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Abstract: In the last decade, engineers from automotive manufacturers and charging infrastructure
suppliers have widely studied the application of wireless power transfer (WPT) technology to electric
vehicles. Since this time, engineers from automotive manufacturers have studied precise positioning
methods suitable for WPT using methods such as mechanical, communication-based or video-based.
However, due to high costs, electromagnetic interference and environmental factors, the experts of
the SAE J2954 was focused on the WPT’s precise positioning method by ferrite antennas and low
power excitation. In this study, we present how to use the ferrite antennas to find a central alignment
point between the primary and secondary units within the alignment tolerance area that requires
the minimum power transfer efficiency of the EV WPT system. First, we analyze the ferrite antenna
already applied in the automotive and verifies whether it is suitable for the precise positioning of
the WPT system for EV. We use modeling and simulation to show that it is necessary to calculate all
induced loop voltages in the relationship between incident magnetic field signal strength and induced
loop voltage because of the short distance between the transmitter and receiver of the ferrite antenna
in WPT. In addition, we also suggest a sequence to find the fitting location of the ferrite antenna,
the number of antennas used and the center alignment point. After the simulation is performed on
the suggestions, component-level and vehicle-level tests were conducted to verify the validity of
the simulation results. As a result, it is shown that a ferrite antenna is suitable as a method for the
secondary device to find the center alignment point of the primary device.

Keywords: electric vehicle; wireless power transfer; center alignment point; ferrite antenna

1. Introduction

Faraday’s experiment on electromagnetic induction and energy transfer was the first experiment to
transfer electrical energy wirelessly [1]. Since then, researchers have been interested in wireless power
transfer and radio-frequency communication technologies. The concept of wireless power transfer
(WPT) was demonstrated by Nikola Tesla in the early 1900 s [2]. However, engineers have experienced
difficulties in commercialization due to specific problems with WPT, viz., low efficiency and difficulty
in long-distance transmission when compared with conductive power transfer. Therefore, researchers
have focused on contact wireless power transfer, which has been commercialized and used in many
electronic and electrical devices [3–5]. Long-range WPT technology regained attention in 1964 owing
to William C. Brown [6], who successfully supplied power to fuel-free helicopters using 2.45 GHz
microwaves. In 2007, owing to the continued research and development by engineers, Professor Marin
Soljacic at Massachusetts Institute of Technology (MIT) succeeded in verifying 40% efficiency of WPT
technology at a distance of two meters using a coil with a diameter of 60 cm [7].

Electronics 2020, 9, 1289; doi:10.3390/electronics9081289 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-1395-8459
https://orcid.org/0000-0001-8124-3116
http://dx.doi.org/10.3390/electronics9081289
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/8/1289?type=check_update&version=2


Electronics 2020, 9, 1289 2 of 27

The application of WPT technology to electric vehicles (EVs) is widely studied. In 2010, the United
States (U.S.) Department of Energy (DOE) and the Society of Automotive Engineers (SAE) led the
wireless power transfer and alignment task force and began research and standardization of WPT
technology [8]. Researchers from major automotive manufacturers and charging infrastructure
suppliers [9] wished to develop WPT technology suitable for EVs while participating in the EV WPT
standardization. The primary goal of the development of WPT for the EVs in its early stages was to
ensure the safety of users during the implementation of WPT and maximizing the charging efficiency
of wireless charging. Therefore, the coil shape or electric power circuit was studied [10].

Further, engineers from automotive manufacturers began to study fine and precise positioning
methods suitable for WPT in EVs and various indoor and outdoor positioning technologies. The contents
of the discussion are as follows [11]: (i) As a mechanical method, stopping a vehicle in the center of a
primary device using a curbside block or parking block was considered. Further, a method of using
a robotic arm to move the primary device to the center of the secondary device after the vehicle is
parked was considered. (ii) As a communication-based method [12–16], technologies such as global
positioning system (GPS), Bluetooth low energy (BLE), radio frequency identification (RFID), Wi-Fi
and ultra-wideband (UWB) were discussed. (iii) As a video-based method [17,18], a parking assistant
system (PAS) applied to a vehicle, 2D/3D marker notified to a user by a camera installed in a parking
lot and optical character recognition (OCR) was mentioned. However, the mechanical methods were
excluded from the discussion owing to an increase in the production cost of the WPT manufacturer,
and the communication-based methods were excluded because it is difficult to satisfy the vehicle
electromagnetic compatibility (EMC) standards regulated by the International Telecommunication
Union (ITU) [19]. The video-based method was found to be difficult to apply to external public
parking lots due to weather or environmental factors. Therefore, the experts of the SAE J2954 task
force is focused on technologies that could easily be mounted on an EV, was inexpensive, did not
interfere with an electronic component in the vehicle, and, satisfied the conditions for positioning
within the alignment tolerance range for the WPT [20]. It also focuses on technology that satisfies the
fine positioning condition, where the central alignment distance between the primary and secondary
devices is approximately 1.5 m or more and the precise positioning condition, where the primary and
secondary devices begin to overlap. Among them, low power excitation (LPE) is a technology whose
primary device, i.e., the power transfer device, performs fine and precise positioning by transmitting
a minute quantity of power to the secondary device. Another method is to mount a ferrite antenna
using a low frequency (LF) in primary device or a secondary device and perform fine and precise
positioning using the magnetic field change value of the ferrite antenna. Therefore, LPE and ferrite
antennas were applied to the SAE J2954 standard as a method for fine and precise positioning in an EV
WPT system [20]. In addition, the International Electrotechnical Commission (IEC), an international
standards and conformity assessment body, also addresses LPE and ferrite antennas as a method to
fine and precise positioning in the 61980-2 document [21].

