
applied  
sciences

Article

State-Constrained Sub-Optimal Tracking Controller
for Continuous-Time Linear Time-Invariant (CT-LTI)
Systems and Its Application for DC Motor
Servo Systems

Jihwan Kim 1,* , Ung Jon 2 and Hyeongcheol Lee 1,*
1 Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 04763, Korea
2 Department of Electrical Engineering, Hanyang University, Seoul 04763, Korea; unginext@hanyang.ac.kr
* Correspondence: iminai@hanyang.ac.kr (J.K.); hclee@hanyang.ac.kr (H.L.); Tel.: +82-2-2220-1685 (H.L.)

Received: 22 July 2020; Accepted: 13 August 2020; Published: 18 August 2020
����������
�������

Abstract: In this paper, we propose an analytic solution of state-constrained optimal tracking control
problems for continuous-time linear time-invariant (CT-LTI) systems that are based on model-based
prediction, the quadratic penalty function, and the variational approach. Model-based prediction is
a concept taken from model-predictive control (MPC) and this is essential to change the direction
of calculation for the solution from backward to forward. The quadratic penalty function plays an
important role in deriving the analytic solution since it can transform the problem into a form that
does not have inequality constraints. For computational convenience, we also propose a sub-optimal
controller derived from the steady-state approximation of the analytic solution and show that the
proposed controller satisfies the Lyapunov stability. The main advantage of the proposed controller is
that it can be implemented in real time with a lower computational load compared to the implicit
MPC. Finally, the simulation results for a DC motor servo system are shown and compared with the
results of the direct multi-shooting method and the implicit MPC to verify the effectiveness of the
proposed controller.

Keywords: continuous-time linear time-invariant (CT-LTI); DC motor servo system; linear-quadratic
tracking (LQT); model-based prediction; quadratic penalty function; state-constrained optimal control;
variational approach

1. Introduction

Recently, interest has been increasing in control systems that require limitations on the state of
the target system. For example, optimal trajectory control for industrial robots [1,2], which limits the
workspace for co-work between humans and machines, and optimal powertrain control for hybrid
vehicle systems [3–5], which has limitations on battery capacity, have become more critical to industry.
For analytical and computational convenience, the target system for industrial purposes is often
linearized, therefore several studies on linear optimal controllers with state constraints were performed.
However, these studies imply large computational loads that make it difficult to implement in real
time. The following section explains why these computational loads are caused.

1.1. Solutions and Their Approximations of the Optimal Control Problems

Assume that the target system is a continuous-time linear time-invariant (CT-LTI) system as follows:

ẋ = Ax + Bu, (1)
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y = Cyx, (2)

where x(t) is the state of the system, u(t) is the input of the system, and y(t) is the output of the system.
Let the tracking error e(t) be

e = r− y, (3)

where r(t) is the reference for the output. Then, the linear-quadratic tracking (LQT) problem can be
expressed as follows [6–8]:

minimize
e,u

J = 1
2

∫ t f
t0

(
eTQe + uTRu

)
dt

subject to Ax + Bu− ẋ = 0,
(4)

where Q and R are positive definite matrices weighting for the tracking error and the input, J is the cost
function, t0 is the initial time, and t f is the final time. Assume that pair (A, B) is controllable and pair(
A, Cy

)
is observable. Then, by the Lagrange multiplier method [6–8] and the variational approach

(Theorem A1), the LQT problem (4) can be transformed into a problem of finding solutions of the
Riccati equation with boundary conditions and an auxiliary dynamic equation related to the reference.
The Riccati equation and the auxiliary dynamic equation can be derived as follows:

Ṗ = −PA−ATP + PBR−1BTP−Cy
TQCy, (5)

