STABILITY OF SOME FUNCTIONAL EQUATIONS ON BOUNDED DOMAINS

B. Noori, M. B. Moghimi, B. Khosravi and Choonkil Park*

(Communicated by J. Pečarić)
Abstract. In this paper, we investigate the Hyers-Ulam stability of the functional equations

$$
\begin{aligned}
f(x+y)+f(x-y) & =2 f(x) \\
f(x+y)+f(x-y) & =2 f(x)+f(y)+f(-y) \\
f(p x+(1-p) y)+f((1-p) x+p y) & =f(x)+f(y)
\end{aligned}
$$

for $p=\frac{1}{3}$ and $p=\frac{1}{4}$, where f is a mapping from a bounded subset of $\mathbb{R}^{N \geqslant 1}$ into a Banach space E.

1. Introduction

It is well-known that the Hyers-Ulam stability problems of functional equations originated from a question of Ulam [12] in 1940, concerning the stability of group homomorphisms. In other words, the concept of stability for functional equations arises when we replace the functional equation by an inequality which outs as a perturbation of the equation. Hyers [1] gave a first affirmative partial answer to the question of Ulam for Banach spaces. It is interesting to consider a functional equation satisfying on a bounded domain or satisfying under a restricted condition. Skof [9] was the first author to solve Ulam problem for additive mapping on a bounded domain. Indeed, Skof proved that if a function f from $[0, c)$ into a Banach space E satisfies the functional inequality $\|f(x+y)-f(x)-f(y)\| \leqslant \delta$ for all $x, y \in[0, c)$ with $x+y \in[0, c)$, then there exists an additive function $A: \mathbb{R} \rightarrow E$ such that $\|f(x)-A(x)\| \leqslant 3 \delta$ for all $x \in$ $[0, c)$. Z. Kominek [5] extended this result on a bounded domain $[0, c)^{N}$ of \mathbb{R}^{N} for any positive integer N. He also proved a more generalized theorem concerning the stability of the additive Cauchy equation and Jensen equation on a bounded domain of \mathbb{R}^{N}. Skof [331] also proved the Hyers-Ulam stability of the additive Cauchy equation on an unbounded and restricted domain. She applied this result and obtained an interesting asymptotic behavior of additive functions: The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is additive if and only if $f(x+y)-f(x)-f(y) \rightarrow 0$ as $|x|+|y| \rightarrow+\infty$. F. Skof and S. Terracini [11] investigated the problem of stability of the quadratic functional equations for functions defined on bounded real domains with values in a Banach space. For more general information on this subject, we refer the reader to $[3,6,8]$.

[^0]
2. Stability of $f(x+y)+f(x-y)=2 f(x)$ on bounded subsets of \mathbb{R}

In this section $r>0$ and $\delta \geqslant 0$ are real numbers and we assume that E is a Banach space.

Theorem 1. Let $f:[0, r) \rightarrow E$ be a function with $f(0)=0$ and satisfy

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)\| \leqslant \delta, \tag{1}
\end{equation*}
$$

for some $\delta>0$ and all $(x, y) \in T(r)$, where

$$
T(r)=\{(x, y) \in[0, r) \times[0, r): 0 \leqslant x \pm y<r\} .
$$

Then there exists an additive function $A: \mathbb{R} \rightarrow E$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leqslant 11 \delta, \quad x \in[0, r) . \tag{2}
\end{equation*}
$$

Proof. Let $u, v \in[0, r)$. We can choose $x, y \in[0, r)$ such that $x \pm y \in[0, r), x+y=$ u and $x-y=v$. Then it follows from (1) that

$$
\begin{equation*}
\left\|f(u)+f(v)-2 f\left(\frac{u+v}{2}\right)\right\| \leqslant \delta . \tag{3}
\end{equation*}
$$

Letting $v=0$ in (3), we get

$$
\begin{equation*}
\left\|f(u)-2 f\left(\frac{u}{2}\right)\right\| \leqslant \delta, \quad u \in[0, r) . \tag{4}
\end{equation*}
$$

We extend the function f to $[0,+\infty)$. For this we represent an arbitrary $x \geqslant 0$ by $x=n(r / 2)+\alpha$, where n is an integer and $0 \leqslant \alpha<r / 2$. Then we define a function $\varphi:[0,+\infty) \rightarrow E$ by $\varphi(x)=n f(r / 2)+f(\alpha)$. It is clear that $\varphi(x)=f(x)$ for all $x \in$ $[0, r / 2)$. If $x \in[r / 2, r)$, then $\varphi(x)=f(r / 2)+f(x-r / 2)$, and we get from (3) and (4) that

$$
\begin{aligned}
\|\varphi(x)-f(x)\| & =\left\|f\left(\frac{r}{2}\right)+f\left(x-\frac{r}{2}\right)-f(x)\right\| \\
& \leqslant\left\|f\left(\frac{r}{2}\right)+f\left(x-\frac{r}{2}\right)-2 f\left(\frac{x}{2}\right)\right\|+\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\| \\
& \leqslant 2 \delta
\end{aligned}
$$

So

$$
\begin{equation*}
\|\varphi(x)-f(x)\| \leqslant 2 \delta, \quad x \in[0, r) . \tag{5}
\end{equation*}
$$

We now show that φ satisfies

$$
\begin{equation*}
\left\|\varphi(x)+\varphi(y)-2 \varphi\left(\frac{x+y}{2}\right)\right\| \leqslant 3 \delta, \quad x, y \in[0,+\infty) . \tag{6}
\end{equation*}
$$

For given $x, y \geqslant 0$, let $x=n(r / 2)+\alpha$ and $y=m(r / 2)+\beta$, where m and n are integers and $0 \leqslant \alpha, \beta<r / 2$. Then

$$
\begin{aligned}
& \frac{x+y}{2}=\frac{m+n}{2}\left(\frac{r}{2}\right)+\frac{\alpha+\beta}{2}, \quad m+n \text { is even; } \\
& \frac{x+y}{2}=\frac{m+n+1}{2}\left(\frac{r}{2}\right)+\frac{\alpha+\beta}{2}-\frac{r}{4}, \quad m+n \text { is odd and } \alpha+\beta \geqslant \frac{r}{2} \\
& \frac{x+y}{2}=\frac{m+n-1}{2}\left(\frac{r}{2}\right)+\frac{\alpha+\beta}{2}+\frac{r}{4}, \quad m+n \text { is odd and } \alpha+\beta<\frac{r}{2} .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
& \varphi\left(\frac{x+y}{2}\right)=\frac{m+n}{2} f\left(\frac{r}{2}\right)+f\left(\frac{\alpha+\beta}{2}\right), \quad m+n \text { is even; } \\
& \varphi\left(\frac{x+y}{2}\right)=\frac{m+n+1}{2} f\left(\frac{r}{2}\right)+f\left(\frac{\alpha+\beta}{2}-\frac{r}{4}\right), \quad m+n \text { is odd and } \alpha+\beta \geqslant \frac{r}{2} \\
& \varphi\left(\frac{x+y}{2}\right)=\frac{m+n-1}{2} f\left(\frac{r}{2}\right)+f\left(\frac{\alpha+\beta}{2}+\frac{r}{4}\right), \quad m+n \text { is odd and } \alpha+\beta<\frac{r}{2} .
\end{aligned}
$$