This article describes how to find the central alignment point between the primary device and
secondary device within the alignment tolerance area that requires the minimum power transfer
efficiency of the EV WPT system using the ferrite antenna. This method suggests that it is necessary
to calculate all induced loop voltages in the relationship between the incident magnetic field signal
strength and the induced loop voltage because of the distance between the transmitter and receiver
of the ferrite antenna in EV WPT precise positioning is short—to within 250 mm. It also suggests a
sequence to find the fitting location of the ferrite antenna, the number of antennas used and the center
alignment point. After the simulation is performed on the suggestions, unit-level, component-level
and vehicle-level tests are performed to validate the simulation results. Therefore, we propose that the
ferrite antenna was suitable for the precise positioning of EV WPT.

The content is organized as follows: In Section 2, we review the SAE J2954 document, the magnetic
flux density of ferrite antenna and open-circuit voltage of a ferrite antenna. In Section 3, we verify that
ferrite antennas already applied in the automotive field are suitable for use in the precise positioning
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of WPT systems for EVs. Then, we simulate and validate the performance of the ferrite antenna as
a transmitter and receiver as a method of finding the central alignment point within the alignment
tolerance area of the EV WPT system. In Section 4, we extend the magnetic flux density and open-circuit
voltage models of a ferrite antenna to the EV WPT system and conducts simulations. In Section 5,
we present the results of performed experiments at the component-level and vehicle-level to verify the
validity of modeling and simulation results and compare them with simulation results. We present
conclusions in Section 6. In Section 7, we describe registered patents. Finally, in Appendix A,
we describe the magnetic flux density, the open-circuit voltage applied to the geometric dimensions of
the WPT system for EV and the power received by the ferrite antenna of the primary device.

2. Background

2.1. SAE J2954 Standard

SAE J2954 covers WPT for light-duty electric and plug-in EVs [8,20]. The scope of SAE J2954 is
the requirements of the WPT system, such as interoperability, electromagnetic compatibility (EMC),
electromagnetic force (EMF), minimum performance, safety, alignment and testing. Of particular
importance among these requirements, the minimum target efficiency for each class of wireless power
transfer should exceed 85% at the center alignment point and 80% at the alignment tolerance area
(e.g., WPT1 power class is 3.7 kW, WPT2 power class is 7.7 kW and WPT3 power class is 11.1 kW) [20].
The maximum wireless power transfer capacity is determined by the lower of the primary device and
secondary device power class ratings. The WPT power classes for light-duty EVs defined in SAE J2954
are described in Table 1 [20].

Table 1. Wireless power transfer (WPT) power classification with target efficiency for light-duty electric
vehicles [20].

WPT
Power Class

Input Power of the
Primary Device

Output Power of the
Secondary Device

Target Efficiency

Center Point Tolerance Area

WPT 1 ≤3.7 kW ≤3.7 kW ≤85% ≤80%
WPT 2 ≤7.7 kW >3.7 kW and ≤7.7 kW ≤85% ≤80%
WPT 3 ≤11.1 kW >7.7 kW and ≤11.1 kW ≤85% ≤80%

The center alignment point is the point at which the geometry centers of the primary and secondary
devices are correctly aligned with each other. The alignment tolerance area is the offset required
between the primary device and secondary device geometric centers to achieve the center position for
the WPT, and the maximum positioning deviation is ±75 mm for the x-direction, ±100 mm for the
y-direction. The x-direction of the alignment tolerance is positive in the rearward vehicle direction,
the y-direction of the alignment tolerance is positive toward the right-hand-side of the vehicle.

The first step of positioning is to find the WPT charger for vehicles with WPT or the WPT charger
for vehicles with WPT. Here, although a few communication problems indoors and outdoors are
observed, Wi-Fi is widely used. This is called WPT charging-spot discovery. The second step is to
position the vehicle in the parking spot for the primary and secondary devices to overlap. This is
called fine positioning. The last step is for the secondary device to find the center alignment point
of the primary device after the primary and the secondary devices overlap. This is called precise
positioning. It is important for the positioning device not to affect the charging efficiency and not
interfere with existing installed electrical components during the wireless charging of the vehicle.
Therefore, IEC61980-2 and SAE J2954 selected two types of alignment methodologies [20,21] that can
maximize the wireless power transfer efficiency between the EV device and the supply device. First,
magnetic field alignment using the existing coil is that the primary device provides a small magnetic
field, which can be detected by the secondary device and used as a method of aligning the EV. This is
called low power excitation (LPE). Second, magnetic field alignment using an auxiliary coil is that the
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magnetic field should be transmitted or received by a separate magnetic coil system which is generally
not the same magnetic assembly used to WPT. Since the separate magnetic coil system should not use
the resonant frequency used in the WPT system and should not affect the WPT system, an auxiliary
means such as a ferrite antenna is used.

2.2. Magnetic Flux Density

In order to determine the magnetic flux density of a ferrite antenna, it is necessary to consider
the steady magnetic field in free space. When a current I is flowing in a small circular loop of radius
a, to define the magnetic dipole at observation point r(x, y, z), consider that an infinitesimal current
creates a magnetic dipole magnetic field [22]. The magnetic entities are magnetized because there are
many infinitesimal currents inside the material. The model of the small circular loop with a current I is
shown in Figure 1 where r’(x’, y’, 0) is a point with an electric current that is the source of the magnetic
field and dl is the infinitesimal current at r’. The center of the small circular loop is selected to be the
origin of the spherical coordinates. Here, it is necessary to consider the condition that the distance R of
the observation point at the center of the circular loop is always greater than the radius a of the circular
loop [22].