ġ = −
(
AT
− PBR−1BT

)
g−Cy

TQr, (6)

where P(t) and g(t) are the solutions to be determined. These solutions are usually calculated in the
backward direction in time or by using iterations since A−BR−1BTP, which is the system matrix of
the closed-loop system, must have all the negative real parts of the eigenvalues. However, if there are
no constraints on the input and the state, it is well known in control engineering that the solutions of
the equations can be approximated to their steady-state values, and the solutions become independent
of the time. In the case of input constraints alone, the optimal input can be determined by Pontryagin’s
minimum principle [6–9]. In general, the solutions determined by Pontryagin’s minimum principle
are closely related with the solutions of the Equations (5) and (6) and have a form simple enough to be
implemented on modern microcontrollers. On the other hand, if there are inequality constraints on the
state, the problem statement (4) is not valid, therefore it must be redefined as follows:

minimize
e,u

J = 1
2

∫ t f
t0

(
eTQe + uTRu

)
dt

subject to
{

Ax + Bu− ẋ = 0
Chx + w ≤ 0

,
(7)

where Ch and w are time-invariant parameters of the inequality constraints. The vector inequality

h ≤ 0 means that hi ≤ 0 (i = 1, · · · , n), where h =
[

h1 · · · hn
]T

. In this case, the problem related to
the direction of the calculation is hard to avoid.

Since the problem (7) is difficult to solve exactly, many kinds of research were proposed to
solve this problem approximately. The first group of research consists of numerical approaches
including dynamic programming methods [6,10,11] or direct and indirect methods [11–13]. In general,
these methods discretize the target system and apply numerical methods. Since this procedure does not
change the direction of the calculation, most of these methods need backward calculations or iterations
for all the time steps. The second group of research comprises model-predictive control (MPC) methods
including implicit MPC [14–17] and explicit MPC [18–20]. The main difference from the first group is
that time-forward calculation is possible since this method predicts the optimal states and inputs of the
target system for a short time ahead. However, this method also requires repetitive calculations for the
predictions, and the precision of the calculation decreases if the time length of the prediction is not
long enough, therefore it still requires many computations in general. To reduce the computational
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load, explicit MPC was proposed. For explicit MPC design, methods dividing the state space are
essential, but the results of these methods are not easy to analyze in practice [21] since they are based
on numerical iterations. In summary, the computational problem of the state-constrained optimal
tracking control is that the direction of the exact computation for the solution is a time-backward
calculation which leads to increasing computational loads.

1.2. Outline and Scope of the Paper

In this paper, we propose an analytic solution of state-constrained optimal tracking control
problems for CT-LTI systems that are based on the model-based prediction, the quadratic penalty
method, and the variational approach in Section 2. The model-based prediction is a concept taken from
MPC, and this is essential to change the direction of the calculation for the solution from backward to
forward. The quadratic penalty method plays an important role in deriving the analytic solution since
it can transform the problem into a form that does not have inequality constraints. For computational
convenience, we also propose a sub-optimal controller derived from the steady-state approximation
of the analytic solution, and show that the proposed controller satisfies the Lyapunov stability in
Section 3. Finally, the simulation results for a DC motor servo system are shown and compared with
the results of the direct multi-shooting method and implicit MPC to verify the effectiveness of the
proposed controller in Section 4.

2. Analytic Solution of State-Constrained Optimal Tracking Problems

In this section, we describe the analytic solution of state-constrained optimal tracking problems.
This solution can be derived by using the model-based prediction, inequality constraints using
prediction, the quadratic penalty function, and the variational approach.

2.1. Model-Based Prediction

Suppose that the target system is equal to (1), then a model-based prediction with a fixed time
interval τ can be written as follows [16,22]:

x̂τ(t) = x(t + τ|t) = eAτx(t) +
∫ t+τ

t
eA(t+τ−η)Bu(η)dη (8)

Assume that the time interval τ is short enough to consider the input as a constant. Then, we can
approximate (8) as

x̂τ ≈ Adx + Bdu, (9)

where

Ad(τ) = eAτ and Bd(τ) =

∫ τ

0
eAηdη· B.

The calculation of the above matrices is described in [22] (pp. 114–117) and this can be performed
by using c2d MATLAB® command, etc.

2.2. Inequality Constraints Using Prediction

Assume that the left sides of the inequality constraints are

hi(x) = Ch_ix + wi, (i = 1, 2, · · · , n), (10)

where

Ch =


Ch_1

...
Ch_n

 and w =


w1
...

wn

.
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Then, the inequality constraints have a form of

hi(x) ≤ 0 (11)

Since (11) should be valid at all times, the following inequalities also should be valid:

hi(x̂τ) ≤ 0 (12)

Let

h(x, u) =



h1(x)
...

hn(x)
h1(x̂τ)

...
hn(x̂τ)