To prove (6) we have the following cases.
(i) If $m+n$ is even, then

$$
\left\|\varphi(x)+\varphi(y)-2 \varphi\left(\frac{x+y}{2}\right)\right\|=\left\|f(\alpha)+f(\beta)-2 f\left(\frac{\alpha+\beta}{2}\right)\right\| \leqslant \delta
$$

(ii) If $m+n$ is odd and $\alpha+\beta \geqslant \frac{r}{2}$, then

$$
\begin{aligned}
\left\|\varphi(x)+\varphi(y)-2 \varphi\left(\frac{x+y}{2}\right)\right\|= & \left\|f(\alpha)+f(\beta)-f\left(\frac{r}{2}\right)-2 f\left(\frac{\alpha+\beta}{2}-\frac{r}{4}\right)\right\| \\
\leqslant & \left\|f(\alpha)+f(\beta)-2 f\left(\frac{\alpha+\beta}{2}\right)\right\| \\
& +\left\|f\left(\alpha+\beta-\frac{r}{2}\right)-2 f\left(\frac{\alpha+\beta}{2}-\frac{r}{4}\right)\right\| \\
& +\left\|2 f\left(\frac{\alpha+\beta}{2}\right)-f\left(\frac{r}{2}\right)-f\left(\alpha+\beta-\frac{r}{2}\right)\right\|
\end{aligned}
$$

$$
\leqslant 3 \delta
$$

(iii) If $m+n$ is odd and $\alpha+\beta<\frac{r}{2}$, then

$$
\begin{aligned}
\left\|\varphi(x)+\varphi(y)-2 \varphi\left(\frac{x+y}{2}\right)\right\|= & \left\|f(\alpha)+f(\beta)+f\left(\frac{r}{2}\right)-2 f\left(\frac{\alpha+\beta}{2}+\frac{r}{4}\right)\right\| \\
\leqslant & \left\|f(\alpha)+f(\beta)-2 f\left(\frac{\alpha+\beta}{2}\right)\right\| \\
& +\left\|2 f\left(\frac{\alpha+\beta}{2}\right)-f(\alpha+\beta)\right\| \\
& +\left\|f(\alpha+\beta)+f\left(\frac{r}{2}\right)-2 f\left(\frac{\alpha+\beta}{2}+\frac{r}{4}\right)\right\|
\end{aligned}
$$

$\leqslant 3 \delta$.

Hence φ satisfies (6). Now, we define a function $g: \mathbb{R} \rightarrow E$ by

$$
g(x)= \begin{cases}\varphi(x), & x \geqslant 0 \\ -\varphi(-x), & x<0\end{cases}
$$

We show that g satisfies

$$
\begin{equation*}
\left\|g(x)+g(y)-2 g\left(\frac{x+y}{2}\right)\right\| \leqslant 9 \delta, \quad x, y \in \mathbb{R} . \tag{7}
\end{equation*}
$$

For given $x, y \in \mathbb{R}$, since the left-hand side of (7) is symmetric in x and y, we may assume the following cases.
(i) If $x, y \geqslant 0$ or $x, y<0$, we get (7) from (6).
(ii) If $x \geqslant 0, y<0$ and $x+y \geqslant 0$, then (6) yields

$$
\begin{aligned}
\left\|g(x)+g(y)-2 g\left(\frac{x+y}{2}\right)\right\| & =\left\|\varphi(x)-\varphi(-y)-2 \varphi\left(\frac{x+y}{2}\right)\right\| \\
\leqslant & \left\|\varphi(x)-2 \varphi\left(\frac{x}{2}\right)\right\|+\left\|\varphi(x+y)-2 \varphi\left(\frac{x+y}{2}\right)\right\| \\
& +\left\|2 \varphi\left(\frac{x}{2}\right)-\varphi(-y)-\varphi(x+y)\right\| \\
\leqslant & 9 \delta
\end{aligned}
$$

(iii) If $x \geqslant 0, y<0$ and $x+y<0$, then (6) yields

$$
\begin{aligned}
\left\|g(x)+g(y)-2 g\left(\frac{x+y}{2}\right)\right\|= & \left\|\varphi(x)-\varphi(-y)+2 \varphi\left(-\frac{x+y}{2}\right)\right\| \\
\leqslant & \left\|2 \varphi\left(-\frac{y}{2}\right)-\varphi(-y)\right\| \\
& +\left\|2 \varphi\left(-\frac{x+y}{2}\right)-\varphi(-x-y)\right\| \\
& +\left\|\varphi(-x-y)+\varphi(x)-2 \varphi\left(-\frac{y}{2}\right)\right\| \\
\leqslant & 9 \delta
\end{aligned}
$$

Therefore g satisfies (7) and then according to [2], there exist an additive function $A: \mathbb{R} \rightarrow E$ such that $\|g(x)-A(x)\| \leqslant 9 \delta$ for all $x \in \mathbb{R}$. Since $\varphi(x)=g(x)$ for all $x \geqslant 0$, it follows from (5) that

$$
\|f(x)-A(x)\| \leqslant\|f(x)-g(x)\|+\|g(x)-A(x)\| \leqslant 11 \delta, \quad x \in[0, r)
$$

Corollary 1. Let $f:[0, r) \rightarrow E$ be a function with $f(0)=0$ and satisfy

$$
\left\|f(x)+f(y)-2 f\left(\frac{x+y}{2}\right)\right\| \leqslant \delta
$$

for some $\delta>0$ and all $(x, y) \in T(r)$. Then there exists an additive function $A: \mathbb{R} \rightarrow E$ such that

$$
\|f(x)-A(x)\| \leqslant 11 \delta, \quad x \in[0, r)
$$

COROLLARY 2. Let $f:(-r, r) \rightarrow E$ be a function with $f(0)=0$ and satisfy