Figure 1. Model of the small circular loop with current I.

Equation (1) describes the magnetic vector potential.

A =
µ0I
4π

∮
C′

dl′

R1
(1)

where µ0 is the permeability of free space, I is the current and path C’ represents the line integral.
From Equation (1), spherical coordinates of the magnetic vector potential for observation r in

Figure 1 is given by:

A =
µ0Ia2sinθ

4R2 aφ (2)

where aφ is the unit vector in spherical coordinates at observation point r.
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Using the concept of the moment as an indicator of the tendency of the magnetic dipole to change
and substituting Equation (2) is given by [22]:

A =
µ0m× ar

4πR2 (3)

where m is the magnetic dipole moment and ar is the unit vector in spherical coordinates at observation
point r. The magnetic dipole moment is a vector and its magnitude is the product of the current and the
area of the loop. Therefore, the magnetic flux density produced by the magnetic dipole is given by [22]:

B = ∇×A =
µ0m
4πR3

(2cosθar + sinθaθ) (4)

where aθ is the unit vector in spherical coordinates at observation point r.
Therefore, the magnetic flux density of a uniformly magnetized ferrite antenna is determined as

follows: A model of the ferrite antenna is shown in Figure 2, where L is the length of the antenna, a is
the radius and M = azMo is the uniform magnetization along z-axis [22].

Figure 2. Model of the ferrite antenna.

Using the concept of equivalent magnetic charge density to determine the magnetic flux density
of the ferrite antenna, the magnetic flux density of the ferrite antenna obtains the same value as
Equation (4) [22]. Converting the magnetic flux density expressed in the spherical coordinate system
of Equation (4) into the Cartesian coordinate system gives:

ax

ay

az

 =


sinθcos∅ cosθcos∅ −sin∅
sinθsin∅ cosθsin∅ cos∅

cosθ −sinθ 0




ar

aθ
a∅

 (5)
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Substituting Equation (5) into Equation (4), the magnetic flux density is given by:

B =
µ0µrMT

4πR3

{
(2cosθsinθcos∅+ sinθcosθcos∅)ax + (2cosθsinθsin∅+ sinθcosθsin∅)ay +

(
2cosθ2

− sinθ2
)
az

}
(6)

where µr is the relative permeability of the ferrite antenna and MT = πa2LM0 is the total dipole moment
of the ferrite antenna.

Here, the ferrite antenna mounted in the EV WPT system only considers the az component.
Therefore, Equation (6) can be summarized as:

B =
µ0µrMT

4πR3

(
2cosθ2

− sinθ2
)
az (7)

2.3. Open-Circuit Voltage

By Faraday’s law, the voltage induced in an electrically small loop antenna is equal to the rate
of change of the magnetic flux. In addition, when the loop antenna is composed of multiple turns,
the induced voltage of each turn is in series with all other turns [23]. Therefore, the open-circuit voltage
is given by:

Voc = N
dΦ
dt

(8)

where Voc is the open-circuit voltage, N is the number of turns, Φ is magnetic flux.
If the loop is small compared with a wavelength, magnetic flux may be assumed to be constant

throughout the loop area at any instant of time. The relationship between magnetic flux and magnetic
flux density is given by [23]:

Φ = BAcosθ (9)

where A is the loop area, B is magnetic flux density and θ is the angle between the plane of the loop
axis and the incoming flux.

An electromagnetic radiation field contains electric and magnetic field component. The field is
given by [22]:

E = cB (10)

where E is the electric field and c is the speed of light.
Solving Equation (10) for magnetic flux density and substituting it into Equation (9) allows us

to express the open-circuit voltage induced in a loop as a function of the electric field strength of the
incoming electromagnetic signal [23].

Voc =
NA

c
dE
dt

cosθ (11)

The electric and magnetic field strength varies with time in a sinusoidal form. This study considers
the peak magnitude of Voc. Therefore, dE/dt is simply E2πf. Equation (11) can be summarized as:

Voc =
NAE2π f

c
cosθ = jωNABcosθ (12)

where ω is the angular frequency of θ. When the loop plane is 90◦ to the magnetic field, cosθ is 0 and
Voc is zero.

The basic theory of the ferrite antenna is based on an electrically small loop antenna [24,25].
The ferrite antenna uses a ferrite rod in the loop to increase the radiation resistance, which results in
better antenna efficiency, without increasing the physical size compared to a loop antenna with an
air core.
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From Equation (12), the open-circuit voltage of the ferrite antenna is given by:

Voc = jωNAµe f f Bi
z (13)

where µeff is the effective permeability of the ferrite antenna and Bi
z is the z-component of the incident

magnetic flux density of the ferrite antenna.
The permeability of the ferrite antenna is characterized by a combination of ferrite material

permeability, the shape of the ferrite antenna and the dimensions of the ferrite antenna [26]. The relative
permeability of the ferrite antenna is given by:

µr = µe f f
3

√
lr
lc

(14)

where µr is the relative permeability of the ferrite antenna, µeff is the effective permeability of the ferrite
antenna, lr is the length of the ferrite antenna and lc is the length of the ferrite antenna’s coil.

The open-circuit voltage of a single-turn loop in the middle of the ferrite antenna is increased by
the factor µr for the value of the same loop in free space.

