were computed
and cross-validated with PM10 and PM2.5 measurements. To validate a developed model, some
samples were selected as training data and the others as validation data from the PM10 or PM2.5
measurements. This numerical modeling was performed by using the software SPSS Statistics 25 (IBM,
Armonk, New York, NY, USA). The PM estimates across the study area were classified by different
PM concentration intervals and visualized with the pixel values smoothed by using 3-by-3 windows
derived from “block statistics” in ArcMap 10.2 (ESRI, Boulder, CO, USA).

2.3.2. Comparison between Urban Forest and PM Measurement

To investigate relationships between urban forest and changes in PM, two variables of urban
forest characters were tested: size in area; and topography. First, to examine the correlation between
urban forest size and PM measurements, quarterly mean values of PM10 and PM2.5 were computed
for each of the monitoring stations from 2017 to 2018. The total areas for individual urban forest within
buffers of 1 km, 500 m and 300 m in radius from the location of each monitoring station were computed.
Secondly, to examine the relationship between the topographical setting near each monitoring site
and PM measurements, the maximum elevation of relevant urban forests within the 1 km buffer was
computed from a digital terrain map over the study area. Quarterly mean values of PM10 or PM2.5
measurements were compared with the maximum elevation of each coupled urban forest.

2.3.3. Comparison between Urban Forest Size and PM Estimates

To examine the relationship between urban forest sizes and changes in PM, mean data numbers
of Landsat-derived PM estimates were computed within the 1 km buffer of each monitoring station,
and were compared to the total area of urban forests within the same buffer. All geographical
computation in this study was conducted by using ArcMap 10.2 (ESRI, Boulder, CO, USA).

3. Results

3.1. Urban Forest Characteristics and PM Measurements

To examine the relationship between urban forest size and PM measurements, six sites encompassing
the largest forest area, called L1 to L6 within their own domain, and the other six with the smallest
forest area, called S1 to S6, were selected, and such two groups were compared to each other (Table 1).

Table 1. Names of 25 administrative districts and urban forest sizes in the relevant district computed
inside the buffers of 1 km, 500 m, and 300 m in radius from the air-quality monitoring stations of each
district across Seoul; six domains with the largest forests (L1~L6) and the other six with the smallest
forests (S1~S6) are sorted in size order.

Rank
Domain Name and Forest Size (ha)

1 km in Radius 500 m in Radius 300 m in Radius

L1 Eunpyeong-gu 138.93 Eunpyeong-gu 26.95 Dobong-gu 10.30
L2 Seodaemun-gu 114.52 Dobong-gu 21.79 Yangcheon-gu 4.35
L3 Jungrang-gu 92.00 Yangcheon-gu 18.06 Eunpyeong-gu 4.16
L4 Yangcheon-gu 62.19 Jungrang-gu 11.66 Jung-gu 3.57
L5 Seocho-gu 61.12 Seocho-gu 7.28 Seodaemun-gu 1.57
L6 Jongno-gu 50.93 Jung-gu 6.77 Yeongdeungpo-gu 1.12
S6 Mapo-gu 9.85 Seongbuk-gu 0.65 Gwanak-gu 0.10
S5 Dongdaemun-gu 7.24 Gangseo-gu 0.62 Gangnam-gu 0.09
S4 Yeongdeungpo-gu 6.06 Gangbuk-gu 0.49 Mapo-gu 0.07
S3 Gwangjin-gu 5.71 Gangdong-gu 0.39 Gangdong-gu 0.0001
S2 Gangdong-gu 5.69 Mapo-gu 0.18 Nowon-gu 0
S1 Guro-gu 1.92 Guro-gu 0.0005 Guro-gu 0
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There was a noticeable difference in urban forest sizes between two groups; however, such difference
tended to be reduced as the forest sizes in both groups were reduced with the decreases in buffer
distances (Table 1). The distribution of urban forests within the buffer of each sample site is graphically
delineated in the order of the total area of urban forest patches (Figure 2).
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Figure 2. Urban forest distributions within three buffers of 1 km, 500 m, and 300 m in radius from the
25 air-quality monitoring stations in Seoul. Top six domains with the largest urban forest in area within
the buffers are called L1 to L6 in order of total area, and the other six at the bottom with the smallest
urban forest area are called S1 to S6 in this study.