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)\| \leqslant \delta \tag{8}
\end{equation*}
$$

for some $\delta>0$ and all $(x, y) \in T(r)$. Then there exists an additive function $A: \mathbb{R} \rightarrow E$ such that

$$
\|f(x)-A(x)\| \leqslant 12 \delta, \quad x \in(-r, r)
$$

Proof. Letting $x=0$ in (8), we get $\|f(y)+f(-y)\| \leqslant \delta$ for all $y \in(-r, r)$. By Theorem 1, there exists an additive function $A: \mathbb{R} \rightarrow E$ such that $\|f(x)-A(x)\| \leqslant 11 \delta$ for all $x \in[0, r)$. If $x \in(-r, 0)$, then

$$
\|f(x)-A(x)\| \leqslant\|f(x)+f(-x)\|+\|A(-x)-f(-x)\| \leqslant 12 \delta .
$$

This completes the proof.
THEOREM 2. Let $f:(-r \sqrt{2}, r \sqrt{2}) \rightarrow E$ be a function with $f(0)=0$ and satisfy

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)\| \leqslant \delta \tag{9}
\end{equation*}
$$

for some $\delta>0$ and all $(x, y) \in \mathbb{R}^{2}$, where $x^{2}+y^{2} \leqslant r^{2}$. Then there exists an additive function $A: \mathbb{R} \rightarrow E$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leqslant 19 \delta, \quad x \in(-r \sqrt{2}, r \sqrt{2}) \tag{10}
\end{equation*}
$$

Proof. It is clear that if $|x \pm y| \leqslant r$, then $x^{2}+y^{2} \leqslant r^{2}$. Therefore f satisfies (1) for all $(x, y) \in T(r)$. By Theorem 1, there exist an additive function $A: \mathbb{R} \rightarrow E$ satisfying (2) for all $x \in[0, r)$. Let φ and g be given as in the proof of Theorem 1. Then

$$
\begin{equation*}
\varphi(x)=g(x), \quad\|\varphi(x)-f(x)\| \leqslant 2 \delta, \quad x \in[0, r) \tag{11}
\end{equation*}
$$

If $r \leqslant x<r \sqrt{2}$, then $(x / 2)^{2}+(x / 2)^{2}<r^{2}$, and we infer from (9) that

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\| \leqslant \delta, \quad x \in[r, r \sqrt{2})
$$

Since $\varphi(x)=g(x)$ for all $x \geqslant 0$, we get from (6) that

$$
\left\|g(x)-2 g\left(\frac{x}{2}\right)\right\| \leqslant 3 \delta, \quad x \in[0,+\infty)
$$

Therefore from the above inequalities, we have

$$
\begin{aligned}
\|f(x)-g(x)\| & \leqslant\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\|+\left\|2 g\left(\frac{x}{2}\right)-g(x)\right\|+2\left\|f\left(\frac{x}{2}\right)-g\left(\frac{x}{2}\right)\right\| \\
& \leqslant 8 \delta, \quad x \in[r, r \sqrt{2})
\end{aligned}
$$

For the case $-r \sqrt{2}<x<0$, from the definition of g, (9) and (11), we have

$$
\begin{aligned}
\|f(x)-g(x)\|= & \|f(x)+\varphi(-x)\| \\
\leqslant & \left\|f(x)-2 f\left(\frac{x}{2}\right)\right\|+2\left\|f\left(\frac{x}{2}\right)+f\left(-\frac{x}{2}\right)\right\| \\
& +2\left\|\varphi\left(-\frac{x}{2}\right)-f\left(-\frac{x}{2}\right)\right\|+\left\|\varphi(-x)-2 \varphi\left(-\frac{x}{2}\right)\right\| \\
\leqslant & 10 \delta
\end{aligned}
$$

Hence we get

$$
\|f(x)-g(x)\| \leqslant 10 \delta, \quad x \in(-r \sqrt{2}, r \sqrt{2})
$$

Since $\|g(x)-A(x)\| \leqslant 9 \delta$ for all $x \in \mathbb{R}$ (see the proof of Theorem 1), it follows from the last inequality that

$$
\|f(x)-A(x)\| \leqslant\|f(x)-g(x)\|+\|g(x)-A(x)\| \leqslant 19 \delta, \quad x \in(-r \sqrt{2}, r \sqrt{2})
$$

which ends the proof.
THEOREM 3. Let $f:(-r, r) \rightarrow E$ be a function with $f(0)=0$ and satisfy

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)\| \leqslant \delta \tag{12}
\end{equation*}
$$

for some $\delta>0$ and all $(x, y) \in D(r)$, where

$$
D(r)=\{(x, y) \in(-r, r) \times(-r, r):|x \pm y|<r\}
$$

Then there exists an additive function $A: \mathbb{R} \rightarrow E$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leqslant 5 \delta, \quad x \in(-r, r) \tag{13}
\end{equation*}
$$

Proof. Letting $y=x$ and $x=0$ in (12), respectively, we get

$$
\begin{equation*}
\|f(2 x)-2 f(x)\| \leqslant \delta, \quad\|f(y)+f(-y)\| \leqslant \delta, \quad|2 x|,|y|<r \tag{14}
\end{equation*}
$$

For an arbitrary $x \in \mathbb{R}$, we set $x=n(r / 2)+\mu$, where n is an integer and $0 \leqslant \mu<r / 2$. Hence we can define a function $g: \mathbb{R} \rightarrow E$ by $g(x)=n f(r / 2)+f(\mu)$. We show that $\|g(x)-f(x)\| \leqslant 2 \delta$ for all $x \in(-r, r)$. For this we have the following cases:

1. For $0 \leqslant x<r / 2$, we have $g(x)=f(x)$.
2. For $r / 2 \leqslant x<r$, we have $x=r / 2+\mu$. Then it follows from (12) and (14) that

$$
\begin{aligned}
\|g(x)-f(x)\| & =\left\|f\left(\frac{r}{2}\right)+f(\mu)-f(x)\right\| \\
& \leqslant\left\|f\left(\frac{r}{2}\right)+f(\mu)-2 f\left(\frac{x}{2}\right)\right\|+\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\| \\
& \leqslant \delta+\delta=2 \delta
\end{aligned}
$$

3. For $-(r / 2) \leqslant x<0$, we have $x=-(r / 2)+\mu$. Then

$$
\begin{aligned}
\|g(x)-f(x)\| & =\left\|-f\left(\frac{r}{2}\right)+f(\mu)-f(x)\right\| \\
& \leqslant\left\|f(x)+f\left(\frac{r}{2}\right)-2 f\left(\frac{\mu}{2}\right)\right\|+\left\|2 f\left(\frac{\mu}{2}\right)-f(\mu)\right\| \\
& \leqslant \delta+\delta=2 \delta
\end{aligned}
$$

4. For $-r<x<-(r / 2)$, we have $x=-2(r / 2)+\mu$. Then

$$
\begin{aligned}
\|g(x)-f(x)\| & =\left\|-2 f\left(\frac{r}{2}\right)+f(\mu)-f(x)\right\| \\
& \leqslant\left\|f(\mu)+f(-x)-2 f\left(\frac{r}{2}\right)\right\|+\|f(-x)+f(x)\| \\
& \leqslant \delta+\delta=2 \delta
\end{aligned}
$$