3. Analysis and Modeling to Use Ferrite Antenna

3.1. Analysis of Ferrite Antenna Used in the Automotive

As mentioned in SAE J2954, the ferrite antenna used for the precise positioning of the WPT
system for EV should not electromagnetically interfere with EV during precise positioning and should
not affect the charging efficiency during the WPT. In addition, for the precise positioning of the EV
WPT system, the ferrite antenna transmitter should transmit a strong magnetic field within a range
that satisfies the ITU regulation suitable for automotive [19] and the ferrite antenna receiver should
accurately detect the magnetic field received by the ferrite antenna transmitter. Therefore, it was
examined that the ferrite antenna, which was verified and used in an automotive, was suitable for the
precise positioning of the WPT for an EV.

Figure 3 shows a ferrite antenna that was applied and used in the automotive. In the automotive,
the ferrite antenna is used in two systems. One is a keyless entry system (see Figure 3a) and the other
is a smart key system (see Figure 3b). The ferrite antenna used in the keyless entry system had a
length of 2.5 mm, a width of 10 mm and a thickness of 10 mm. Two hundred turns of copper wire
were wound around the width and thickness, and 91 turns were wound around the length. The ferrite
antenna used in the smart key system had a length of 90 mm, a width of 7 mm, a thickness of 4 mm and
70 turns of copper wire. Both of the ferrite antennas demonstrated a relative magnetic permeability
of 150, an operating frequency of 125 kHz, and did not electromagnetically interference with the EV.
Therefore, to confirm that the ferrite antennas shown in Figure 3 are suitable for the precise positioning
of the WPT system for EV, the magnetic flux density in the near-field was verified. We used FEKO
from the Altair software package [27], simulation software widely used in industry and academia.

Figure 3. Ferrite antennas used in the automotive field. (a) Keyless entry system; (b) smart key system.
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Figure 4 shows the design for simulation with FEKO software. All of the constants applied in
the simulation were applied with all of the above-mentioned values. The result of the simulation of
the ferrite antenna is shown in Figure 5. The ferrite antenna used in the keyless entry system has
a magnetic flux density distance of 1 m and the ferrite antenna used in the smart key system has a
magnetic flux density distance of 1.6 m. Precise positioning in the WPT system for EV requires that
the secondary device mounted on the EV locates and aligns the primary device because the primary
device is installed to the parking spot. Therefore, the ferrite antenna used in the smart key system
is more suitable for precise positioning of the EV WPT systems than the ferrite antenna used in the
keyless entry systems.

Figure 4. Geometric dimension of ferrite antenna used in automotive field. (a) Keyless entry system;
(b) smart key system.

Figure 5. Cont.
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Figure 5. Near-field magnetic flux density of ferrite antenna used in automotive field. (a) Keyless entry
system; (b) smart key system.

The ferrite antenna shown in Figure 6 was simulated using FEKO software to verify that the
charging efficiency of the WPT system for EV was affected. The geometric dimensions of the WPT
system for EV were based on the WPT1 power class of SAE J2954 [20]. Where the ferrite antenna can
be mounted in the WPT system for EV is the corner of the primary and secondary devices or the center
of each side. Figure 6 shows the ferrite antenna arranged on the WPT system for EV.

Figure 7 shows the simulation results when the ferrite antenna used in the keyless entry system
and smart key system are mounted on each corner of the WPT system for EV. In the ferrite antenna
used in the keyless entry system, the coils wound in three directions can be observed to affect the WPT
system of EV (see Figure 7a). It was confirmed that the ferrite antenna with the coil wound on the
ferrite rod in one direction did not affect the EV WPT system (see Figure 7b).

Figure 6. Cont.
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Figure 6. Ferrite antenna mounted on WPT system for EV. (a) Mounted on each corner; (b) mounted
on the center of each side.

Figure 7. Simulation results when the ferrite antenna is mounted on each corner of the WPT system for
EV. (a) Keyless entry system; (b) smart key system.
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Figure 8 shows the simulation results when the ferrite antenna used in the keyless entry system
and smart key system are mounted on the center of each side of the WPT system for EV. In the ferrite
antenna applied in the keyless entry systems, the coils wound in three directions can be observed to
affect the WPT system for EV (see Figure 8a). It was confirmed that the ferrite antenna with the coil
wound on the ferrite rod in one direction did not affect the WPT system for EVs (see Figure 8b).

Figure 8. Simulation results when the ferrite antenna is mounted on the center of each side of the WPT
system for EV. (a) Keyless entry system; (b) smart key system.
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Based on the results shown in Figures 7 and 8, the ferrite antenna, which affects the charging
efficiency when the WPT system for the EV is wireless charging, is a coil wound to the ferrite rod in
three directions. The magnetic vector when the primary device supplies power to the secondary device
that of the ferrite antenna wound in one direction on the ferrite rod is in the same direction. Hence,
the ferrite antenna wound in one direction on the ferrite rod does not affect the wireless charging
efficiency. However, the magnetic vector when the primary device supplies power to the secondary
device and that of the ferrite antenna wound in three directions on the ferrite rod is in a different
direction. Hence, the ferrite antenna wound in three directions on the ferrite rod is observed to affect
the wireless charging efficiency.

3.2. Ferrite Antenna Modeling for Application to the Precise Positioning of the EV WPT System

In order to use the ferrite antenna for the precise positioning of the WPT system for EV, it is
necessary to verify whether it is suitable as a transmitter and receiver even at a short distance.
The reason is that the ferrite antenna, generally used to a vehicle, operates as a transmitter and receiver
at a distance of 1 m or more. Equations (7) and (13) are the result of one ferrite antenna. In the WPT
system for EV, the ferrite antenna serves as both a transmitter and a receiver and consists of a pair.
Therefore, we constructed modeling for simulation and conducted unit-level tests. Figure 9 shows
the geometric dimensions of the ferrite antenna used for verification and the relationship between
the transmitter and receiver of the ferrite antenna. Figure 10 is an yz-plane view for calculating the
magnetic flux density and open-circuit voltage of the ferrite antenna.