As for L1 to L6, large-sized forest patches dominated the domains and tended to cut across the
given three buffers whereas small and fragmented forest patches were spotted sporadically close
by the monitoring stations (Figure 2). As for S1 to S6, while small and fragmented forest patches
dominated the domains, no large forest patches were observed across the buffers (Figure 2). As the
buffer distances decreased, the small fragments of forest patches became more dominant in the urban
areas accompanied with the reduced coverages of the large forests (Figure 2). The correlations between
total urban forest sizes of each domain and quarterly mean PM10 or PM2.5 measurements were
examined. PM measurements for two groups by urban forest size are plotted in time series and
compared to each other by buffer (Figure 3).

In Figure 3, the overall patterns in the seasonal changes in PM10 and PM2.5 measurements
resembled each other under different conditions of PM type, time, urban forest size and buffer.
Overall PM10 measurements at the “Large” sites by season showed the tendency of lower PM
compared to those of “Small” ones (Figure 3a). Also, there was a trend that as the domains defined
as buffer by size increased, the number of seasons showing the distinct gap of PM10 measurements
between groups by urban forest size was grown (Figure 3a). As for PM2.5 in 1 km buffer, the “Large”
sites tended to have lower PM than those of “Small” ones (Figure 3b). Such trends of both PM10 and
PM2.5 could be derived from the location of the monitoring stations that are designed for setting
up at high population areas with relatively smaller urban forest (Figure 3). Considering temporal
changes, mean PM10 measurements repeatedly showed a sudden decrease at the third quarter (July to
September), and then a rapid increase at the fourth quarter (October to December) regardless of urban
forest size and buffer. On the other hand, PM2.5 showed smooth seasonal fluctuations with the peak at
the first quarter and the bottom at the third quarter during the study period (Figure 3b).
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Figure 3. Quarterly mean measurements and standard errors of PM10 (a) and PM2.5 (b) computed
from six domains called “Large” with the largest urban forest size and the other six called “Small” with
the smallest forest size within three buffers of 1 km, 500 m and 300 m in radius from 25 air-quality
monitoring stations in Seoul during the period of 2017 to 2018. Each quarter is defined as January to
March, April to June, July to September, and October to December.

There is no consistency with time in the relationship between “Large” or “Small” group for both
PM types: for example, unlike the overall pattern mentioned above the time of 17-1 at 300 m and 500 m
buffers indicated higher PM10 at “Large” sites than “Small”; and the time of 17-2 at 500 m and 1 km
buffers did the same for PM2.5. Therefore, it was considered that the size of urban forest is not the key
factor in terms of PM mitigation of urban forest. Also, in Korea, winter to early summer (17-1, 17-2,
18-1, 18-2 in Figure 3) is in general the peak of high concentration of both PM10 and PM2.5. However,
such periods are not warm enough yet for trees, and therefore trees or urban forest are most vulnerable
to environmental impact at those times. Accordingly, even “Large” urban forest might not present its
ability to the full in relation to PM mitigation.

To investigate the changes in PM measurements in relation to the presence of hilly urban forests
in the domain, the monitoring sites were ranked based on the maximum surface elevation within the
1 km buffer, and two distinct groups were extracted: one with the highest eight urban forests and the
other with the lowest eight (Figure 4).

The selected sites for the two elevation-based groups were widely spread over the entire study
area. However, the sites with higher urban forests were mainly located on the axis of north to south in
the middle of Seoul and the sites with lower forests were distributed along the axis of east to west due
to the topographic characteristics of Seoul (Figure 4). Quarterly mean PM10 and PM2.5 measurements
are plotted by urban forest elevation group in Figure 5.
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Figure 5. Quarterly mean measurements and standard errors of PM10 (a) and PM2.5 (b) computed
from two groups of the high elevation sites called “High” and low elevation sites called “Low” during
the period of 2017 to 2018.