We now show that g satisfies

$$
\begin{equation*}
\|g(x+y)+g(x-y)-2 g(x)\| \leqslant 3 \delta, \quad x, y \in \mathbb{R} \tag{15}
\end{equation*}
$$

For given $x, y \in \mathbb{R}$, let $x=n(r / 2)+\alpha$ and $y=m(r / 2)+\beta$, where n and m are integers and $\alpha, \beta \in[0, r / 2)$. Therefore

$$
\begin{array}{ll}
x+y=(n+m) \frac{r}{2}+(\alpha+\beta), & 0 \leqslant \alpha+\beta<r \\
x-y=(n-m) \frac{r}{2}+(\alpha-\beta), & \frac{-r}{2} \leqslant \alpha-\beta<\frac{r}{2}
\end{array}
$$

We consider following cases:

1. If $0 \leqslant \alpha \pm \beta<r / 2$, then

$$
\|g(x+y)+g(x-y)-2 g(x)\|=\|f(\alpha+\beta)+f(\alpha-\beta)-2 f(\alpha)\| \leqslant \delta
$$

2. If $0 \leqslant \alpha+\beta<r / 2$ and $-r / 2 \leqslant \alpha-\beta<0$, then

$$
\begin{aligned}
\|g(x+y)+g(x-y)-2 g(x)\|= & \left\|f(\alpha+\beta)+f\left(\alpha-\beta+\frac{r}{2}\right)-f\left(\frac{r}{2}\right)-2 f(\alpha)\right\| \\
\leqslant & \|f(\alpha+\beta)+f(\alpha-\beta)-2 f(\alpha)\| \\
& +\left\|f(\alpha-\beta)+f\left(\frac{r}{2}\right)-f\left(\alpha-\beta+\frac{r}{2}\right)\right\| \\
= & \|f(\alpha+\beta)+f(\alpha-\beta)-2 f(\alpha)\| \\
& +\|f(\alpha-\beta)-g(\alpha-\beta)\| \\
\leqslant & \delta+2 \delta=3 \delta
\end{aligned}
$$

3. If $r / 2 \leqslant \alpha+\beta<r$ and $0 \leqslant \alpha-\beta<r / 2$, then

$$
\begin{aligned}
\|g(x+y)+g(x-y)-2 g(x)\|= & \left\|f\left(\frac{r}{2}\right)+f\left(\alpha+\beta-\frac{r}{2}\right)+f(\alpha-\beta)-2 f(\alpha)\right\| \\
\leqslant & \|f(\alpha+\beta)+f(\alpha-\beta)-2 f(\alpha)\| \\
& +\left\|f\left(\frac{r}{2}\right)+f\left(\alpha+\beta-\frac{r}{2}\right)-f(\alpha+\beta)\right\| \\
= & \|f(\alpha+\beta)+f(\alpha-\beta)-2 f(\alpha)\| \\
& +\|g(\alpha+\beta)-f(\alpha+\beta)\| \\
\leqslant & \delta+2 \delta=3 \delta
\end{aligned}
$$

4. If $r / 2 \leqslant \alpha+\beta<r$ and $-r / 2 \leqslant \alpha-\beta<0$, then

$$
\|g(x+y)+g(x-y)-2 g(x)\|=\left\|f\left(\alpha+\beta-\frac{r}{2}\right)+f\left(\alpha-\beta+\frac{r}{2}\right)-2 f(\alpha)\right\| \leqslant \delta
$$

Therefore g satisfies (15). It is easy to show that

$$
\begin{equation*}
\left\|\frac{g\left(2^{n} x\right)}{2^{n}}-\frac{g\left(2^{m} x\right)}{2^{m}}\right\| \leqslant \sum_{i=m+1}^{n} \frac{3 \delta}{2^{i}}, \quad n>m, x \in \mathbb{R} \tag{16}
\end{equation*}
$$

Hence $\left\{2^{-n} g\left(2^{n} x\right)\right\}$ is a Cauchy sequence for every $x \in \mathbb{R}$. Since E is a Banach space, we can define a function $A: \mathbb{R} \rightarrow E$ by

$$
A(x)=\lim _{n \rightarrow \infty} \frac{g\left(2^{n} x\right)}{2^{n}}
$$

Letting $m=0$ and taking the limit as $n \rightarrow \infty$ in (16), we obtain

$$
\|A(x)-g(x)\| \leqslant 3 \delta, \quad x \in \mathbb{R}
$$

Since $\|g(x)-f(x)\| \leqslant 2 \delta$ on $(-r, r)$, we get

$$
\|f(x)-A(x)\|=\|f(x)-g(x)\|+\|g(x)-A(x)\| \leqslant 5 \delta, \quad x \in(-r, r)
$$

It follows from (15) that

$$
\left\|g\left(2^{n} x+2^{n} y\right)+g\left(2^{n} x-2^{n} y\right)-2 g\left(2^{n} x\right)\right\| \leqslant 3 \delta, \quad x, y \in \mathbb{R}, n \geqslant 1 .
$$

Dividing by 2^{n} and letting $n \rightarrow \infty$ in this inequality, we infer that A is an additive function.

3. Stability of Drygas functional equation on bounded subsets of \mathbb{R}

We now prove the stability of Drygas functional equation on a restricted domain. First, we introduce a theorem of Skof and Terracini [11].

THEOREM 4. [11] Let E be a Banach space and let a function $f:(-r, r) \rightarrow E$ satisfy the inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leqslant \delta \tag{17}
\end{equation*}
$$

for some $\delta>0$ and all $x, y \in \mathbb{R}$ with $|x \pm y|<r$. Then there exists a quadratic function $Q: \mathbb{R} \rightarrow E$ such that

$$
\|f(x)-Q(x)\| \leqslant \frac{81}{2} \delta, \quad x \in(-r, r)
$$

Using ideas from [5], we can state the following proposition which is a generalization of Theorem 4.

Proposition 1. Let E be a Banach space and let D be a bounded subset of \mathbb{R}. Assume, moreover, that there exist a non-negative integer n and a positive number $c>0$ such that
(i) $D \subseteq 2 D$,
(ii) $(-c, c) \subseteq D$,
(iii) $D \subseteq\left(-2^{n} c, 2^{n} c\right)$.