=

[
Chx + w

ChAdx + ChBdu + w

]
, (13)

where

Ch =


Ch_1
Ch_2

...
Ch_n

, w =


w1

w2
...

wn

.
Then, (11) and (12) can be rewritten by using (13) as follows:

h(x, u) ≤ 0. (14)

2.3. Quadratic Penalty Function

Suppose that the penalty function pi of the inequality constraint hi ≤ 0 is

pi(hi) =
1
2
αi(hi)hi

2, (i = 1, 2, · · · , 2n), (15)

where

αi(hi) =

{
0, hi < 0
qi, hi ≥ 0

,

and qi > 0 is the weight for αi [23,24]. As shown in Figure 1, the meaning of the penalty function is the
violation costs of the inequality constraint.Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 18 
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The quadratic penalty function is defined as the sum of the penalty functions:

p(h) =
2n∑

i=1

pi(hi) =
1
2

hT(x, u)diag
(
αT

)
h(x, u), (16)
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where

α =

[
αx

ατ

]
, αx =


α1
...
αn

, and ατ =


αn+1

...
α2n

,
and the diag function is defined as

diag
([
σ1 σ2 · · · σn

])
=


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn

.
2.4. Variational Approach

By using the Lagrange multiplier method and the penalty function method [23,24], Problem (7)
can be transformed into the following problem:

minimize
x,u

Ja =

∫ t f

t0

L(x, ẋ, u)dt, (17)

L(x, ẋ, u) =
1
2

(
r−Cyx

)T
Q

(
r−Cyx

)
+

1
2

uTRu + λT(Ax + Bu− ẋ) +
1
2

hTdiag
(
αT

)
h, (18)

where λ(t) is the Lagrange multiplier. Let the Hamiltonian function of (17) be

H(x, u) =
1
2

(
r−Cyx

)T
Q

(
r−Cyx

)
+

1
2

uTRu + λT(Ax + Bu) +
1
2

hTdiag
(
αT

)
h, (19)

and Qx = diag
(
αx

T
)
, Qτ = diag

(
ατ

T
)
. Then, substituting (13) into (19) yields

H(x, u) = 1
2

(
r−Cyx

)T
Q

(
r−Cyx

)
+ 1

2 uTRu + λT(Ax + Bu) + 1
2 (Chx + w)TQx(Chx + w)

+ 1
2 (ChAdx + ChBdu + w)TQτ(ChAdx + ChBdu + w).

(20)

By Corollary A1, the following equations hold:

λ̇ = Cy
TQ

(
r−Cyx

)
−ATλ−Ch

TQx(Chx + w) −Ad
TCh

TQτ(ChAdx + ChBdu + w)

= −ATλ−
(
Q1 + Ad

TCh
TQτChAd

)
x−Ad

TCh
TQτChBdu + Cy

TQr
−

(
Ch

TQx + Ad
TCh

TQτ

)
w,

(21)

0 = uTR + λTB + (ChAdx + ChBdu + w)TQτChBd, (22)

Q1 = Cy
TQCy + Ch

TQxCh. (23)

Let
Rτ = R + Bd

TCh
TQτChBd. (24)

Then, the optimal input is

u = −Rτ−1BTλ−Rτ−1Bd
TCh

TQτChAdx−Rτ−1Bd
TCh

TQτw. (25)

2.5. Analytical Solution of the Problem

The following procedure is the same method used in the derivation of the Riccati Equation (5)
and the auxiliary dynamic Equation (6) [7,8].
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Theorem 1. Assume that the costate is proportional to the state. Then, the costate can be written as

λ = Px− g, (26)

where P(t) and g(t) are values to be determined. Then, the following dynamic equations hold:

Ṗ = −PAz −Az
TP + PBRτ−1BTP−Q2, (27)

ġ = −
(
Az

T
− PBRτ−1BT

)
g−Cy

TQr
+

[
Ch

TQx − PBRτ−1Bd
TCh

TQτ + Ad
TCh

TQτ

(
I−ChBdRτ−1Bd

TCh
TQτ

)]
w,

(28)

where
Q2 = Q1 + Ad

TCh
TQτ

(
I−ChBdRτ−1Bd

TCh
TQτ

)
ChAd, (29)

Az = A−BRτ−1Bd
TCh

TQτChAd. (30)

Proof. By differentiating (26),
λ̇ = Ṗx + Pẋ− ġ. (31)