Figure 9. Geometric dimensions of the transmitter and receiver of the ferrite antenna.
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Figure 10. YZ-plane view of the transmitter and receiver of the ferrite antenna.

In Figure 10, α1 is the angle between the Nth loop of the ferrite antenna transmitter and the
1st loop of the ferrite antenna receiver, α2 is the angle between the Nth loop of the ferrite antenna
transmitter and the 2nd to 70th loops of the ferrite antenna receiver, α3 is the 90 degrees minus α1, α4 is
the sum of α1, α2 and α3, D1 is the vertical distance between the transmitter and receiver of the ferrite
antenna, D2 is the distance between the Nth loop of the ferrite antenna transmitter and the 1st loop of
the ferrite antenna receiver, D3 is the distance between the Nth loop of the ferrite antenna transmitter
and the 2nd to 70th loops of the ferrite antenna receiver, lc is the length of the ferrite antenna’s coil and
lr is the length of the ferrite antenna.

As mentioned previously, when the loop antenna consists of multiple turns, the induced voltage
of each turn is in series with all other turns [22]. Therefore, the open-circuit voltage of a ferrite antenna
with 70 turns is the sum of all the open-circuit voltages all the 70 turns. If the magnetic flux density of
the ferrite antenna shown in Figure 10 is expressed in the form of Equation (7), it is given by:

Btot =
µ0µrm
4πr3

(
2 cosθ2

− sinθ2
)
az

θ =
α4∑

k=α3

(α1+α2
69 )k +

70∑
N=1

α1+α2
69 (1−N)

α1 = cos−1 D1∑70
N=1

√
((1−N)D1)

2+D2
1

,

α2 = cos−1 D1∑70
N=1

√
(lc+(1−N)D1)

2+D2
1

,

r =

√
(

70∑
N=1

(1−N)D1 −
69D1
α1+α2

(
α4∑

k=α3

α1+α2
69 − α3))

2

+ D2
1

(15)

where Btot is the sum of the magnetic flux density transmitted by the 70-turn loop of the ferrite antenna
transmitter to the 70-turn loop of the receiver. The magnetic dipole moment of the ferrite antenna (m)
is 4.76 × 10−13 A·m2, the relative permeability of the ferrite antenna (µr) is 150, the operating frequency
of the ferrite antenna is 125 kHz.

In addition, the open-circuit voltage that the ferrite antenna receiver receives from the transmitter
is given by:

Voctot = jωµrABtotaz (16)
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where Voctot is the sum of the open-circuit voltage that the ferrite antenna receiver receives from
the transmitter.

As the value measured in the measurement instrument is expressed in dBm, Equation (16) can be
written as:

Power f errite antenna = 10log10

1000
V2

octot
R

 (17)

where R is the resistance of the ferrite antenna and the value of resistance is 1.
A Ferrite antenna model results were calculated using MATLAB software from MathWorks [28].

A ROHDE and SCHWARZ SMC100A signal generator [29] was used as the instrument for generating
a magnetic flux density in the ferrite antenna of the transmitter. The instrument for measuring the
magnetic flux density of the ferrite antenna of the receiver was an RTE 1104 oscilloscope [30] from
ROHDE and SCHWARZ. The characteristic impedance of the port connected to the signal generator to
perform the test is 50 ohms. Figure 11 shows the ferrite antenna used for the unit-level measurement
and the measurement results. The ferrite antenna (see Figure 11a) used for unit-level measurement
has the same geometric dimensions and constants used for modeling. The measurement results when
x-direction is 0 mm, y-direction is 0 mm and z-direction is 8 mm are shown in Figure 11b. When the
ferrite antenna for the transmitter and the ferrite antenna for the receiver are placed in parallel in the
z-direction, the measured value of the induced open-circuit voltage received by the ferrite antenna for
the receiver is −13.61 dBm.

Figure 11. Experimental test of unit-level. (a) Ferrite antenna used for unit-level test; (b) experimental
result is that x-direction is 0 mm, y-direction is 0 mm and z-direction is 8 mm.
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Table 2 shows the comparison between the simulation and experimental results calculated by
applying Equation (17) at the boundary of the alignment tolerance range of x-, y- and z-direction.
It can be seen that the simulation and the unit-level experimental results are similar even when the
transmitter and receiver of the ferrite antenna are matched, in addition to each alignment tolerance
range boundary line.

Table 2. Comparison of modeling and unit-level experimental results in the alignment tolerance area.

Distance
Unit Vector z-Direction 2 Simulation Result Test Result

x-Direction y-Direction z-Direction

0 mm 0 mm 8 mm 1 Parallel −13.21 dBm −13.61 dBm
0 mm 0 mm 8 mm 1 Parallel −13.21 dBm −13.61 dBm
0 mm 0 mm 8 mm 1 Parallel −13.21 dBm −13.61 dBm
0 mm 0 mm 8 mm 1 Parallel −13.21 dBm −13.61 dBm
0 mm 0 mm 8 mm 1 Parallel −13.21 dBm −13.61 dBm
0 mm 0 mm 8 mm 1 Parallel −13.21 dBm −13.61 dBm
0 mm 0 mm 8 mm 1 Parallel −13.21 dBm −13.61 dBm
0 mm 0 mm 8 mm 1 Parallel −13.21 dBm −13.61 dBm
1 enclosure thickness of each transmitter and receiver of the ferrite antenna is 4 mm, 2 magnetic flux density unit
vector z-direction relationship between the ferrite antenna transmitter and receiver.