If a function $f: D \rightarrow E$ satisfies the functional inequality (17) for some $\delta \geqslant 0$ and for all $x, y \in D$ with $x \pm y \in D$, then there exists a quadratic function $Q: \mathbb{R} \rightarrow E$ such that

$$
\|f(x)-Q(x)\| \leqslant \frac{82.4^{n}-1}{2} \delta, \quad x \in D
$$

Proof. By Theorem 4, there exists a quadratic function $Q: \mathbb{R} \rightarrow E$ such that

$$
\|f(x)-Q(x)\| \leqslant \frac{81}{2} \delta, \quad x \in(-c, c)
$$

For $x \in D$, the conditions (i) and (iii) imply that $2^{-k} x \in D$ for $k=1,2, \ldots, n$ and $2^{-n} x \in(-c, c)$. It follows from (17) that for each $x \in D$

$$
\left\|4^{k-1} f\left(\frac{x}{2^{k-1}}\right)-4^{k} f\left(\frac{x}{2^{k}}\right)+4^{k-1} f(0)\right\| \leqslant 4^{k-1} \delta, \quad k=1,2, \ldots, n
$$

Therefore

$$
\left\|f(x)-4^{n} f\left(\frac{x}{2^{n}}\right)+\frac{4^{n}-1}{3} f(0)\right\| \leqslant \frac{4^{n}-1}{3} \delta
$$

Using the above inequalities and $2\|f(0)\| \leqslant \delta$, we get

$$
\begin{aligned}
\|f(x)-Q(x)\| & \leqslant\left\|f(x)-4^{n} f\left(\frac{x}{2^{n}}\right)+\frac{4^{n}-1}{3} f(0)\right\|+\left\|4^{n} f\left(\frac{x}{2^{n}}\right)-Q(x)\right\|+\frac{4^{n}-1}{3}\|f(0)\| \\
& \leqslant \frac{82 \cdot 4^{n}-1}{2} \delta, \quad x \in D
\end{aligned}
$$

This completes the proof.

THEOREM 5. Let $f:(-r, r) \rightarrow E$ be a function with $f(0)=0$ and satisfy

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)-f(y)-f(-y)\| \leqslant \delta \tag{18}
\end{equation*}
$$

for some $\delta>0$ and all $(x, y) \in D(r)$, where

$$
D(r)=\{(x, y) \in(-r, r) \times(-r, r):|x \pm y|<r\} .
$$

Then there exist a quadratic function $Q: \mathbb{R} \rightarrow E$ and an additive function $A: \mathbb{R} \rightarrow E$ such that

$$
\begin{equation*}
\|f(x)-A(x)-Q(x)\| \leqslant \frac{91}{2} \delta, \quad x \in(-r, r) \tag{19}
\end{equation*}
$$

Proof. We denote by g and h the even and odd part of f, respectively. i.e.,

$$
g, h:(-r, r) \rightarrow E, \quad g(x)=\frac{f(x)+f(-x)}{2}, \quad h(x)=\frac{f(x)-f(-x)}{2}
$$

It is clear that g and h satisfy in (18) for all $(x, y) \in D(r)$. Since g is even and h is odd, we have

$$
\begin{align*}
\|g(x+y)+g(x-y)-2 g(x)-2 g(y)\| \leqslant \delta, & x, y \in D(r) \tag{20}\\
\|h(x+y)+h(x-y)-2 h(x)\| \leqslant \delta, & x, y \in D(r) \tag{21}
\end{align*}
$$

By Theorems 3 and 4, there exist an additive function $A: \mathbb{R} \rightarrow E$ and a quadratic function $Q: \mathbb{R} \rightarrow E$ such that

$$
\|g(x)-Q(x)\| \leqslant \frac{81}{2} \delta, \quad\|h(x)-A(x)\| \leqslant 5 \delta, \quad x \in(-r, r)
$$

Since $f=g+h$, we get (19).
Proposition 2. Let E be a Banach space and let D be a symmetric bounded subset of \mathbb{R}. Assume, moreover, that there exist a non-negative integer n and a positive number $c>0$ such that
(i) $D \subseteq 2 D$,
(ii) $(-c, c) \subseteq D$,
(iii) $D \subseteq\left(-2^{n} c, 2^{n} c\right)$.

If a function $f: D \rightarrow E$ satisfies the functional inequality (18) for some $\delta \geqslant 0$ and for all $x, y \in D$ with $x \pm y \in D$, then there exist a quadratic function $Q: \mathbb{R} \rightarrow E$ and an additive function $A: \mathbb{R} \rightarrow E$ such that

$$
\|f(x)-A(x)-Q(x)\| \leqslant\left[6.2^{n}+41.4^{n}-\frac{3}{2}\right] \delta, \quad x \in D
$$

Proof. Let g and h be the even and odd part of f, respectively. Since D is symmetric, g satisfies (20) and h satisties (21) for all $x, y \in D$ with $x \pm y \in D$. By Proposition 1, there exists a quadratic function $Q: \mathbb{R} \rightarrow E$ such that

$$
\begin{equation*}
\|g(x)-Q(x)\| \leqslant \frac{82 \cdot 4^{n}-1}{2} \delta, \quad x \in D \tag{22}
\end{equation*}
$$

Similarly, as in the proof of Proposition 1, it follows from (21) that for each $x \in D$

$$
\left\|2^{k-1} h\left(\frac{x}{2^{k-1}}\right)-2^{k} h\left(\frac{x}{2^{k}}\right)\right\| \leqslant 2^{k-1} \delta, \quad k=1,2, \ldots, n .
$$

Therefore

$$
\left\|h(x)-2^{n} h\left(\frac{x}{2^{n}}\right)\right\| \leqslant\left(2^{n}-1\right) \delta, \quad x \in D .
$$

On the other hand, by Theorem 3, there exists an additive function $A: \mathbb{R} \rightarrow E$ such that $\|h(x)-A(x)\| \leqslant 5 \delta$ for all $x \in(-c, c)$. Using the above inequalities, we get

$$
\begin{align*}
\|h(x)-A(x)\| & \leqslant\left\|h(x)-2^{n} h\left(\frac{x}{2^{n}}\right)\right\|+\left\|2^{n} h\left(\frac{x}{2^{n}}\right)-A(x)\right\| \tag{23}\\
& \leqslant\left(6.2^{n}-1\right) \delta, \quad x \in D .
\end{align*}
$$

Since $f=g+h$, the result follows from (22) and (23).
Theorem 4 was generalized by Jung and Kim [4]. They proved the following result:
THEOREM 6. Let E be a Banach space and let $r, \delta>0$ be given constants. If a function $f:[-r, r]^{n} \rightarrow E$ satisfies the inequality

$$
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leqslant \delta
$$

for all $x, y \in[-r, r]^{n}$ with $x \pm y \in[-r, r]^{n}$, then there exists a quadratic function Q : $\mathbb{R}^{n} \rightarrow E$ such that

$$
\|f(x)-Q(x)\| \leqslant\left(2912 n^{2}+1872 n+334\right) \delta
$$

for any $x \in[-r, r]^{n}$.
4. Stability of $f(p x+(1-p) y)+f((1-p) x+p y)=f(x)+f(y)$ on bounded

$$
\text { subsets of } \mathbb{R}^{N \geqslant 1} \text { for } p=\frac{1}{3} \text { and } p=\frac{1}{4}
$$

In this section $r>0$ and $\delta \geqslant 0$ are real numbers and we assume that E is a normed space. We will now start this section with the following lemma presented by Kominek [5] (see also [3]).