Substituting (1), (25), and (26) into (31) yields

λ̇ = (Ṗ + PA)x + PBu− ġ
= (Ṗ + PAz)x− PBRτ−1BTλ− PBRτ−1Bd

TCh
TQτw− ġ

=
(
Ṗ + PAz − PBRτ−1BTP

)
x− ġ + PBRτ−1BTg− PBRτ−1Bd

TCh
TQτw,

(32)

Since the left sides of (21) and (32) are equal, the right sides of (21) and (32) are also equal. Therefore,

0 =
(
Ṗ + PAz − PBRτ−1BTP + Q1 + Ad

TCh
TQτChAd

)
x

−ġ + PBRτ−1BTg +
(
Ch

TQx + Ad
TCh

TQτ − PBRτ−1Bd
TCh

TQτ

)
w−Cy

TQr
+ATλ+ Ad

TCh
TQτChBdu.

(33)

Substituting (25) and (26) into (33) yields

0 =
(
Ṗ + PAz + Az

TP− PBRτ−1BTP + Q2

)
x− ġ−

(
Az

T
− PBRτ−1BT

)
g−Cy

TQr
+

[
Ch

TQx − PBRτ−1Bd
TCh

TQτ + Ad
TCh

TQτ

(
I−ChBdRτ−1Bd

TCh
TQτ

)]
w.

(34)

Since (34) should be valid for all the states, Equations (27) and (28) hold. �

3. State-Constrained Sub-Optimal Tracking Controller

Exact solutions of (27) and (28) have to be calculated in the backward direction in time, and this
is not proper for real-time implementations. Therefore, in this section, we propose a sub-optimal
controller that is stable and proper for real-time implementations.

3.1. State-Constrained Sub-Optimal Tracking Controller

The steady-state values of (27) and (28) are

0 = PsAz + Az
TPs − PsBRτ−1BTPs + Q2, (35)

gs = −
(
Ac

T
)−1

Cy
TQr +

(
Ac

T
)−1

 Ch
TQx − PsBRτ−1Bd

TCh
TQτ

+Ad
TCh

TQτ

(
I−ChBdRτ−1Bd

TCh
TQτ

) w, (36)

where
Ac = Az −BRτ−1BTPs. (37)
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Substituting (26) into (25) yields

u = −
(
Rτ−1BTPs + Rτ−1Bd

TCh
TQτChAd

)
x + Rτ−1BTgs −Rτ−1Bd

TCh
TQτw. (38)

Notably, (38) becomes the steady-state LQT controller [7,8] that uses steady-state values of (5) and
(6) if Qx and Qτ are null matrices.

The sub-optimal controller is implemented by calculating (35)–(38), but ατ is needed in these
calculations. Since αx indicates current violations of the state constraints and ατ indicates possible
violations of the state constraints that occur in a moment, ατ can be identified approximately by the
following procedure:

1. Identify αx using current state values and calculate Qx = diag
(
αx

T
)
.

2. Calculate (24) and (35) using an algebraic Riccati equation solver with Qτ = 0.
3. Calculate (36)–(38) using the result of step 2 and applying Qτ = 0.
4. Calculate (9) using the result of step 3.
5. Identify ατ using the result of step 4.

Since αx has limited values (zero or a fixed value for each element), offline calculation results for
lower computational loads can be used in step 2. The sub-optimal controller requires the following
procedure in addition to the above procedure.

6. Calculate Qτ = diag
(
ατ

T
)

using the result of step 5.

7. Calculate (24) and (35) using an algebraic Riccati equation solver with the result of step 6.
8. Calculate (36)–(38) using the result of step 7.

Since ατ also has limited values, step 7 can be performed offline. The main advantage of this
procedure is that the total computation time of the procedure is limited to a fixed upper boundary.
In the case of offline calculations of steps 2 and 7, it is obvious that the total computation load of the
proposed controller is lower than that of the implicit MPC.