Overall PM measurements were slightly lower in the “High” group showing the same seasonal
patterns between two different elevation groups (Figure 5). Such trend was consistent through the
study period. Although there were no different temporal changes in both PM measurements, difference
in PM10 between “High” and “Low” groups was bigger than those of PM2.5 (Figure 5). This result
indicated the high possibility that residents who live in a certain area close to urban forest higher than
100 m could benefit from PM mitigation, in particular for PM10. As for the seasonal patterns of PM
measurements, overall trends in 2017 were similar to those of 2018, showing the high seasons in the
first and fourth quarters and the low seasons in the second and third quarters. It is anticipated that
such patterns were originated from the general fluctuation of PM distribution in Korean peninsula
on a long-term scale and repeated every year. Interestingly, the second quarter in 2017 (17-2 in
Figure 5) presented a different condition, indicating higher PM10 and PM2.5 measurements at the
“High” sites than “Low” ones. A range of factors could be involved in this event from weather
conditions via characters of forest to domestic and/or international emission sources. Among those
factors, precipitation which strongly affects periodic physiological changes in vegetation could provide
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a meaningful clue: while it was the transitional period of the year from spring to summer (17-2;
April, May, June), the precipitation on that period was about 72% less than the same period in 2018,
which might exert a negative influence on trees’ activity during a vital season. Accordingly, there was
a possibility that urban forest could not respond to PM environment compared to a wet condition.
However, additional data collection dealing with the micro-climate within urban forest are required to
systematically analyze such relationship.

3.2. Urban Forest Size and PM Estimates

To model PM10 and PM2.5 estimates over urban forest areas which are out of the air-quality
monitoring system, multiple linear regression models were developed by using Landsat 8-derived
AOD, ground-based PM10 or PM2.5 measurement data, and meteorological factors including wind
speed (WS), wind direction (WD), relative humidity (RH), and temperature (T) as major inputs.
To identify the most effective band combinations for developing PM models in this study, two Landsat
8 image acquisition dates during the same quarter in 2018 were examined. The outcome is summarized
with the resulting models and their reliability and selected parameters in Table 2.

Although the PM10 models for the selected study periods showed the range of r2 values from
0.18 to 0.62, the PM2.5 models showed the range of r2 values from 0.40 to 0.82 (Table 2). In this study,
the average of r2 values of the PM10 models was lower than that of the PM2.5 models. The outcomes
from the correlation analyses among the PM measurements from the monitoring stations, Landsat
8-derived PM estimates, and urban forest sizes in area are depicted in Figures 6–9.
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Table 2. Multiple linear regression models for estimating PM10 and PM2.5 concentrations based on Landsat 8-derived AOD and meteorological factors, and the
estimated coefficients of the models.

Date Particle Size Model Factor 1 Multiple Linear Regression Model 2 Model 3 r2 CV 4 r

01/11/
2018

PM10

b2, b3, b4, T, WS 69.619 + 443.281(b2) − 612.92(b3) + 87.575(b4) − 2.333(T) + 6.81(WS) 0.52 0.58
b2, b3, b5, T, WS 74.207 + 427.971(b2) − 509.838(b3) + 115.855(b5) − 2.597(T) + 5.179(WS) 0.47 0.65
b2, b3, b6, T, WS 90.817 + 362.009(b2) − 346.719(b3) − 609.48(b6) − 1.574(T) + 5.752(WS) 0.49 0.57
b2, b4, b5, T, WS 196.118 − 183.203(b2) − 0.705(b4) − 306.947(b5) − 3.851(T) + 6.089(WS) 0.31 0.72
b2, b4, b6, T, WS 137.704 + 17.402(b2) + 33.539(b4) − 1209.786(b6) − 1.341(T) + 6.058(WS) 0.43 0.53
b2, b5, b6, T, WS 128.472 + 60.404(b2) + 95.867(b5) − 1220.361(b6) − 1.337(T) + 5.298(WS) 0.43 0.58
b3, b4, b5, T, WS 160.387 − 263.841(b3) + 66.446(b4) − 58.854(b5) − 3.685(T) + 7.016(WS) 0.43 0.72
b3, b4, b6, T, WS 154.083 − 145.602(b3) + 68.604(b4) − 702.261(b6) − 2.457(T) + 7.06(WS) 0.46 0.68
b3, b5, b6, T, WS 159.928 − 66.754(b3) + 6.999(b5) − 710.708(b6) − 2.527(T) + 6.033(WS) 0.43 0.71

