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STABILITY OF SOME FUNCTIONAL

EQUATIONS ON BOUNDED DOMAINS

B. NOORI, M. B. MOGHIMI, B. KHOSRAVI AND CHOONKIL PARK ∗

(Communicated by J. Pečarić)

Abstract. In this paper, we investigate the Hyers-Ulam stability of the functional equations

f (x+ y)+ f (x− y) = 2 f (x),

f (x+ y)+ f (x− y) = 2 f (x)+ f (y)+ f (−y),

f
(
px+(1− p)y

)
+ f

(
(1− p)x+ py

)
= f (x)+ f (y)

for p = 1
3 and p = 1

4 , where f is a mapping from a bounded subset of R
N�1 into a Banach

space E .

1. Introduction

It is well-known that the Hyers-Ulam stability problems of functional equations
originated from a question of Ulam [12] in 1940, concerning the stability of group
homomorphisms. In other words, the concept of stability for functional equations arises
when we replace the functional equation by an inequality which outs as a perturbation
of the equation. Hyers [1] gave a first affirmative partial answer to the question of
Ulam for Banach spaces. It is interesting to consider a functional equation satisfying
on a bounded domain or satisfying under a restricted condition. Skof [9] was the first
author to solve Ulam problem for additive mapping on a bounded domain. Indeed, Skof
proved that if a function f from [0,c) into a Banach space E satisfies the functional
inequality ‖ f (x + y)− f (x)− f (y)‖ � δ for all x,y ∈ [0,c) with x + y ∈ [0,c) , then
there exists an additive function A : R → E such that ‖ f (x)−A(x)‖ � 3δ for all x ∈
[0,c) . Z. Kominek [5] extended this result on a bounded domain [0,c)N of R

N for any
positive integer N . He also proved a more generalized theorem concerning the stability
of the additive Cauchy equation and Jensen equation on a bounded domain of R

N .
Skof [331] also proved the Hyers–Ulam stability of the additive Cauchy equation on an
unbounded and restricted domain. She applied this result and obtained an interesting
asymptotic behavior of additive functions: The function f : R → R is additive if and
only if f (x + y)− f (x)− f (y) → 0 as |x|+ |y| → +∞. F. Skof and S. Terracini [11]
investigated the problem of stability of the quadratic functional equations for functions
defined on bounded real domains with values in a Banach space. For more general
information on this subject, we refer the reader to [3, 6, 8].
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2. Stability of f (x+ y)+ f (x− y) = 2 f (x) on bounded subsets of R

In this section r > 0 and δ � 0 are real numbers and we assume that E is a Banach
space.

THEOREM 1. Let f : [0,r) → E be a function with f (0) = 0 and satisfy

‖ f (x+ y)+ f (x− y)−2 f (x)‖� δ , (1)

for some δ > 0 and all (x,y) ∈ T (r) , where

T (r) = {(x,y) ∈ [0,r)× [0,r) : 0 � x± y < r}.

Then there exists an additive function A : R → E such that

‖ f (x)−A(x)‖ � 11δ , x ∈ [0,r). (2)

Proof. Let u,v∈ [0,r) . We can choose x,y∈ [0,r) such that x±y∈ [0,r) , x+y =
u and x− y = v . Then it follows from (1) that

∥∥∥ f (u)+ f (v)−2 f
(u+ v

2

)∥∥∥ � δ . (3)

Letting v = 0 in (3), we get
∥∥∥ f (u)−2 f

(u
2

)∥∥∥ � δ , u ∈ [0,r). (4)

We extend the function f to [0,+∞) . For this we represent an arbitrary x � 0 by
x = n(r/2)+ α , where n is an integer and 0 � α < r/2. Then we define a function
ϕ : [0,+∞) → E by ϕ(x) = n f (r/2)+ f (α) . It is clear that ϕ(x) = f (x) for all x ∈
[0,r/2) . If x ∈ [r/2,r) , then ϕ(x) = f (r/2)+ f (x− r/2) , and we get from (3) and (4)
that

‖ϕ(x)− f (x)‖ =
∥∥∥ f

( r
2

)
+ f

(
x− r

2

)
− f (x)

∥∥∥
�

∥∥∥ f
( r

2

)
+ f

(
x− r

2

)
−2 f

( x
2

)∥∥∥+
∥∥∥2 f

( x
2

)
− f (x)

∥∥∥
� 2δ .

So

‖ϕ(x)− f (x)‖ � 2δ , x ∈ [0,r). (5)

We now show that ϕ satisfies

∥∥∥ϕ(x)+ ϕ(y)−2ϕ
(x+ y

2

)∥∥∥ � 3δ , x,y ∈ [0,+∞). (6)
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For given x,y � 0, let x = n(r/2)+α and y = m(r/2)+β , where m and n are integers
and 0 � α,β < r/2. Then

x+ y
2

=
m+n

2

( r
2

)
+

α + β
2

, m+n is even;

x+ y
2

=
m+n+1

2

( r
2

)
+

α + β
2

− r
4
, m+n is odd and α + β � r

2
;

x+ y
2

=
m+n−1

2

( r
2

)
+

α + β
2

+
r
4
, m+n is odd and α + β <

r
2
.