3.2. Stability of the Proposed Controller

By the matrix inversion lemma [25,26],

I−ChBdRτ−1Bd
TCh

TQτ = I−ChBd
(
R + Bd

TCh
TQτChBd

)−1
Bd

TCh
TQτ

=
(
I + ChBdR−1Bd

TCh
TQτ

)−1
,

(39)

I−QτChBdRτ−1Bd
TCh

T =
(
I + QτChBdR−1Bd

TCh
T
)−1

. (40)

Therefore, the following equations hold:

Q2 =


Cy

Ch
ChAd


T

Q 0 0
0 Qx 0

0 0 Qτ

(
I + ChBdR−1Bd

TCh
TQτ

)−1




Cy

Ch
ChAd

, (41)

Qτ

(
I + ChBdR−1Bd

TCh
TQτ

)−1
=

(
I + QτChBdR−1Bd

TCh
T
)−1

Qτ. (42)

These equations show that Q2 is positive semi-definite since Q is positive definite and Qx, Qτ are

positive semi-definite or null. Assume that pair

Ac,


Cy

Ch
ChAd


 is observable since Cy is different from

Ch in general and suitable Ad may be selected by changing τ. Then, Equation (35) can be rewritten as

PsAc + Ac
TPs = −

(
PsBRτ−1BTPs + Q2

)
. (43)
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Substituting (36)–(38) into (1) and applying r = 0 and w = 0 yields

ẋ = Acx. (44)

Therefore, it is concluded that the closed-loop system is stable by the Lyapunov stability
theorem [27,28] if the observability condition is satisfied.

3.3. Model Modification for Input Smoothing

The input generated by the proposed controller may have severe vibration that is not found in
numerical solutions. To mitigate this, we propose a modification of the plant model including a low
pass filter before the input as shown in Figure 2.
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The state equation of the modified plant model is

d
dt

[
x
u

]
=

[
A B
0 −βI

][
x
u

]
+

[
0
βI

]
u, (45)

y =
[

Cy 0
][ x

u

]
. (46)

Then, the problem (7) should be changed as follows:

minimize
e,u,u

J = 1
2

∫ t f
t0

[ e
u

]T[
Q 0
0 R

][
e
u

]
+ uTRu

dt

subject to


[

A B
0 −βI

][
x
u

]
+

[
0
βI

]
u−

[
ẋ
u̇

]
= 0[

Ch 0
][ x

u

]
+ w ≤ 0

,

(47)

where R is the weight for u. Since this problem can be solved by using the same methods described in
Sections 2 and 3, we omit a detailed description of the solution.

4. Case Study: Application for DC Motor Servo Systems

In this section, to help readers understand how to apply the proposed controller, we show an
application of the proposed controller for DC motor servo systems. For precision control of DC
motor servo systems, studies including MPC [29], data-driven [30], fuzzy [31], neural network [32],
cascade control [33], and the digital twin-based optimization [34] were introduced recently. However,
except for MPC, these studies did not consider the state constraints; therefore, we compare MPC and
the proposed controller for performance verification. The parameters of the target motor are shown in
Table 1. The target motor is a 24 V DC brushed gear motor and its rated torque is 2.94 Nm.
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Table 1. The parameters of the target motor.

Name Unit Value

Rotor inductance (Lm) H 0.0065
Armature resistance (Rm) Ω 2.3
Back EMF constant (Kb) V·sec/rad 0.09

Torque constant (Km) Nm/A 0.09
Friction coefficient (Bm) Nm·sec 0.00175

Rotor inertia (Jm) Nm·rad 0.0000525
Gear ratio (κm) 0.25

Then, the state equation of the target system is

ẋ =


−

Rm
Lm

−
Kb
Lm

0
Km
Jm

−
Bm
Jm

0
0 κm 0

x +


1
Lm

0
0

u
≈


−384.62 −13.85 0
1714.29 −33.33 0

0 0.25 0

x +


153.85
0
0

u,

(48)

y =
[

0 0 1
]
x. (49)

where

x =


x1

x2

x3

,
x1 is the motor current, x2 is the angular speed of the motor, and x3 is the angular position of the motor.
Let β = 1000, then the modified plant model is

d
dt

[
x
u

]
= A

[
x
u

]
+ Bu, (50)

y = Cy

[
x
u

]
, (51)

where

A =


−384.62 −13.85 0 153.85
1714.29 −33.33 0 0

0 0.25 0 0
0 0 0 −1000

, B =


0
0
0

1000

, Cy =
[

0 0 1 0
]