Lemma 1. Let E be a Banach space and let N be a positive integer. Suppose D is a bounded subset of \mathbb{R}^{N} containing zero in its interior. Assume, moreover, that there exist a nonnegative integer n and a positive number $c>0$ such that
(i) $D \subseteq 2 D$,
(ii) $(-c, c)^{N} \subseteq D$,
(iii) $D \subseteq\left(-2^{n} c, 2^{n} c\right)^{N}$.

If a function $f: D \rightarrow E$ satisfies the functional inequality

$$
\|f(x+y)-f(x)-f(y)\| \leqslant \delta
$$

for some $\delta \geqslant 0$ and for all $x, y \in D$ with $x+y \in D$, then there exists an additive function $A: \mathbb{R}^{N} \rightarrow E$ such that

$$
\|f(x)-A(x)\| \leqslant\left(2^{n} .5 N-1\right) \delta, \quad x \in D
$$

THEOREM 7. Let $f:(-r, r) \rightarrow E$ be a function with $f(0)=0$ and satisfy

$$
\begin{equation*}
\left\|f\left(\frac{1}{3} x+\frac{2}{3} y\right)+f\left(\frac{2}{3} x+\frac{1}{3} y\right)-f(x)-f(y)\right\| \leqslant \delta, \quad x, y \in(-r, r) \tag{24}
\end{equation*}
$$

Then

$$
\|f(x+y)-f(x)-f(y)\| \leqslant 9 \delta, \quad x, y \in\left(-\frac{2 r}{9}, \frac{2 r}{9}\right)
$$

Proof. Replacing x by $3 x$ and y by $3 y$ in (24), we have

$$
\begin{equation*}
\|f(x+2 y)+f(2 x+y)-f(3 x)-f(3 y)\| \leqslant \delta, \quad x, y \in\left(-\frac{r}{3}, \frac{r}{3}\right) \tag{25}
\end{equation*}
$$

By replacing x by $\frac{2 y-x}{3}$ and y by $\frac{2 x-y}{3}$ in (25), we get

$$
\begin{equation*}
\|f(x)+f(y)-f(2 x-y)-f(2 y-x)\| \leqslant \delta, \quad x, y \in\left(-\frac{r}{3}, \frac{r}{3}\right) \tag{26}
\end{equation*}
$$

Replacing y by $-y$ in (26), we have

$$
\begin{equation*}
\|f(2 x+y)+f(-2 y-x)-f(x)-f(-y)\| \leqslant \delta, \quad x, y \in\left(-\frac{r}{3}, \frac{r}{3}\right) \tag{27}
\end{equation*}
$$

Replacing $y=0$ in (25), we infer

$$
\begin{equation*}
\|f(x)+f(2 x)-f(3 x)\| \leqslant \delta, \quad x \in\left(-\frac{r}{3}, \frac{r}{3}\right) \tag{28}
\end{equation*}
$$

and replacing x by $-x$ in (28), we have

$$
\begin{equation*}
\|f(-x)+f(-2 x)-f(-3 x)\| \leqslant \delta, \quad x \in\left(-\frac{r}{3}, \frac{r}{3}\right) \tag{29}
\end{equation*}
$$

Letting $y=-x$ in (25), we have

$$
\begin{equation*}
\|f(-x)+f(x)-f(3 x)-f(-3 x)\| \leqslant \delta, \quad x \in\left(-\frac{r}{3}, \frac{r}{3}\right) . \tag{30}
\end{equation*}
$$

Using (28), (29) and (30), we have $\|f(2 x)+f(-2 x)\| \leqslant 3 \delta$, for all $x \in\left(-\frac{r}{3}, \frac{r}{3}\right)$. Therefore

$$
\begin{equation*}
\|f(x)+f(-x)\| \leqslant 3 \delta, \quad x \in\left(-\frac{2 r}{3}, \frac{2 r}{3}\right) \tag{31}
\end{equation*}
$$

Putting $y=-2 x$ in (25), we get

$$
\begin{equation*}
\|f(-3 x)-f(3 x)-f(-6 x)\| \leqslant \delta, \quad x \in\left(-\frac{r}{6}, \frac{r}{6}\right) \tag{32}
\end{equation*}
$$

Using the triangle inequality, it follows from (31) and (32) that

$$
\|2 f(-3 x)-f(-6 x)\| \leqslant 4 \delta, \quad x \in\left(-\frac{r}{6}, \frac{r}{6}\right)
$$

Then

$$
\begin{equation*}
\|2 f(x)-f(2 x)\| \leqslant 4 \delta, \quad x \in\left(-\frac{r}{2}, \frac{r}{2}\right) \tag{33}
\end{equation*}
$$

It follows from (31) that $\|f(-2 y-x)+f(2 y+x)\| \leqslant 3 \delta$ for all $x, y \in\left(-\frac{2 r}{9}, \frac{2 r}{9}\right)$. Hence (25), (27) and (28) imply

$$
\|2 f(2 x+y)-f(2 x)-2 f(x)-f(2 y)-f(y)-f(-y)\| \leqslant 7 \delta, \quad x, y \in\left(-\frac{2 r}{9}, \frac{2 r}{9}\right)
$$

Using this inequality and applying (31) and (33), we obtain

$$
\begin{equation*}
\|f(2 x+y)-f(2 x)-f(y)\| \leqslant 9 \delta, \quad x, y \in\left(-\frac{2 r}{9}, \frac{2 r}{9}\right) \tag{34}
\end{equation*}
$$

Then we have

$$
\|f(x+y)-f(x)-f(y)\| \leqslant 9 \delta, \quad x, y \in\left(-\frac{2 r}{9}, \frac{2 r}{9}\right)
$$

A similar argument as in the proof of Theorem 7 yields the following results in the case of functions defined on certain subsets of \mathbb{R}^{N} (N is a positive integer) with values in a normed space.