Therefore we have

ϕ
(x+ y

2

)
=

m+n
2

f
( r

2

)
+ f

(α + β
2

)
, m+n is even;

ϕ
(x+ y

2

)
=

m+n+1
2

f
( r

2

)
+ f

(α + β
2

− r
4

)
, m+n is odd and α + β � r

2
;

ϕ
(x+ y

2

)
=

m+n−1
2

f
( r

2

)
+ f

(α + β
2

+
r
4

)
, m+n is odd and α + β <

r
2
.

To prove (6) we have the following cases.

(i) If m+n is even, then
∥∥∥ϕ(x)+ ϕ(y)−2ϕ

(x+ y
2

)∥∥∥ =
∥∥∥ f (α)+ f (β )−2 f

(α + β
2

)∥∥∥ � δ .

(ii) If m+n is odd and α + β � r
2 , then

∥∥∥ϕ(x)+ ϕ(y)−2ϕ
(x+ y

2

)∥∥∥ =
∥∥∥ f (α)+ f (β )− f

( r
2

)
−2 f

(α + β
2

− r
4

)∥∥∥
�

∥∥∥ f (α)+ f (β )−2 f
(α + β

2

)∥∥∥
+

∥∥∥ f
(

α + β − r
2

)
−2 f

(α + β
2

− r
4

)∥∥∥
+

∥∥∥2 f
(α + β

2

)
− f

( r
2

)
− f

(
α + β − r

2

)∥∥∥
� 3δ .

(iii) If m+n is odd and α + β < r
2 , then

∥∥∥ϕ(x)+ ϕ(y)−2ϕ
(x+ y

2

)∥∥∥ =
∥∥∥ f (α)+ f (β )+ f

( r
2

)
−2 f

(α + β
2

+
r
4

)∥∥∥
�

∥∥∥ f (α)+ f (β )−2 f
(α + β

2

)∥∥∥
+

∥∥∥2 f
(α + β

2

)
− f (α + β )

∥∥∥
+

∥∥∥ f (α + β )+ f
( r

2

)
−2 f

(α + β
2

+
r
4

)∥∥∥
� 3δ .
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Hence ϕ satisfies (6). Now, we define a function g : R → E by

g(x) =
{

ϕ(x), x � 0;
−ϕ(−x), x < 0.

We show that g satisfies∥∥∥g(x)+g(y)−2g
(x+ y

2

)∥∥∥ � 9δ , x,y ∈ R. (7)

For given x,y ∈ R , since the left-hand side of (7) is symmetric in x and y , we may
assume the following cases.

(i) If x,y � 0 or x,y < 0, we get (7) from (6).

(ii) If x � 0,y < 0 and x+ y � 0, then (6) yields∥∥∥g(x)+g(y)−2g
(x+ y

2

)∥∥∥ =
∥∥∥ϕ(x)−ϕ(−y)−2ϕ

(x+ y
2

)∥∥∥
�

∥∥∥ϕ(x)−2ϕ
(x

2

)∥∥∥+
∥∥∥ϕ(x+ y)−2ϕ

(x+ y
2

)∥∥∥
+

∥∥∥2ϕ
( x

2

)
−ϕ(−y)−ϕ(x+ y)

∥∥∥
� 9δ .

(iii) If x � 0,y < 0 and x+ y < 0, then (6) yields∥∥∥g(x)+g(y)−2g
(x+ y

2

)∥∥∥ =
∥∥∥ϕ(x)−ϕ(−y)+2ϕ

(
− x+ y

2

)∥∥∥
�

∥∥∥2ϕ
(
− y

2

)
−ϕ(−y)

∥∥∥
+

∥∥∥2ϕ
(
− x+ y

2

)
−ϕ(−x− y)

∥∥∥
+

∥∥∥ϕ(−x− y)+ ϕ(x)−2ϕ
(
− y

2

)∥∥∥
� 9δ .

Therefore g satisfies (7) and then according to [2], there exist an additive function
A : R → E such that ‖g(x)−A(x)‖ � 9δ for all x ∈ R . Since ϕ(x) = g(x) for all
x � 0, it follows from (5) that

‖ f (x)−A(x)‖ � ‖ f (x)−g(x)‖+‖g(x)−A(x)‖� 11δ , x ∈ [0,r).