Let τ = 0.001, then the parameters for the prediction can be calculated as

Ad =


0.67 −0.01 0 0.09
1.41 0.96 0 0.07

0 0 1 0
0 0 0 0.33

, Bd =


0.04
0.04

0
0.67


The optimal tracking problem is

minimize
x,u,u

J = 1
2

∫ t f
t0

[ r− x3

u

]T[
100 0
0 1

][
r− x3

u

]
+ u2

dt

subject to


A
[

x
u

]
+ Bu−

[
ẋ
.
u

]
= 0

Ch

[
x
u

]
+ w ≤ 0,

(52)
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where

Ch =


−1 0 0 0
1 0 0 0
0 −1 0 0
0 1 0 0

, w =


−3
−3
−50
−50


In this case,


Cy

Ch
ChAd

 has full rank, therefore the closed-loop system is stable. Available values of Ps

in the cases of Qτ = 0 are shown in Table 2. The weight for αx is
[

10000 10000 0.001 0.001
]T

and

Ps was calculated by the MATLAB® care function. Since the weight for ατ is
[

100 100 10 10
]T

and similar calculations can be performed in the cases of Qτ , 0, the proposed controller can be
implemented by these results. Figure 3 shows the simulation results with r = π and x(0) = 0 without
changing w. The proposed controller was implemented by using Simulink® blocks and the ode2
(Heun) fixed-step solver was used for the simulation. The step size was set at 10µs for smooth results.
To verify the performance of the proposed controller, we also implemented an implicit MPC by using
MATLAB® Model Predictive Control ToolboxTM software. A numerical method based on the direct
multi-shooting method implemented by using CasADi software [35] was chosen for comparison since it
is close to the optimal solution. The sampling time used in both the numerical method and the implicit
MPC was set to 100 µs since lower sampling time causes larger computational loads. The prediction
and control horizon of the MPC is set to (100, 10).

Table 2. Examples of the solutions of (34).

αx Ps αx Ps
0
0
0
0




0.08 0.02 6.50 0.01
∗ 0 1.46 0
∗ ∗ 555.69 1
∗ ∗ ∗ 0




10000
0
0
0




12.21 −0.13 6.63 1.29
∗ 0.06 1.56 −0.04
∗ ∗ 561.18 1
∗ ∗ ∗ 0.20


0

10000
0
0




12.21 −0.13 6.63 1.29
∗ 0.06 1.56 −0.04
∗ ∗ 561.18 1
∗ ∗ ∗ 0.20




0
0

0.001
0




0.08 0.02 6.50 0.01
∗ 0 1.46 0
∗ ∗ 555.69 1
∗ ∗ ∗ 0


10000

0
0.001

0




12.21 −0.13 6.63 1.29
∗ 0.06 1.56 −0.04
∗ ∗ 561.18 1
∗ ∗ ∗ 0.20




0
10000
0.001

0




12.21 −0.13 6.63 1.29
∗ 0.06 1.56 −0.04
∗ ∗ 561.18 1
∗ ∗ ∗ 0.20


0
0
0

0.001




0.08 0.02 6.50 0.01
∗ 0 1.46 0
∗ ∗ 555.69 1
∗ ∗ ∗ 0




10000
0
0

0.001




12.21 −0.13 6.63 1.29
∗ 0.06 1.56 −0.04
∗ ∗ 561.18 1
∗ ∗ ∗ 0.20


0

10000
0

0.001




12.21 −0.13 6.63 1.29
∗ 0.06 1.56 −0.04
∗ ∗ 561.18 1
∗ ∗ ∗ 0.20


As shown in Figure 3a–c, the trajectory of the proposed controller and that of the numerical method

are very similar, therefore it can be said that the proposed controller is well-approximated. On the
other hand, the implicit MPC has different trajectories between 0.2 and 0.4 s though the constraints are
maintained. In Figure 3d–e, it seems that the trajectory of the proposed controller has a delay compared
to that of the numerical method, but the delay is small enough to be neglected. Since the steady-state
LQT controller has similar delay properties [36], it is assumed that the cause of this phenomenon is the
steady-state approximation.
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Figure 3. Simulation results of the proposed controller, the numerical method, and the implicit MPC
with the first set of r and w: (a) motor currents from 0 to 1 s, (b) angular speeds of the motor rotor from
0 to 1 s, (c) angle of the motor rotor from 0 to 1 s, (d) motor currents from 0 to 0.02 s, (e) angular speeds
of the motor rotor from 0 to 0.02 s.
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Figure 4 shows simulation results with r = 10, x(0) = 0, and w =
[
−10 −10 −100 −100

]T
.