PM2.5

b2, b3, b5, RH 66.387 − 237.641(b2) − 334.264(b3) + 1948.826(b5) + 0.724(RH) 0.75 −0.36
b2, b3, b6, RH 4.002 + 436.049(b2) − 347.258(b3) − 438.103(b6) + 0.108(RH) 0.62 0.74
b2, b3, b7, RH 0.786 + 401.946(b2) − 333.554(b3) − 362.822(b7) + 0.199(RH) 0.62 0.64
b2, b5, b6, RH 128.108 − 620.062(b2) + 2364.853(b5) − 741.748(b6) + 0.848(RH) 0.69 −0.34
b2, b5, b7, RH 108.57 − 634.228(b2) + 2545.059(b5) − 796.319(b7) + 1.057(RH) 0.73 −0.33
b2, b6, b7, RH 66.012 − 69.825(b2) + 631.316(b6) − 1003.129(b7) + 0.445(RH) 0.49 0.22
b3, b5, b6, RH 29.774 − 363.671(b3) + 2047.937(b5) − 734.33(b6) + 0.636(RH) 0.81 −0.29
b3, b5, b7, RH 12.804 − 358.305(b3) + 2049.099(b5) − 700.698(b7) + 0.79(RH) 0.82 −0.27
b3, b6, b7, RH 65.675 − 125.907(b3) + 567.452(b6) − 643.61(b7) + 0.368(RH) 0.55 0.08

19/12/
2018

PM10

b2, b3, b4, T, WS 106.101 + 5862.422(b2) − 11,064.246(b3) + 5151.479(b4) + 3.038(T) − 4.99(WS) 0.39 0.12
b2, b3, b5, T, WS −543.486 + 11,593.943(b2) − 10,609.35(b3) + 1587.283(b5) + 1.379(T) − 4.683(WS) 0.32 −0.61
b2, b3, b6, T, WS −335.951 + 11,951.049(b2) − 12,797.988(b3) + 2291.272(b6) + 0.717(T) − 2.898(WS) 0.42 −0.10
b2, b4, b5, T, WS 572.171 − 4997.01(b2) + 4047.227(b4) − 1062.735(b5) + 3.858(T) − 5.009(WS) 0.21 0.74
b2, b4, b6, T, WS 313.473 − 2054.492(b2) + 1078.521 (b4) + 169.051(b6) + 3.097(T) − 4.594(WS) 0.18 0.15
b2, b5, b6, T, WS 287.96 − 1696.772(b2) − 1466.948(b5) + 1974.105(b6) + 2.06(T) − 3.28(WS) 0.22 0.31
b3, b4, b5, T, WS 564.654 − 7488.4(b3) + 6429.208(b4) − 741.959(b5) + 4.079(T) − 4.943(WS) 0.36 0.57
b3, b4, b6, T, WS 656.526 − 6567.556(b3) + 4409.462(b4) + 335.742(b6) + 4.076(T) − 4.239(WS) 0.34 0.71
b3, b5, b6, T, WS 425.614 − 2818.664(b3) − 1593.465(b5) + 2801.023(b6) + 2.043(T) − 2.312(WS) 0.29 0.37

PM2.5

b2, b3, b5, RH 174.857 + 20,099.076(b2) − 22,805.747(b3) + 4115.745(b5) − 0.349(RH) 0.63 0.24
b2, b3, b6, RH 217.363 + 9422.702(b2) − 11,067.877(b3) + 1369.947(b6) − 0.507(RH) 0.42 0.41
b2, b3, b7, RH 245.43 + 11,082.797(b2) − 14,693.74(b3) + 3212.461(b7) − 0.576(RH) 0.62 0.50
b2, b5, b6, RH 2334.357 − 6073.689(b2) + 3864.697(b5) − 3414.19(b6) − 0.076(RH) 0.44 0.02
b2, b5, b7, RH 1163.598 − 4689.684(b2) − 1999.107(b5) + 2599.74(b7) − 0.501(RH) 0.40 0.62
b2, b6, b7, RH 1854.392 − 7026.391(b2) − 3469.525(b6) + 4909.423(b7) − 0.41(RH) 0.59 0.48
b3, b5, b6, RH 2306.45 − 6725.231(b3) + 5582.48(b5) − 3697.728(b6) − 0.165(RH) 0.57 0.05
b3, b5, b7, RH 1153.013 − 5317.508(b3) − 833.566(b5) + 2586.258(b7) − 0.619(RH) 0.50 0.59
b3, b6, b7, RH 1292.691 − 6160.21(b3) − 2528.501(b6) + 4919.066(b7) − 0.526(RH) 0.65 0.54