COROLLARY 1. Let f : [0,r) → E be a function with f (0) = 0 and satisfy∥∥∥∥ f (x)+ f (y)−2 f
(x+ y

2

)∥∥∥∥ � δ ,

for some δ > 0 and all (x,y) ∈ T (r) . Then there exists an additive function A : R → E
such that

‖ f (x)−A(x)‖ � 11δ , x ∈ [0,r).
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COROLLARY 2. Let f : (−r,r) → E be a function with f (0) = 0 and satisfy

‖ f (x+ y)+ f (x− y)−2 f (x)‖� δ , (8)

for some δ > 0 and all (x,y) ∈ T (r) . Then there exists an additive function A : R → E
such that

‖ f (x)−A(x)‖ � 12δ , x ∈ (−r,r).

Proof. Letting x = 0 in (8), we get ‖ f (y)+ f (−y)‖ � δ for all y ∈ (−r,r) . By
Theorem 1, there exists an additive function A : R → E such that ‖ f (x)−A(x)‖ � 11δ
for all x ∈ [0,r) . If x ∈ (−r,0) , then

‖ f (x)−A(x)‖ � ‖ f (x)+ f (−x)‖+‖A(−x)− f (−x)‖� 12δ .

This completes the proof.

THEOREM 2. Let f :
(
−r

√
2,r

√
2
)
→ E be a function with f (0) = 0 and satisfy

‖ f (x+ y)+ f (x− y)−2 f (x)‖� δ , (9)

for some δ > 0 and all (x,y) ∈ R
2 , where x2 + y2 � r2 . Then there exists an additive

function A : R → E such that

‖ f (x)−A(x)‖ � 19δ , x ∈
(
−r

√
2,r

√
2
)

. (10)

Proof. It is clear that if |x±y|� r , then x2 +y2 � r2 . Therefore f satisfies (1) for
all (x,y) ∈ T (r) . By Theorem 1, there exist an additive function A : R → E satisfying
(2) for all x ∈ [0,r) . Let ϕ and g be given as in the proof of Theorem 1. Then

ϕ(x) = g(x), ‖ϕ(x)− f (x)‖ � 2δ , x ∈ [0,r). (11)

If r � x < r
√

2, then (x/2)2 +(x/2)2 < r2 , and we infer from (9) that
∥∥∥ f (x)−2 f

( x
2

)∥∥∥ � δ , x ∈
[
r,r

√
2
)

.

Since ϕ(x) = g(x) for all x � 0, we get from (6) that
∥∥∥g(x)−2g

(x
2

)∥∥∥ � 3δ , x ∈ [0,+∞).

Therefore from the above inequalities, we have

‖ f (x)−g(x)‖ �
∥∥∥ f (x)−2 f

( x
2

)∥∥∥+
∥∥∥2g

( x
2

)
−g(x)

∥∥∥+2
∥∥∥ f

( x
2

)
−g

( x
2

)∥∥∥
� 8δ , x ∈

[
r,r

√
2
)

.



460 B. NOORI, M. B. MOGHIMI, B. KHOSRAVI AND C. PARK

For the case −r
√

2 < x < 0, from the definition of g , (9) and (11), we have

‖ f (x)−g(x)‖ = ‖ f (x)+ ϕ(−x)‖
�

∥∥∥ f (x)−2 f
( x

2

)∥∥∥+2
∥∥∥ f

( x
2

)
+ f

(
− x

2

)∥∥∥
+2

∥∥∥ϕ
(
− x

2

)
− f

(
− x

2

)∥∥∥+
∥∥∥ϕ(−x)−2ϕ

(
− x

2

)∥∥∥
� 10δ .

Hence we get

‖ f (x)−g(x)‖ � 10δ , x ∈
(
−r

√
2,r

√
2
)

.

Since ‖g(x)−A(x)‖ � 9δ for all x ∈ R (see the proof of Theorem 1), it follows from
the last inequality that

‖ f (x)−A(x)‖ � ‖ f (x)−g(x)‖+‖g(x)−A(x)‖� 19δ , x ∈
(
−r

√
2,r

√
2
)

,

which ends the proof.

THEOREM 3. Let f : (−r,r) → E be a function with f (0) = 0 and satisfy

‖ f (x+ y)+ f (x− y)−2 f (x)‖� δ , (12)

for some δ > 0 and all (x,y) ∈ D(r) , where

D(r) = {(x,y) ∈ (−r,r)× (−r,r) : |x± y|< r}.
Then there exists an additive function A : R → E such that

‖ f (x)−A(x)‖ � 5δ , x ∈ (−r,r). (13)

Proof. Letting y = x and x = 0 in (12), respectively, we get

‖ f (2x)−2 f (x)‖ � δ , ‖ f (y)+ f (−y)‖ � δ , |2x|, |y| < r. (14)