4. Simulation and Analysis for Component-Level of EV WPT System

In this section, we discuss extending the magnetic flux density and open-circuit voltage models of
the ferrite antenna to the EV WPT system.

In the SAE J2954, when an EV mounted with WPT system parks in a parking spot for charging,
front parking is recommended [20]. The geometric center of the primary device shall be installed at
the center of the width of the parking spot and 2 m from the inner of the line in front of the parking
spot, as shown in Figure 12. Therefore, considering the location of the primary device installed at the
parking point, the mounting of the ferrite antenna is optimal in the direction ±y of the primary device
and the secondary device. In addition, the minimum number of ferrite antennas to be mounted on the
primary device and the secondary device is two for accurate direction recognition [31].

Figure 12. Location of the geometric center of the primary device at the parking spot [20].
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Figure 13 shows the secondary device to find the center alignment point of the primary device
within the alignment tolerance area of the EV WPT system when the ferrite antenna arrangement is
optimized for the primary device and the secondary device. Figure 14 shows the geometric dimensions
and the xy-plane view for applying the simulation model.

Figure 13. Diagram for finding center alignment point in the electric vehicle (EV) wireless power
transfer (WPT) system.

Figure 14. XY-plane view of the ferrite antenna transmitter in the ±y-direction mounted on the
secondary device and the ferrite antenna receiver in the ±y-direction mounted on the primary device.
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In Figure 14, α1 is the angle between the Nth loop of the ferrite antenna transmitter in the
±y-direction mounted on the secondary device and the 1st loop of the ferrite antenna receiver in
the ±y-direction mounted on the primary device, α2 is the angle between the Nth loop of the ferrite
antenna transmitter in the ±y-direction mounted on the secondary device and the 2nd to 70th loops of
the ferrite antenna receiver in the ±y-direction mounted on the primary device, D2 is the angle between
the Nth loop of the ferrite antenna transmitter in the ±y-direction mounted on the secondary device
and the 1st loop of the ferrite antenna receiver in the ±y-direction mounted on the primary device,
D3 is the angle between the Nth loop of the ferrite antenna transmitter in the ±y-direction mounted
on the secondary device and the 2nd to 70th loops of the ferrite antenna receiver in the ±y-direction
mounted on the primary device, and D1 is the vertical distance between the transmitter and receiver of
the ferrite antenna. The application of the geometric dimensions of Figure 14 to Equations (15) and (16)
are detailed in Appendix A.

In order to find the center alignment point of the primary device within the alignment tolerance
area, the secondary device should check the WPT efficiency at a point 20 mm from the ±x- and
±y-direction. Figure 15 shows 99 test points to find the center alignment point of the primary device
within the alignment tolerance area. In Figure 15, the gray area is the primary device. The size of the
primary device is 675 mm × 535 mm. The white area is the secondary device. The size of the secondary
device is 284 mm × 284 mm. The distance between each test point is 20 mm.

Figure 15. Test point for checking minimum wireless power transfer efficiency in precise positioning.

The sequence for finding the center alignment point of the primary device and secondary device
using the ferrite antenna within the alignment tolerance area of the EV WPT system is proposed as
follows: (i) The primary device’s ferrite antenna receiver is received magnetic flux density from the
secondary device’s ferrite antenna transmitter; (ii) The primary device is compared to the received
magnetic flux density in the +y- and −y-directions; (iii) If the magnetic flux density value in the
+y-direction is greater than in the −y-direction, the secondary device is moved to the left. If the
magnetic flux density value in the +y-direction is smaller than in the −y-direction, the secondary
device is moved to the right. (iv) If the magnetic flux density value in the +y- and −y-direction was
equaled, the secondary device is at the center of the width of the parking spot. (v) If the magnetic
flux density value was equaled and has decreased after an increase, the secondary device is moved to
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the backward because it has already passed the center alignment point of the primary device. (vi) If
the magnetic flux density value was equaled, but has not decreased after an increase, the secondary
device is moved to the forward because the secondary device has not reached the center alignment
point of the primary device. (vii) If the magnetic flux density value in the +y- and −y-direction is the
maximum, the secondary device is stopped because it has reached the center alignment point of the
primary device. The sequence for finding the center alignment point within the alignment tolerance
area is shown in Figure 16.

Figure 16. Sequence for finding the center alignment point.

Using MATLAB software, model results of 99 points were calculated by the secondary device to
find the center alignment point of the primary device within the alignment tolerance area of the EV
WPT system. As component-level and vehicle-level verification are required, the EV WPT system data
are reflected as much as possible. We used an EV WPT system with an output power level of up to
7.7 kVA for the supply device and an input power level of up to 3.7 kVA for the EV device. The height
of the primary device and the secondary device was 180 mm [32].

Figure 17 shows the results of simulation by applying Equation from (1) to (3) at 99 test points.
In Figure 17, P1 and P’1 have a secondary device located at 0 mm in the x-direction and −100 mm
in the y-direction, respectively, among the alignment tolerance areas of the primary device. Here,
the ferrite antenna received power of the primary device is −52.72 dBm for ferrite antenna (Rx1) located
at −y-direction and −65.99 dBm for ferrite antenna (Rx2) located at +y-direction. It shows that the
secondary device is located to the left of the center alignment point of the primary device. Therefore,
the secondary device is moved to the right. Similar results were observed for in P2 and P’2. As P2

and P’2 mean that the secondary device is located to the right, the secondary device is moved to the
left. In P3, the secondary device is located in the alignment tolerance area of the primary device. Here,
by comparing the ferrite antenna received power of the primary device, it can be seen that the values
of Rx1 located in −y-direction and Rx2 located in +y-direction are the same as −59.31 dBm.
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Figure 17. Simulation results for power received by the ferrite antenna receiver of the +y-direction
and −y-direction.