1: bx: Band-specific AOD value where x is band number, T: Temperature, WS: Wind speed, RH: Relative humidity; 2: Regression models in shade considered to be suitable ones in this
analysis, considering both the coefficient values for regression model (r2) and cross-validation (r); 3: Coefficient of the multiple regression models; 4: Coefficient of cross-validation from the
correlation analysis between PM measurements and modeled estimates.
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Figure 7. Correlations between mean PM2.5 measurements from the air-quality monitoring stations
and two Landsat 8-derived PM2.5 models derived from three different bands within the buffer of 1 km
in radius.

As for the correlations between the PM measurements at the monitoring stations and modeled
PM estimates at the pixel levels, the overall PM10 estimates showed better correspondences to PM10
measurements with the range of r values from 0.57 to 0.74 (Figure 6) than those of PM2.5 from −0.33 to
0.74 (Figure 7). As for PM2.5, there was a noticeable difference in the correlation coefficients between
two dates, whereas the correlations between PM10 estimates and measurements were evenly fair
regardless of the date. Therefore, it was considered that using Landsat 8 imagery was more consistently
effective to estimate PM10.

The results from the correlations analyses between the sizes of urban forests located within
1 km buffers of each domain and mean values of Landsat-derived PM estimates within the buffer
in Figures 8 and 9 showed that there were no noticeable relationships. However, there were some
cases that showed negative correlations, which were also shown previously on a landscape scale in
Figure 3. The combinations of bands 2, 4, and 5 and bands 3, 4, and 5 in December showed a decrease
in PM10 followed by the increases in the urban forest sizes with r value of −0.59 (band 2, 4, and 5)
and −0.50 (band 3, 4, and 5) (Figure 8). It was considered that there could be certain combinations of
multi-spectral bands of Landsat 8 that could be used for developing a more effective model.

The multiple regression models for PM estimation developed in this study were used for
graphically rendering PM distribution maps (Figures 10 and 11) for the visualization purpose of the
modeled PM. PM10 and PM2.5 estimates were shown along the pixels across the study area, and the
estimates were categorized into distinctive color codes by concentration level.
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Figure 8. Correlations between urban forest size in area and the mean estimates of Landsat 8-derived
PM10 in different band combinations for 1 km buffers from the air-quality monitoring stations.

Followed by the model reliabilities for PM10 estimates which were evenly fair in Figure 7,
the concentration maps of PM10 estimates also showed a similar distribution of pixel values regardless
of the band combination (Figure 10). As for PM2.5, the PM distributions from the combination of
bands 2, 3, and 6 and bands 2, 5, and 7 in November did not correspond to each other (Figure 11),
which was probably due to the relatively lower model reliability shown in the band combination of 2,
5, and 7 on November 1st in Figure 8. However, on December 19th, the maps of PM2.5 estimates in a
similar pattern to each other as the model reliabilities were secured in a consistent manner (Figure 11).
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4. Discussion

The relationship between urban forests and the changes in PM concentrations was investigated
by using both ground-truth and remotely sensed data in this study. With the hypothesis that PM
measurements would be lower with the presence of large urban forests nearby, the correlation analyses
between urban forest sizes and PM measurements were conducted. The result showed reduced PM10
and PM2.5 measurements in the areas where larger urban forests were in proximity. This tendency,
however, was shown in an inconsistent manner with varied buffer distances, which led to a question
about a threshold distance of urban forests that can be effective to reduce PM (Figures 2 and 3).
This result corresponds to the potential that urban forest patches might play in mitigating PM pollution
shown in Cavanagh et al. [5]’s study; while PM measurements increased as the distance increased from
inner forests to outer forest edges, a similar question about the threshold distance was suggested due
to the study areas limited to the forest patches. Considering the result from our study with expanded
buffer distances including the areas outside the urban forests, a follow-up investigation was considered
to be meaningful.