For an arbitrary x ∈ R , we set x = n(r/2)+ μ , where n is an integer and 0 � μ < r/2.
Hence we can define a function g : R → E by g(x) = n f (r/2)+ f (μ) . We show that
‖g(x)− f (x)‖ � 2δ for all x ∈ (−r,r) . For this we have the following cases:

1. For 0 � x < r/2, we have g(x) = f (x) .

2. For r/2 � x < r , we have x = r/2+ μ . Then it follows from (12) and (14) that

‖g(x)− f (x)‖ =
∥∥∥ f

( r
2

)
+ f (μ)− f (x)

∥∥∥
�

∥∥∥ f
( r

2

)
+ f (μ)−2 f

(x
2

)∥∥∥+
∥∥∥2 f

( x
2

)
− f (x)

∥∥∥
� δ + δ = 2δ .
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3. For −(r/2) � x < 0, we have x = −(r/2)+ μ . Then

‖g(x)− f (x)‖ =
∥∥∥− f

( r
2

)
+ f (μ)− f (x)

∥∥∥
�

∥∥∥ f (x)+ f
( r

2

)
−2 f

(μ
2

)∥∥∥+
∥∥∥2 f

( μ
2

)
− f (μ)

∥∥∥
� δ + δ = 2δ .

4. For −r < x < −(r/2) , we have x = −2(r/2)+ μ . Then

‖g(x)− f (x)‖ =
∥∥∥−2 f

( r
2

)
+ f (μ)− f (x)

∥∥∥
�

∥∥∥ f (μ)+ f (−x)−2 f
( r

2

)∥∥∥+‖ f (−x)+ f (x)‖
� δ + δ = 2δ .

We now show that g satisfies

‖g(x+ y)+g(x− y)−2g(x)‖� 3δ , x,y ∈ R. (15)

For given x,y∈R , let x = n(r/2)+α and y = m(r/2)+β , where n and m are integers
and α,β ∈ [0,r/2) . Therefore

x+ y = (n+m)
r
2

+(α + β ), 0 � α + β < r,

x− y = (n−m)
r
2

+(α −β ),
−r
2

� α −β <
r
2
.

We consider following cases:

1. If 0 � α ±β < r/2, then

‖g(x+ y)+g(x− y)−2g(x)‖= ‖ f (α + β )+ f (α −β )−2 f (α)‖ � δ .

2. If 0 � α + β < r/2 and −r/2 � α −β < 0, then

‖g(x+ y)+g(x− y)−2g(x)‖=
∥∥∥ f (α + β )+ f

(
α −β +

r
2

)
− f

( r
2
)−2 f (α

)∥∥∥
� ‖ f (α + β )+ f (α −β )−2 f (α)‖

+
∥∥∥ f (α −β )+ f

( r
2

)
− f

(
α −β +

r
2

)∥∥∥
= ‖ f (α + β )+ f (α −β )−2 f (α)‖

+‖ f (α −β )−g(α −β )‖
� δ +2δ = 3δ .
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3. If r/2 � α + β < r and 0 � α −β < r/2, then

‖g(x+ y)+g(x− y)−2g(x)‖=
∥∥∥ f

( r
2

)
+ f

(
α + β − r

2

)
+ f (α −β )−2 f (α)

∥∥∥
� ‖ f (α + β )+ f (α −β )−2 f (α)‖

+
∥∥∥ f

( r
2

)
+ f

(
α + β − r

2

)
− f (α + β )

∥∥∥
= ‖ f (α + β )+ f (α −β )−2 f (α)‖

+‖g(α + β )− f (α + β )‖
� δ +2δ = 3δ .

4. If r/2 � α + β < r and −r/2 � α −β < 0, then

‖g(x+y)+g(x−y)−2g(x)‖=
∥∥∥ f

(
α+β− r

2

)
+ f

(
α−β +

r
2

)
−2 f (α)

∥∥∥ � δ .

Therefore g satisfies (15). It is easy to show that

∥∥∥∥g(2nx)
2n − g(2mx)

2m

∥∥∥∥ �
n

∑
i=m+1

3δ
2i , n > m, x ∈ R. (16)

Hence {2−ng(2nx)} is a Cauchy sequence for every x∈ R . Since E is a Banach space,
we can define a function A : R → E by

A(x) = lim
n→∞

g(2nx)
2n .

Letting m = 0 and taking the limit as n → ∞ in (16), we obtain

‖A(x)−g(x)‖� 3δ , x ∈ R.

Since ‖g(x)− f (x)‖ � 2δ on (−r,r) , we get

‖ f (x)−A(x)‖ = ‖ f (x)−g(x)‖+‖g(x)−A(x)‖� 5δ , x ∈ (−r,r).

It follows from (15) that

‖g(2nx+2ny)+g(2nx−2ny)−2g(2nx)‖ � 3δ , x,y ∈ R, n � 1.