5. Experimental Results

In the EV WPT system, using the ferrite antenna mounted on the secondary device, an actual test
was conducted to ensure that the secondary device could correctly locate the center alignment point of
the primary device within the primary device’s alignment tolerance area. In the actual test, the WPT
system used a primary device with a maximum input power of 7.7 kW and a secondary device with a
maximum output power of 3.7 kW. Parameter of the primary and secondary devices are shown in
Table 3.

Table 3. Parameter of the primary and secondary devices.

Parameter Primary Device Secondary Device

Coil size 650 mm × 500 mm 270 mm × 270 mm
Coil material Litz wire ϕ 7 mm Litz wire ϕ 4 mm

Number of turns 15 turns of single layer 8 turns of single layer
Ferrite tile size 675 mm × 535 mm 284 mm × 284 mm

Shield-plate size Aluminum Aluminum
Shield-plate material 750 mm × 600 mm 800 mm × 800 mm

To verify the validity of the modeling and simulation results, a component-level and vehicle-level
experimental benches were built. Figure 18a shows a component-level experimental bench to find
the center alignment point within the alignment tolerance area of the EV WPT system. Figure 18b
shows a vehicle-level test bench to find the center alignment point within the alignment tolerance
area by installing the EV WPT system on a KIA SOUL EV. A ROHDE and SCHWARZ SMC100A
signal generator was used to generate magnetic flux density in the ferrite antenna transmitter of the
secondary device. The characteristic impedance of the connected to the signal generator to perform
the test is 50 ohms. A ROHDE and SCHWARZ RTE 1104 oscilloscope was used to measure the
open-circuit voltage in the ferrite antenna receiver of the primary device. The WPT Testing Platform
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from Chroma [33] is a device that can move 1 mm steps for ±x-, ±y and ±z-direction. As it is difficult to
move the vehicle by 20 mm in a vehicle-level test, the primary device was moved by 20 mm to conduct
the test. In order to match the experimental conditions of the component-level and vehicle-level,
the primary device was tested by moving it by 20 mm. This was also performed at the component-level.
The simulation and actual experimental results measured at 99 points were compared and analyzed
for each point. In addition, in order to increase the reliability of the measured data, after measuring
99 points at both the component-level test and the vehicle-level test, the same test was repeated 10 times
to check the difference in measured values for each number of times.

Figure 18. Experimental test conditions. (a) Component-level test; (b) vehicle-level test.
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Figures 19 and 20 shows the results of the oscilloscope measurement waveform when the secondary
device is positioned at the center alignment point of the primary device. In each Figure, cursor result 1
is the result measured by the −y-direction of the ferrite antenna receiver of the primary device. In
addition, cursor result 3 is the result measured by the +y-direction of the ferrite antenna receiver of the
primary device.

Figure 19. Oscilloscope measurement waveform results for component-level experiments at the center
alignment point of the electric vehicle (EV) wireless power transfer (WPT) system.

Figure 20. Oscilloscope measurement waveform results for vehicle-level experiments at the center
alignment point of the EV WPT system.

As mentioned in Section 4, according to the simulation results, if the secondary device is located
at the center alignment point of the primary device, the output of the ±y-direction ferrite antenna
receiver mounted on the primary device should be the same. In Figure 19, the value of cursor results 1
is −57.12 dBm and that of cursor result 3 is −57.21 dBm. The measurement error guaranteed by the
signal generator and oscilloscope is 2% and the difference between the value of cursor result 1 and the
value of cursor result 2 is 0.09 dBm. Therefore, in the component-level test, it can be observed that
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the output of the ±y-direction ferrite antenna receiver mounted on the primary device is the same.
Similarly, in the vehicle-level test (see Figure 20), the difference between the value of cursor result 1
and that of cursor result 3 is 0.03 dBm. Hence, it can be seen that the output of the ±y-direction ferrite
antenna receiver mounted on the primary device is the same. Therefore, it can be confirmed that the
secondary device is located at the center alignment point of the primary device in the component-level
and the vehicle-level test.

Tables 4 and 5 compare the results of simulation, component-level and vehicle-level tests at
important points among the 99 test points. The reason for selecting the five important points mentioned
in Tables 4 and 5, is that the results at each endpoint of the primary device and its center alignment point
are of paramount importance. Analysis of the results in Tables 4 and 5 shows that the component-level
and vehicle-level measurement results showed a difference of less than 1 dBm. This is the difference
less than 2%, which is the measurement error guaranteed by the signal generator and oscilloscope,
the measurement equipment. Hence, the measurement results of component-level and vehicle-level
are the same. However, the difference between the simulation and the actual experimental result is less
than 3 dBm at maximum. This is more than the measurement error guaranteed by the measurement
equipment. Therefore, in order to reduce the difference between the simulation value and the actual
experimental result, it is necessary to review the environmental conditions of the EV WPT system as
well as the environmental conditions of the EV.

Table 4. Comparison of experimental and simulated results in the −y-direction of the ferrite antenna
receiver of the primary device.

Alignment Tolerance
Simulation Results Component Results Vehicle Results

x-Direction y-Direction

0 mm 0 mm −59.31 dBm −57.12 dBm −57.70 dBm
80 mm 100 mm −55.58 dBm −57.48 dBm −57.03 dBm
80 mm −100 mm −67.16 dBm −68.27 dBm −68.54 dBm
−80 mm 100 mm −55.58 dBm −57.59 dBm −56.81 dBm
−80 mm −100 mm −67.16 dBm −68.31 dBm −67.75 dBm

Table 5. Comparison of experimental and simulated results in the +y-direction of the ferrite antenna
receiver of the primary device.