THEOREM 8. Suppose that D is a symmetric and bounded subset of \mathbb{R}^{N} containing zero. Let $f: D \rightarrow E$ be a function with $f(0)=0$ and satisfy

$$
\begin{equation*}
\left\|f\left(\frac{1}{3} x+\frac{2}{3} y\right)+f\left(\frac{2}{3} x+\frac{1}{3} y\right)-f(x)-f(y)\right\| \leqslant \delta \tag{35}
\end{equation*}
$$

for some $\delta \geqslant 0$ and for all $x, y \in D$ with $2 x+y \in 3 D$. Then

$$
\|f(x+y)-f(x)-f(y)\| \leqslant 9 \delta, \quad x, y \in(2 / 9) D
$$

Corollary 3. Let $f:(-r, r)^{N} \rightarrow E$ be a function with $f(0)=0$ and satisfy

$$
\left\|f\left(\frac{1}{3} x+\frac{2}{3} y\right)+f\left(\frac{2}{3} x+\frac{1}{3} y\right)-f(x)-f(y)\right\| \leqslant \delta, \quad x, y \in(-r, r)^{N}
$$

Then

$$
\|f(x+y)-f(x)-f(y)\| \leqslant 9 \delta, \quad x, y \in\left(-\frac{2 r}{9}, \frac{2 r}{9}\right)^{N}
$$

Using Lemma 1 and Theorem 8 we prove the stability of the functional equation $f\left(\frac{1}{3} x+\right.$ $\left.\frac{2}{3} y\right)+f\left(\frac{2}{3} x+\frac{1}{3} y\right)=f(x)+f(y)$ on a restricted domain.

THEOREM 9. Let E be a Banach space and let $f:(-r, r)^{N} \rightarrow E$ be a function with $f(0)=0$ and satisfy (35) for all $x, y \in(-r, r)^{N}$. Then there exists an additive function $A: \mathbb{R}^{N} \rightarrow E$ such that

$$
\|f(x)-A(x)\| \leqslant 9(5 N-1) \delta, \quad x \in\left(-\frac{2 r}{9}, \frac{2 r}{9}\right)^{N}
$$

THEOREM 10. Let E be a Banach space and let N be a positive integer. Suppose D is a symmetric and bounded subset of \mathbb{R}^{N} containing zero in its interior. Assume, moreover, that there exist a nonnegative integer n and a positive number $c>0$ such that
(i) $D \subseteq 2 D$,
(ii) $(-c, c)^{N} \subseteq D$,
(iii) $D \subseteq\left(-2^{n} c, 2^{n} c\right)^{N}$.

If a function $f: D \rightarrow E$ satisfies $f(0)=0$ and the functional inequality

$$
\left\|f\left(\frac{1}{3} x+\frac{2}{3} y\right)+f\left(\frac{2}{3} x+\frac{1}{3} y\right)-f(x)-f(y)\right\| \leqslant \delta
$$

for some $\delta \geqslant 0$ and for all $x, y \in D$ with $2 x+y \in 3 D$, then there exists an additive function $A: \mathbb{R}^{N} \rightarrow E$ such that

$$
\|f(x)-A(x)\| \leqslant 9\left(2^{n} .5 N-1\right) \delta, \quad x \in(2 / 9) D
$$

Proof. Let $G=(2 / 9) D$ and $r=(2 / 9) c$. Then $G \subseteq 2 G,(-r, r)^{N} \subseteq G$ and $D \subseteq$ $\left(-2^{n} r, 2^{n} r\right)^{N}$. By Theorem $8, f$ satisfies

$$
\|f(x+y)-f(x)-f(y)\| \leqslant 9 \delta, \quad x, y \in G
$$

Therefore on account of Lemma 1, we get the result.

THEOREM 11. Let $f:(-r, r) \rightarrow E$ be a function with $f(0)=0$ and satisfy

$$
\begin{equation*}
\left\|f\left(\frac{1}{4} x+\frac{3}{4} y\right)+f\left(\frac{3}{4} x+\frac{1}{4} y\right)-f(x)-f(y)\right\| \leqslant \delta, \quad x, y \in(-r, r) \tag{36}
\end{equation*}
$$

Then

$$
\|f(x+y)-f(x)-f(y)\| \leqslant 9 \delta, \quad x, y \in\left(-\frac{3 r}{16}, \frac{3 r}{16}\right)
$$

Proof. Replacing x by $4 x$ and y by $4 y$ in (36), we have

$$
\begin{equation*}
\|f(x+3 y)+f(3 x+y)-f(4 x)-f(4 y)\| \leqslant \delta, \quad x, y \in\left(-\frac{r}{4}, \frac{r}{4}\right) \tag{37}
\end{equation*}
$$

By replacing x by $\frac{3 y-x}{4}$ and y by $\frac{3 x-y}{4}$ in (37), we have

$$
\|f(2 x)+f(2 y)-f(3 x-y)-f(3 y-x)\| \leqslant \delta, \quad x, y \in\left(-\frac{r}{4}, \frac{r}{4}\right)
$$

If we replace y by $-y$ in the last inequality, we obtain

$$
\begin{equation*}
\|f(3 x+y)+f(-3 y-x)-f(2 x)-f(-2 y)\| \leqslant \delta, \quad x, y \in\left(-\frac{r}{4}, \frac{r}{4}\right) \tag{38}
\end{equation*}
$$

Putting $x=0$ in (38), we get

$$
\begin{equation*}
\|f(y)+f(-3 y)-f(-2 y)\| \leqslant \delta, \quad y \in\left(-\frac{r}{4}, \frac{r}{4}\right) \tag{39}
\end{equation*}
$$

Putting $y=0$ in (37), we have

$$
\begin{equation*}
\|f(x)+f(3 x)-f(4 x)\| \leqslant \delta, \quad x \in\left(-\frac{r}{4}, \frac{r}{4}\right) \tag{40}
\end{equation*}
$$

If we put $y=-x$ in (37), we obtain

$$
\begin{equation*}
\|f(-2 x)+f(2 x)-f(-4 x)-f(4 x)\| \leqslant \delta, \quad x \in\left(-\frac{r}{4}, \frac{r}{4}\right) \tag{41}
\end{equation*}
$$

and then

$$
\begin{equation*}
\|f(-x)+f(x)-f(-2 x)-f(2 x)\| \leqslant \delta, \quad x \in\left(-\frac{r}{2}, \frac{r}{2}\right) \tag{42}
\end{equation*}
$$

It follows from (40) that

$$
\begin{equation*}
\|f(-x)+f(x)+f(-3 x)+f(3 x)-f(-4 x)-f(4 x)\| \leqslant 2 \delta, \quad x \in\left(-\frac{r}{4}, \frac{r}{4}\right) \tag{43}
\end{equation*}
$$

Hence we get from (42) and (43) that

$$
\begin{equation*}
\|f(-2 x)+f(2 x)+f(-3 x)+f(3 x)-f(-4 x)-f(4 x)\| \leqslant 3 \delta, \quad x \in\left(-\frac{r}{4}, \frac{r}{4}\right) \tag{44}
\end{equation*}
$$