Dividing by 2n and letting n → ∞ in this inequality, we infer that A is an additive
function.

3. Stability of Drygas functional equation on bounded subsets of R

We now prove the stability of Drygas functional equation on a restricted domain.
First, we introduce a theorem of Skof and Terracini [11].
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THEOREM 4. [11] Let E be a Banach space and let a function f : (−r,r) → E
satisfy the inequality

‖ f (x+ y)+ f (x− y)−2 f (x)−2 f (y)‖� δ , (17)

for some δ > 0 and all x,y ∈ R with |x±y|< r . Then there exists a quadratic function
Q : R → E such that

‖ f (x)−Q(x)‖ � 81
2

δ , x ∈ (−r,r).

Using ideas from [5], we can state the following proposition which is a generalization
of Theorem 4.

PROPOSITION 1. Let E be a Banach space and let D be a bounded subset of
R . Assume, moreover, that there exist a non-negative integer n and a positive number
c > 0 such that

(i) D ⊆ 2D,

(ii) (−c,c) ⊆ D,

(iii) D ⊆ (−2nc,2nc) .

If a function f : D → E satisfies the functional inequality (17) for some δ � 0 and for
all x,y ∈ D with x± y ∈ D, then there exists a quadratic function Q : R → E such that

‖ f (x)−Q(x)‖ � 82.4n−1
2

δ , x ∈ D.

Proof. By Theorem 4, there exists a quadratic function Q : R → E such that

‖ f (x)−Q(x)‖ � 81
2

δ , x ∈ (−c,c).

For x ∈ D , the conditions (i) and (iii) imply that 2−kx ∈ D for k = 1,2, . . . ,n and
2−nx ∈ (−c,c) . It follows from (17) that for each x ∈ D∥∥∥4k−1 f

( x
2k−1

)
−4k f

( x
2k

)
+4k−1 f (0)

∥∥∥ � 4k−1δ , k = 1,2, . . . ,n.

Therefore ∥∥∥ f (x)−4n f
( x

2n

)
+

4n−1
3

f (0)
∥∥∥ � 4n−1

3
δ .

Using the above inequalities and 2‖ f (0)‖ � δ , we get

‖ f (x)−Q(x)‖ �
∥∥∥ f (x)−4n f

( x
2n

)
+

4n−1
3

f (0)
∥∥∥+

∥∥∥4n f
( x

2n

)
−Q(x)

∥∥∥+
4n−1

3
‖ f (0)‖

� 82.4n−1
2

δ , x ∈ D.

This completes the proof.
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THEOREM 5. Let f : (−r,r) → E be a function with f (0) = 0 and satisfy

‖ f (x+ y)+ f (x− y)−2 f (x)− f (y)− f (−y)‖� δ , (18)

for some δ > 0 and all (x,y) ∈ D(r) , where

D(r) = {(x,y) ∈ (−r,r)× (−r,r) : |x± y|< r}.

Then there exist a quadratic function Q : R → E and an additive function A : R → E
such that

‖ f (x)−A(x)−Q(x)‖� 91
2

δ , x ∈ (−r,r). (19)

Proof. We denote by g and h the even and odd part of f , respectively. i.e.,

g,h : (−r,r) → E, g(x) =
f (x)+ f (−x)

2
, h(x) =

f (x)− f (−x)
2

.

It is clear that g and h satisfy in (18) for all (x,y) ∈ D(r) . Since g is even and h is
odd, we have

‖g(x+ y)+g(x− y)−2g(x)−2g(y)‖� δ , x,y ∈ D(r), (20)

‖h(x+ y)+h(x− y)−2h(x)‖� δ , x,y ∈ D(r). (21)

By Theorems 3 and 4, there exist an additive function A : R → E and a quadratic
function Q : R → E such that

‖g(x)−Q(x)‖� 81
2

δ , ‖h(x)−A(x)‖� 5δ , x ∈ (−r,r).

Since f = g+h , we get (19).

PROPOSITION 2. Let E be a Banach space and let D be a symmetric bounded
subset of R . Assume, moreover, that there exist a non-negative integer n and a positive
number c > 0 such that

(i) D ⊆ 2D,

(ii) (−c,c) ⊆ D,

(iii) D ⊆ (−2nc,2nc) .

If a function f : D → E satisfies the functional inequality (18) for some δ � 0 and for
all x,y ∈ D with x± y ∈ D, then there exist a quadratic function Q : R → E and an
additive function A : R → E such that

‖ f (x)−A(x)−Q(x)‖ �
[
6.2n +41.4n− 3

2

]
δ , x ∈ D.
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Proof. Let g and h be the even and odd part of f , respectively. Since D is
symmetric, g satisfies (20) and h satisties (21) for all x,y ∈ D with x± y ∈ D . By
Proposition 1, there exists a quadratic function Q : R → E such that

‖g(x)−Q(x)‖� 82.4n−1
2

δ , x ∈ D. (22)

Similarly, as in the proof of Proposition 1, it follows from (21) that for each x ∈ D
∥∥∥2k−1h

( x
2k−1

)
−2kh

( x
2k

)∥∥∥ � 2k−1δ , k = 1,2, . . . ,n.