Overall PM measurements tended to be consistently lower in the areas where the elevation
within a 1 km buffer was higher than 100 m; it was considered that high urban forests led the PM
measurements to be reduced. This tendency falls onto the finding that a change in surface elevation
gradient can be the factor that can aerodynamically contribute to the dispersion of air pollutants
stagnated across urban areas [9]. The topographical effect measured by elevation difference could be
combined with vegetation characteristics of urban forest such as species, height and coverage of trees.
Such synergy could have an influence on PM mitigation which is similar to the previous study [32].

Using Landsat 8 imagery with a fine spatial resolution resulted in overall good modeling
performance in estimating PM10 and PM2.5 in this study (Figures 6 and 7). The findings from the
pre-test of comparing MODIS and Landsat 8 imagery fall onto the same line with Remer et al. [15]’s and
Munchak et al. [17]’s studies that present the aerosol detection ability varies with sensor resolutions;
the sensors with coarser spatial resolution can miss the aerosol information that those with finer
resolution can detect. However, the outcome in this study also suggested the need for improvement in
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the model reliabilities particularly for PM2.5, which showed day-to-day variations in the use of different
combinations of multi-spectral band information (Table 2; Figure 7). A similar challenge was discussed
in van Donkelaar et al. [33]’s study, in terms of the need for better techniques or methodologies to
normalize the over- and under-estimated pixel values from satellite imagery-derived models caused
by different sample, data calibration, sensor resolution, and spatio-temporal and exo-planetary setting
of the imagery retrieved. Also, the limitation with regard to the biased data output was suggested
in Remer et al. [15]’s and Munchak et al. [17]’s studies presenting that the sensors with finer spatial
resolution are more vulnerable to slight differences in multi-spectral band information retrieved and
are more likely to produce the isolated pixels of which pixel values are discontinuous compared to
neighboring pixels. Such biased outcome, the under- and overestimated AOD values in this study,
turned out to be the discontinuous pixels in the scenes (Figure 12).Forests 2020, 11, x FOR PEER REVIEW 16 of 18 
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Although the optimal smoothing technique was chosen for the study area and applied to the
original maps to minimize the number of isolated and/or discontinuous pixels, there is still an
uncertainty in how accurately the post-processed pixels would represent the in situ PM measurements.
Accordingly, the performance of the models developed in this study could be improved with handling
these known issues and being equipped with better understanding of physical properties of aerosols.

For more accurate interpretation of satellite imagery-derived aerosol information, additional
environmental factors including meteorological factors are needed with the accumulation of such data
sets. Besides meteorological parameters used in this study, which includes the limitation due to their
availability for the study area, there could be other environmental factors extensively investigated as
model parameters such as planetary boundary layer depth, Ångström exponents, elevation, modified
relative humidity, barometric pressure, mixing layer height, etc. [34–37]. Based on the correlation
between the physical properties of AOD and PM concentration, the empirical models in this study
could be useful to develop an effective approach to estimating and anticipating PM concentrations over
an extensive area. It was considered that there was the possibility the Landsat 8-derived PM-estimation
models developed in this study could be used for providing visual end-products that represent the PM
distributions across the target area.

5. Conclusions

This study investigated the PM mitigation effect of urban forest on its surrounding areas and
the potential for a fine-spatial-resolution imagery-based approach to PM modeling. In this study,
the overall patterns of the seasonal changes in PM10 and PM2.5 measurements respectively were
consistent with the changes over the study period. In general, large urban forests showed more
positive influence on its neighboring area in terms of PM mitigation than the aggregation of small
and fragmented urban forests. Based on the correlation analysis, within a given area the existence of
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high urban forest which is higher than 100 m in elevation more consistently indicated the potential
for the positive effects on PM mitigation, particularly for PM10. In the further study, however, it is
necessary to identify the most relevant factor from this finding. By examining Landsat 8 imagery-based
PM-estimation modeling approaches, it was found that, regarding the urban forest of Seoul, the fine
spatial resolution was suitable to model PM estimation, particularly for PM10. By improving the
reliability of PM modeling based on remotely sensed data, it is expected to identify more relevant
factors to PM mitigation with regard to urban forest, and investigate the mitigation mechanisms of
urban forest in detail albeit lack of ground-based measurements.
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