Using the triangle inequality for (41) and (44), we obtain

$$
\begin{equation*}
\|f(-3 x)+f(3 x)\| \leqslant 4 \delta, \quad x \in\left(-\frac{r}{4}, \frac{r}{4}\right) \tag{45}
\end{equation*}
$$

Therefore

$$
\begin{array}{r}
\|f(-x)+f(x)\| \leqslant 4 \delta, \quad x \in\left(-\frac{3 r}{4}, \frac{3 r}{4}\right) \tag{46}\\
\|f(-3 y-x)+f(3 y+x)\| \leqslant 4 \delta, \quad x, y \in\left(-\frac{3 r}{16}, \frac{3 r}{16}\right) .
\end{array}
$$

Using the last inequality (46) and inequalities (37) and (38), we get

$$
\begin{equation*}
\|2 f(3 x+y)-f(4 x)-f(4 y)-f(2 x)-f(-2 y)\| \leqslant 6 \delta, \quad x, y \in\left(-\frac{3 r}{16}, \frac{3 r}{16}\right) \tag{47}
\end{equation*}
$$

If we consider (40) with x and y, then it follows by (47) that

$$
\|2 f(3 x+y)-f(3 x)-f(3 y)-f(x)-f(y)-f(2 x)-f(-2 y)\| \leqslant 8 \delta
$$

for all $x, y \in\left(-\frac{3 r}{16}, \frac{3 r}{16}\right)$. Consider the inequality (39) for y and $-x$, and using the above inequality, we obtain

$$
\|2 f(3 x+y)-2 f(3 x)-f(3 y)-f(-3 y)-f(x)-f(-x)-2 f(y)\| \leqslant 10 \delta
$$

for all $x, y \in\left(-\frac{3 r}{16}, \frac{3 r}{16}\right)$. Hence this inequality with the inequalities (45) and (46) imply

$$
\|2 f(3 x+y)-2 f(3 x)-2 f(y)\| \leqslant 18 \delta, \quad x, y \in\left(-\frac{3 r}{16}, \frac{3 r}{16}\right)
$$

Therefore

$$
\|f(x+y)-f(x)-f(y)\| \leqslant 9 \delta, \quad x, y \in\left(-\frac{3 r}{16}, \frac{3 r}{16}\right)
$$

By a similar way as in the proof of Theorem 11 we obtain the following results on restricted domains of \mathbb{R}^{N}.

THEOREM 12. Suppose that D is a symmetric and bounded subset of \mathbb{R}^{N} containing zero. Let $f: D \rightarrow E$ be a function with $f(0)=0$ and satisfy

$$
\left\|f\left(\frac{1}{4} x+\frac{3}{4} y\right)+f\left(\frac{3}{4} x+\frac{1}{4} y\right)-f(x)-f(y)\right\| \leqslant \delta
$$

for some $\delta \geqslant 0$ and for all $x, y \in D$ with $3 x+y \in 4 D$. Then

$$
\|f(x+y)-f(x)-f(y)\| \leqslant 9 \delta, \quad x, y \in(3 / 16) D
$$

THEOREM 13. Let $f:(-r, r)^{N} \rightarrow E$ be a function with $f(0)=0$ and satisfy

$$
\begin{equation*}
\left\|f\left(\frac{1}{4} x+\frac{3}{4} y\right)+f\left(\frac{3}{4} x+\frac{1}{4} y\right)-f(x)-f(y)\right\| \leqslant \delta, \quad x, y \in(-r, r)^{N} \tag{48}
\end{equation*}
$$

Then

$$
\|f(x+y)-f(x)-f(y)\| \leqslant 9 \delta, \quad x, y \in\left(-\frac{3 r}{16}, \frac{3 r}{16}\right)^{N}
$$

Using Lemma 1 and Theorem 13 we prove the stability of the functional equation $f\left(\frac{1}{3} x+\frac{2}{3} y\right)+f\left(\frac{2}{3} x+\frac{1}{3} y\right)=f(x)+f(y)$ on a restricted domain.

THEOREM 14. Let E be a Banach space and let $f:(-r, r)^{N} \rightarrow E$ be a function with $f(0)=0$ and satisfy (48) for all $x, y \in(-r, r)^{N}$. Then there exists an additive function $A: \mathbb{R}^{N} \rightarrow E$ such that

$$
\|f(x)-A(x)\| \leqslant 9(5 N-1) \delta, \quad x, y \in\left(-\frac{3 r}{16}, \frac{3 r}{16}\right)^{N}
$$

REFERENCES

[1] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224.
[2] S. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Am. Math. Soc. 126 (1998), 3137-3143.
[3] S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, Dordrecht, Heidelberg, London, 2011.
[4] S. Jung and B. Kim, On the stability of the quadratic functional equation on bounded domains, Abh. Math. Sem. Univ. Hamburg 69 (1999), 293-308.
[5] Z. Kominek, On a local stability of the Jensen functional equation, Demonstratio Math. 22 (1989), 499-507.
[6] D. Molaei and A. Najati, Hyperstability of the general linear equation on restricted domains, Acta Math. Hungar. 149 (2016), 238-253.
[7] A. Najati and Th. M. Rassias, Stability of the Pexiderized Cauchy and Jensen's equations on restricted domains, Commun. Math. Anal. 8 (2010), 125-135.
[8] A. Najati and S. Jung, Approximately quadratic mappings on restricted domains, J. Inequal. Appl. 2010, Art. ID 503458, 10 pp. (2010).
[9] F. Skof, Sullapprossimazione delle applicazioni localmente δ-additive, Atti Accad. Sci. Torino 117 (1983), 377-389.
[10] F. Skof, Proprietá locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
[11] F. Skof and S. Terracini, Sulla stabilita dell'equazione funzionale quadratica su un dominio ristretto, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 121 (1987), 153-167.
[12] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publication, NewYork, 1960.
B. Noori

Department of Mathematics, Faculty of Sciences University of Mohaghegh Ardabili Ardabil, Iran
e-mail: noori.batool@yahoo.com
M. B. Moghimi

Department of Mathematics, Faculty of Sciences
University of Mohaghegh Ardabili
Ardabil, Iran
e-mail: mbfmoghimi@yahoo.com
B. Khosravi

Department of Mathematics, Faculty of Sciences
University of Mohaghegh Ardabili
Ardabil, Iran
e-mail: b.khosravi88@yahoo.com
Choonkil Park
Research Institute for Natural Sciences Hanyang University Seoul 04763, Korea
e-mail: baak@hanyang.ac.kr

[^0]: Mathematics subject classification (2010): 39B82.
 Keywords and phrases: Additive mapping, quadratic mapping, Hyers-Ulam stability, restricted domain.

 * Corresponding author.