Therefore ∥∥∥h(x)−2nh
( x

2n

)∥∥∥ � (2n −1)δ , x ∈ D.

On the other hand, by Theorem 3, there exists an additive function A : R → E such that
‖h(x)−A(x)‖� 5δ for all x ∈ (−c,c) . Using the above inequalities, we get

‖h(x)−A(x)‖ �
∥∥∥h(x)−2nh

( x
2n

)∥∥∥+
∥∥∥2nh

( x
2n

)
−A(x)

∥∥∥
� (6.2n−1)δ , x ∈ D.

(23)

Since f = g+h , the result follows from (22) and (23).
Theorem 4 was generalized by Jung and Kim [4]. They proved the following result:

THEOREM 6. Let E be a Banach space and let r,δ > 0 be given constants. If a
function f : [−r,r]n → E satisfies the inequality

‖ f (x+ y)+ f (x− y)−2 f (x)−2 f (y)‖� δ

for all x,y ∈ [−r,r]n with x± y ∈ [−r,r]n , then there exists a quadratic function Q :
R

n → E such that

‖ f (x)−Q(x)‖ � (2912n2 +1872n+334)δ ,

for any x ∈ [−r,r]n .

4. Stability of f
(
px+(1− p)y

)
+ f

(
(1− p)x+ py

)
= f (x)+ f (y) on bounded

subsets of R
N�1 for p = 1

3 and p = 1
4

In this section r > 0 and δ � 0 are real numbers and we assume that E is a normed
space. We will now start this section with the following lemma presented by Kominek
[5] (see also [3]).

LEMMA 1. Let E be a Banach space and let N be a positive integer. Suppose D
is a bounded subset of R

N containing zero in its interior. Assume, moreover, that there
exist a nonnegative integer n and a positive number c > 0 such that

(i) D ⊆ 2D,
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(ii) (−c,c)N ⊆ D,

(iii) D ⊆ (−2nc,2nc)N .

If a function f : D → E satisfies the functional inequality

‖ f (x+ y)− f (x)− f (y)‖� δ

for some δ � 0 and for all x,y∈D with x+y∈D, then there exists an additive function
A : R

N → E such that

‖ f (x)−A(x)‖ � (2n.5N−1)δ , x ∈ D.

THEOREM 7. Let f : (−r,r) → E be a function with f (0) = 0 and satisfy

∥∥∥ f
(1

3
x+

2
3
y
)

+ f
(2

3
x+

1
3
y
)
− f (x)− f (y)

∥∥∥ � δ , x,y ∈ (−r,r). (24)

Then

‖ f (x+ y)− f (x)− f (y)‖� 9δ , x,y ∈
(
−2r

9
,
2r
9

)
.

Proof. Replacing x by 3x and y by 3y in (24), we have

‖ f (x+2y)+ f (2x+ y)− f (3x)− f (3y)‖� δ , x,y ∈
(
− r

3
,
r
3

)
. (25)

By replacing x by
2y− x

3
and y by

2x− y
3

in (25), we get

‖ f (x)+ f (y)− f (2x− y)− f (2y− x)‖� δ , x,y ∈
(
− r

3
,
r
3

)
. (26)

Replacing y by −y in (26), we have

‖ f (2x+ y)+ f (−2y− x)− f (x)− f (−y)‖� δ , x,y ∈
(
− r

3
,
r
3

)
. (27)

Replacing y = 0 in (25), we infer

‖ f (x)+ f (2x)− f (3x)‖ � δ , x ∈
(
− r

3
,
r
3

)
, (28)

and replacing x by −x in (28), we have

‖ f (−x)+ f (−2x)− f (−3x)‖� δ , x ∈
(
− r

3
,
r
3

)
. (29)

Letting y = −x in (25), we have

‖ f (−x)+ f (x)− f (3x)− f (−3x)‖� δ , x ∈
(
− r

3
,
r
3

)
. (30)



SOME FUNCTIONAL EQUATIONS ON BOUNDED DOMAINS 467

Using (28), (29) and (30), we have ‖ f (2x) + f (−2x)‖ � 3δ , for all x ∈
(
− r

3
,
r
3

)
.

Therefore

‖ f (x)+ f (−x)‖ � 3δ , x ∈
(
−2r

3
,
2r
3

)
. (31)

Putting y = −2x in (25), we get

‖ f (−3x)− f (3x)− f (−6x)‖� δ , x ∈
(
− r

6
,
r
6

)
. (32)

Using the triangle inequality, it follows from (31) and (32) that

‖2 f (−3x)− f (−6x)‖� 4δ , x ∈
(
− r

6
,
r
6

)
.