All other control parameters used in Figure 4 are the same as those used in Figure 3. These results
show that the inequality constraints are maintained, and this leads to the conclusion that the proposed
controller does not seems sensitive to r or w. The results of the implicit MPC in Figure 4a–c also
differ from these of other methods therefore it is concluded that the implicit MPC differs from the
optimal solution.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 17 
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with the second set of r and w: (a) motor currents from 0 to 1 s, (b) angular speeds of the motor rotor 
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Figure 4. Simulation results of the proposed controller, the numerical method, and the implicit MPC
with the second set of r and w: (a) motor currents from 0 to 1 s, (b) angular speeds of the motor rotor
from 0 to 1 s, (c) angle of the motor rotor from 0 to 1 s, (d) motor currents from 0 to 0.02 s, (e) angular
speeds of the motor rotor from 0 to 0.02 s.

Figure 5 shows experimental and simulation results with r = π, x(0) = 0, and w = [−3− 3− 50− 50]T.
All other control parameters used in Figure 5 are the same as those used in Figure 3. Texas Instruments
LAUNCHXL2-570LC43 and BOOSTXL-DRV8323RS (Dallas, TX, USA) are used to control the target
motor, and they are shown in Figure 6b. The target motor is equipped with an incremental encoder as
shown in Figure 6a, and the encoder has resolutions of 0.0879 degrees. The controller was designed to
have sampling time of 100 µs, implemented by using Simulink® blocks, and converted to C code by
using Embedded Coder® software and Embedded Coder® support package for ARM® Cortex®-R
processors. For comparison, simulations were also performed at the same sampling time in Figure 5.
The experimental and simulation results have similar trends in Figure 5, but the experimental results
have severe vibrations and performance degradations. Since the real motor has nonlinearities and
frictions, it seems that these uncertainties are related to the performance degradations.
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Figure 6. Target motor and controller: (a) motor, (b) controller.

5. Discussion

In this paper, we proposed a sub-optimal tracking controller that does not need numerical iterations
or backward calculations for state-constrained optimal tracking problems. The main advantage of
the proposed controller is that it can be implemented in real time with a lower computational load
compared to the implicit MPC. Though there is a delay compared to the results of the numerical
method, the simulation results show that the proposed controller has acceptable performance. However,
the proposed controller needs to be verified through more application cases including industrial robots,
hybrid vehicles, or other control systems. For future work, the proposed controller may be extended
to discrete-time systems. Therefore, studies related to the discrete-time optimal tracking controller
based on the proposed method are worth researching. In particular, the controller may be applied
to path tracking control for autonomous vehicles [37,38], which have recently been the subject of
much research.
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Appendix A

Theorem A1 (Variational approach) [6]. Suppose that the cost function is

J =
∫ t f

t0

L(x, ẋ, u,λ)dt. (A1)

Assume that the initial value and the final value of the state are fixed. Then, the necessary conditions for
minimizing (A1) are

∂L
∂x
−

d
dt

(
∂L
∂ẋ

)
= 0, (A2)

∂L
∂u

= 0, (A3)

∂L
∂λ

= 0. (A4)

Proof. See Section 2.5 of [6] (pp. 169–171). �

Corollary A1: Suppose that the cost function is

J =
∫ t f

t0

L(x, ẋ, u)dt. (A5)

Let the Hamiltonian function be

H(x, u) = L(x, ẋ, u) + λTẋ. (A6)

Then, the necessary conditions for minimizing (A5) are

λ̇ = −

(
∂H
∂x

)T

, (A7)

0 =
∂H
∂u

, (A8)

ẋ =

(
∂H
∂λ

)T

. (A9)

Proof. By Theorem A1,

∂L
∂x
−

d
dt

(
∂L
∂ẋ

)
=
∂H
∂x

+
d
dt

(
λT

)
=
∂H
∂x

+ λ̇
T
= 0, (A10)

∂L
∂u

=
∂H
∂u

= 0, (A11)

∂L
∂λ

=
∂H
∂λ
− ẋT = 0. (A12)

Therefore, (A6) and (A7) holds. �
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