Alignment Tolerance
Simulation Results Component Results Vehicle Results

x-Direction y-Direction

0 mm 0 mm −59.31 dBm −57.21 dBm −57.67 dBm
80 mm 100 mm −67.16 dBm −68.61 dBm −68.31 dBm
80 mm −100 mm −55.58 dBm −57.73 dBm −58.18 dBm
−80 mm 100 mm −67.16 dBm −68.56 dBm −67.65 dBm
−80 mm −100 mm −55.58 dBm −57.78 dBm −58.18 dBm

Figure 21 show the component-level and vehicle-level results for 99 points. Figure 21 shows that
the results of the component-level and vehicle-level show the same tendency when the secondary
device is positioned at 0 mm in the x-direction and −100 mm in the y-direction among the alignment
tolerance areas of the primary device. In component-level (see Figure 21a), the ferrite antenna received
power of the primary device is −50.91 dBm for ferrite antenna (Rx1) located at the −y-direction and
−64.31 dBm for ferrite antenna (Rx2) located at the +y-direction. This indicates that the secondary
device is on the left-side of the center alignment point of the primary device. Therefore, the secondary
device is moved to the right. Similarly, in vehicle-level (see Figure 21b), the ferrite antenna received
power of the primary device is −52.35 dBm for ferrite antenna (Rx1) located at the −y-direction
and −65.25 dBm for ferrite antenna (Rx2) located at the +y-direction. This also indicates that the
secondary device is on the right-side of the center alignment point of the primary device. Therefore, in
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vehicle-level testing, the secondary device is moved to the left. It can be confirmed that these results
show the same tendencies as those of the simulation result, as shown in Figure 17.

Figure 21. Experimental result for power received by the ferrite antenna receiver of the +y-direction
and −y-direction. (a) Component level; (b) vehicle level.
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6. Conclusions

In order to maximize the charging efficiency of the EV MF-WPT system, it is important to match
the center alignment points of the primary and secondary devices. In this article, we proposed how to
use the ferrite antennas to find a central alignment point between the primary and secondary units
within the alignment tolerance area that requires the minimum power transfer efficiency of the EV
WPT system. First, the ferrite antenna used for precise positioning of the EV WPT should not affect
the charging efficiency when the primary device transmits power to the secondary device. Therefore,
it was analyzed that the mounting position of the ferrite antenna should be mounted at the center of
each side with ±y-direction of the primary device and the secondary device using electromagnetic
simulation. Second, the method suggested that it is necessary to calculate all induced loop voltages in
the relationship between incident magnetic field signal strength and induced loop voltage because of
the distance between the transmitter and receiver of the ferrite antenna in EV WPT precise positioning
is short to within 250 mm. After the simulation was performed on the suggestions, the unit-level
test was performed to validate the simulation results. Since the difference between the simulation
result and the experimental result was within one decibel-milliwatt, it could be confirmed that the
proposed induced loop voltage formula was applied correctly. The reason is that the error guarantee
range of the measurement equipment is two decibel-milliwatts. Third, even if two ferrite antennas
are mounted on each of the primary device and the secondary device, a method that can match the
central alignment points of the primary and the secondary devices were proposed, and a sequence
was also proposed. The difference between the simulation results and the experimental results was
within two decibel-milliwatts for component-level and within three decibel-milliwatts for vehicle-level.
Consequently, we confirmed that the ferrite antenna is a suitable method to find the center alignment
points of the primary and secondary devices within the alignment tolerance area of the EV WPT system.

In the future, it is necessary to review the environmental conditions of EV and EV WPT systems
to reduce the error of less than one decibel-milliwatt between simulation results and vehicle-level
experimental results. In addition, the EV driver must make considerable effort to directly align the
vehicle to identify the central alignment point of the base unit. Therefore, it is necessary to review
the research that combines the precise positioning of the autonomous driving parking system and the
electric vehicle wireless transmission system.

7. Patents
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Appendix A

From Equation (15), the magnetic flux density applying the geometric dimensions of Figure 14 is
given by:
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where BWPTtot is the sum of the magnetic flux density transmitted by the 70-turn loop of the ferrite
antenna transmitter mounted on the secondary device to the 70-turn loops of the ferrite antenna receiver
mounted on the primary device, µ0 is the permeability of free space, µr is the relative permeability
of the ferrite antenna, m is the magnetic dipole moment, α1 is the angle between the Nth loop of the
ferrite antenna transmitter in the ±y-direction mounted on the secondary device and the 1st loop of the
ferrite antenna receiver in the ±y-direction mounted on the primary device, α2 is the angle between
the Nth loop of the ferrite antenna transmitter in the ±y-direction mounted on the secondary device
and the 2nd to 70th loops of the ferrite antenna receiver in the ±y-direction mounted on the primary
device, SD∆x is the distance the secondary device moves in the ±x-direction, SD∆y is the distance the
secondary device moves in the ±y-direction and r is the distance between the ferrite antenna in the
±y-direction mounted on the secondary device and ferrite antenna in the ±y-direction mounted on the
primary device.

The Equation (16) of the open-circuit voltage received by the receiver of the ferrite antenna
mounted on the primary device of the EV WPT system is replaced by:

VocWPTtot = jωµrABWPTtotaz (A2)

Substituting Equation (17) into (A2),

PowerWPT f errite antenna = 10log10(1000
V2

ocWPTtot
R

) (A3)
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