Then
‖2 f (x)− f (2x)‖ � 4δ , x ∈

(
− r

2
,
r
2

)
. (33)

It follows from (31) that ‖ f (−2y− x) + f (2y + x)‖ � 3δ for all x,y ∈
(
−2r

9
,
2r
9

)
.

Hence (25), (27) and (28) imply

‖2 f (2x+ y)− f (2x)−2 f (x)− f (2y)− f (y)− f (−y)‖� 7δ , x,y ∈
(
−2r

9
,
2r
9

)
.

Using this inequality and applying (31) and (33), we obtain

‖ f (2x+ y)− f (2x)− f (y)‖� 9δ , x,y ∈
(
−2r

9
,
2r
9

)
. (34)

Then we have

‖ f (x+ y)− f (x)− f (y)‖� 9δ , x,y ∈
(
−2r

9
,
2r
9

)
.

A similar argument as in the proof of Theorem 7 yields the following results in the case
of functions defined on certain subsets of R

N (N is a positive integer) with values in a
normed space.

THEOREM 8. Suppose that D is a symmetric and bounded subset of R
N contain-

ing zero. Let f : D → E be a function with f (0) = 0 and satisfy

∥∥∥ f
(1

3
x+

2
3
y
)

+ f
(2

3
x+

1
3
y
)
− f (x)− f (y)

∥∥∥ � δ , (35)

for some δ � 0 and for all x,y ∈ D with 2x+ y ∈ 3D. Then

‖ f (x+ y)− f (x)− f (y)‖� 9δ , x,y ∈ (2/9)D.
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COROLLARY 3. Let f : (−r,r)N → E be a function with f (0) = 0 and satisfy

∥∥∥ f
(1

3
x+

2
3
y
)

+ f
(2

3
x+

1
3
y
)
− f (x)− f (y)

∥∥∥ � δ , x,y ∈ (−r,r)N .

Then

‖ f (x+ y)− f (x)− f (y)‖ � 9δ , x,y ∈
(
−2r

9
,
2r
9

)N

.

Using Lemma 1 and Theorem 8 we prove the stability of the functional equation f
(1

3
x+

2
3
y
)

+ f
(2

3
x+

1
3
y
)

= f (x)+ f (y) on a restricted domain.

THEOREM 9. Let E be a Banach space and let f : (−r,r)N → E be a function
with f (0) = 0 and satisfy (35) for all x,y ∈ (−r,r)N . Then there exists an additive
function A : R

N → E such that

‖ f (x)−A(x)‖ � 9(5N−1)δ , x ∈
(
−2r

9
,
2r
9

)N

.

THEOREM 10. Let E be a Banach space and let N be a positive integer. Suppose
D is a symmetric and bounded subset of R

N containing zero in its interior. Assume,
moreover, that there exist a nonnegative integer n and a positive number c > 0 such
that

(i) D ⊆ 2D,

(ii) (−c,c)N ⊆ D,

(iii) D ⊆ (−2nc,2nc)N .

If a function f : D → E satisfies f (0) = 0 and the functional inequality

∥∥∥ f
(1

3
x+

2
3
y
)

+ f
(2

3
x+

1
3
y
)
− f (x)− f (y)

∥∥∥ � δ ,

for some δ � 0 and for all x,y ∈ D with 2x + y ∈ 3D, then there exists an additive
function A : R

N → E such that

‖ f (x)−A(x)‖ � 9(2n.5N−1)δ , x ∈ (2/9)D.

Proof. Let G = (2/9)D and r = (2/9)c . Then G ⊆ 2G , (−r,r)N ⊆ G and D ⊆
(−2nr,2nr)N . By Theorem 8, f satisfies

‖ f (x+ y)− f (x)− f (y)‖� 9δ , x,y ∈ G.

Therefore on account of Lemma 1, we get the result.
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THEOREM 11. Let f : (−r,r) → E be a function with f (0) = 0 and satisfy

∥∥∥∥ f

(
1
4
x+

3
4
y

)
+ f

(
3
4
x+

1
4
y

)
− f (x)− f (y)

∥∥∥∥ � δ , x,y ∈ (−r,r). (36)

Then

‖ f (x+ y)− f (x)− f (y)‖� 9δ , x,y ∈
(
− 3r

16
,
3r
16

)
.

Proof. Replacing x by 4x and y by 4y in (36), we have

‖ f (x+3y)+ f (3x+ y)− f (4x)− f (4y)‖� δ , x,y ∈
(
− r

4
,
r
4

)
. (37)

By replacing x by
3y− x

4
and y by

3x− y
4

in (37), we have

‖ f (2x)+ f (2y)− f (3x− y)− f (3y− x)‖� δ , x,y ∈
(
− r

4
,
r
4

)
.

If we replace y by −y in the last inequality, we obtain

‖ f (3x+ y)+ f (−3y− x)− f (2x)− f (−2y)‖� δ , x,y ∈
(
− r

4
,
r
4

)
. (38)

Putting x = 0 in (38), we get

‖ f (y)+ f (−3y)− f (−2y)‖� δ , y ∈
(
− r

4
,
r
4

)
. (39)

Putting y = 0 in (37), we have

‖ f (x)+ f (3x)− f (4x)‖ � δ , x ∈
(
− r

4
,
r
4

)
. (40)

If we put y = −x in (37), we obtain

‖ f (−2x)+ f (2x)− f (−4x)− f (4x)‖� δ , x ∈
(
− r

4
,
r
4

)
, (41)

and then
‖ f (−x)+ f (x)− f (−2x)− f (2x)‖� δ , x ∈

(
− r

2
,
r
2

)
. (42)

It follows from (40) that

‖ f (−x)+ f (x)+ f (−3x)+ f (3x)− f (−4x)− f (4x)‖� 2δ , x ∈
(
− r

4
,
r
4

)
. (43)

Hence we get from (42) and (43) that

‖ f (−2x)+ f (2x)+ f (−3x)+ f (3x)− f (−4x)− f (4x)‖� 3δ , x ∈
(
− r

4
,
r
4

)
. (44)
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Using the triangle inequality for (41) and (44), we obtain

‖ f (−3x)+ f (3x)‖ � 4δ , x ∈
(
− r

4
,
r
4

)
. (45)

Therefore

‖ f (−x)+ f (x)‖ � 4δ , x ∈
(
−3r

4
,
3r
4

)
,

‖ f (−3y− x)+ f (3y+ x)‖� 4δ , x,y ∈
(
− 3r

16
,
3r
16

)
.

(46)

Using the last inequality (46) and inequalities (37) and (38), we get

‖2 f (3x+ y)− f (4x)− f (4y)− f (2x)− f (−2y)‖� 6δ , x,y ∈
(
− 3r

16
,
3r
16

)
. (47)

If we consider (40) with x and y , then it follows by (47) that

‖2 f (3x+ y)− f (3x)− f (3y)− f (x)− f (y)− f (2x)− f (−2y)‖� 8δ ,

for all x,y ∈
(
− 3r

16
,
3r
16

)
. Consider the inequality (39) for y and −x , and using the

above inequality, we obtain

‖2 f (3x+ y)−2 f (3x)− f (3y)− f (−3y)− f (x)− f (−x)−2 f (y)‖� 10δ ,

for all x,y ∈
(
− 3r

16
,
3r
16

)
. Hence this inequality with the inequalities (45) and (46)

imply

‖2 f (3x+ y)−2 f (3x)−2 f (y)‖� 18δ , x,y ∈
(
− 3r

16
,
3r
16

)
.

Therefore

‖ f (x+ y)− f (x)− f (y)‖� 9δ , x,y ∈
(
− 3r

16
,
3r
16

)
.

By a similar way as in the proof of Theorem 11 we obtain the following results on
restricted domains of R

N .

THEOREM 12. Suppose that D is a symmetric and bounded subset of R
N con-

taining zero. Let f : D → E be a function with f (0) = 0 and satisfy

∥∥∥ f
(1

4
x+

3
4
y
)

+ f
(3

4
x+

1
4
y
)
− f (x)− f (y)

∥∥∥ � δ ,

for some δ � 0 and for all x,y ∈ D with 3x+ y ∈ 4D. Then

‖ f (x+ y)− f (x)− f (y)‖ � 9δ , x,y ∈ (3/16)D.
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THEOREM 13. Let f : (−r,r)N → E be a function with f (0) = 0 and satisfy

∥∥∥ f
(1

4
x+

3
4
y
)

+ f
(3

4
x+

1
4
y
)
− f (x)− f (y)

∥∥∥ � δ , x,y ∈ (−r,r)N . (48)

Then

‖ f (x+ y)− f (x)− f (y)‖� 9δ , x,y ∈
(
− 3r

16
,
3r
16

)N

.

Using Lemma 1 and Theorem 13 we prove the stability of the functional equation

f
(1

3
x+

2
3
y
)

+ f
(2

3
x+

1
3
y
)

= f (x)+ f (y) on a restricted domain.

THEOREM 14. Let E be a Banach space and let f : (−r,r)N → E be a function
with f (0) = 0 and satisfy (48) for all x,y ∈ (−r,r)N . Then there exists an additive
function A : R

N → E such that

‖ f (x)−A(x)‖ � 9(5N−1)δ , x,y ∈
(
− 3r

16
,
3r
16

)N

.
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