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STABILITY OF SOME FUNCTIONAL
EQUATIONS ON BOUNDED DOMAINS

B. NOORI, M. B. MOGHIMI, B. KHOSRAVI AND CHOONKIL PARK*

(Communicated by J. Pecari¢)

Abstract. In this paper, we investigate the Hyers-Ulam stability of the functional equations

Flx4y) + flx—y) =2f(x),
F+y)+f=y) =2f()+ f0) + f(-y),
F(px+(1=p)y) + f((1=p)x+py) = f(x) + ()

for p = % and p = % , where f is a mapping from a bounded subset of R¥>! into a Banach
space E.

1. Introduction

It is well-known that the Hyers-Ulam stability problems of functional equations
originated from a question of Ulam [12] in 1940, concerning the stability of group
homomorphisms. In other words, the concept of stability for functional equations arises
when we replace the functional equation by an inequality which outs as a perturbation
of the equation. Hyers [1] gave a first affirmative partial answer to the question of
Ulam for Banach spaces. It is interesting to consider a functional equation satisfying
on a bounded domain or satisfying under a restricted condition. Skof [9] was the first
author to solve Ulam problem for additive mapping on a bounded domain. Indeed, Skof
proved that if a function f from [0,c) into a Banach space E satisfies the functional
inequality [|f(x+y) — f(x) — f(y)|| < & for all x,y € [0,¢) with x+y € [0,c), then
there exists an additive function A : R — E such that || f(x) — A(x)|| <30 forall x €
[0,¢). Z. Kominek [5] extended this result on a bounded domain [0,c)N of RY for any
positive integer N. He also proved a more generalized theorem concerning the stability
of the additive Cauchy equation and Jensen equation on a bounded domain of RV .
Skof [331] also proved the Hyers—Ulam stability of the additive Cauchy equation on an
unbounded and restricted domain. She applied this result and obtained an interesting
asymptotic behavior of additive functions: The function f:R — R is additive if and
only if f(x+y)—f(x)—f() — 0 as |x|+|y| — +eo. F. Skof and S. Terracini [11]
investigated the problem of stability of the quadratic functional equations for functions
defined on bounded real domains with values in a Banach space. For more general
information on this subject, we refer the reader to [3, 6, 8].
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2. Stability of f(x+y)+ f(x—y) =2f(x) on bounded subsets of R

In this section r > 0 and § > 0 are real numbers and we assume that £ is a Banach
space.

THEOREM 1. Let f:[0,r) — E be a function with f(0) =0 and satisfy
1f(x+y)+fx—=y) =2f(x)] <8, (D
Sfor some 6 >0 and all (x,y) € T(r), where
T(r)={(x,y) €[0,r) x[0,r): 0<x+y<r}.
Then there exists an additive function A : R — E such that

If(x) =A< 118, x€10,r). 2

Proof. Let u,v € [0,r). We can choose x,y € [0,r) suchthat x£y € [0,7), x+y=
u and x —y = v. Then it follows from (1) that

160+ 70y —27(“22) | < 6. ©)
Letting v =0 in (3), we get
lrw=2r(5)| <8, wepn. @)

We extend the function f to [0,+o). For this we represent an arbitrary x > 0 by
x=n(r/2)+ a, where n is an integer and 0 < o < r/2. Then we define a function
@ :[0,+) — E by ¢@(x) =nf(r/2)+ f(ca). Itis clear that ¢(x) = f(x) for all x €
[0,r/2). If x € [r/2,r), then @(x) = f(r/2)+ f(x—r/2), and we get from (3) and (4)
that

1(3) +703) 2 ) r () -]

So
lo(x) = f(x)] <268, x€l0,r). )
We now show that ¢ satisfies

Joe)+o0)—20(22)| <38, xyelo+=) ©)
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For given x,y >0, let x=n(r/2)+ o and y =m(r/2) + 3, where m and n are integers
and 0 < o, < r/2. Then

x+y m+n<_>+a+ﬂ m—+ n is even;
2 2 2 2 ’
1
x—;—y m—i—;H— (2>+—ﬁ—£, m+nisoddanda+ﬂ>§;
—1
x—;y:m—i-; (§>+Tﬁ+£’ m+n1soddanda+[3<;.
Therefore we have
x+y> m—+n <£> (a+B> . )
(p< )= f 5 +f ) m+nis even,
1
(p<x+y> mnt f( >+f<ﬂ—£>7 m+nisoddanda+ﬁ>£;
2 2 4 2
1
(p(x—zky> m—f—; f(2>+f<ﬂ+2>7 m+nisoddanda+ﬁ<§.

To prove (6) we have the following cases.

(i) If m+n is even, then

o+ 00120 (2] - -1 -2(%52)] <o

(ii) If m+nisoddand oc+ B > %, then
ot 000 -20(*57) | = e+ 790 1(5) 21 (%55 5)

<[lre+rer-2 (%55

#i(ern-5) -2 (55 5)]

ICORIORICTE]

< 36.

(i) If m+nisoddand o+ B < 5, then

o+ 00 -20(52)|| = |1+ rB)+5(5) -2 (52 +3)|
< s+ ) - f(‘”ﬁ)H
#pr(558) - o)

s (5) 21 (*5F )

< 34.
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Hence ¢ satisfies (6). Now, we define a function g : R — E by

_Jol), x=0;
g(x) = { —@(—x),x<0.

We show that g satisfies
X+
Hg(X)Jrg(y) —Zg( y) H <96, xyeR (7

For given x,y € R, since the left-hand side of (7) is symmetric in x and y, we may
assume the following cases.

(i) If x,y >0 or x,y <0, we get (7) from (6).
(ii) If x>0,y <0 and x+y > 0, then (6) yields

et +501 -2 = oo~ e -20 (5|
X X+
<[leea-20(5)] +Jotx+2-20(57)]
+ H2<p(5) — (=)~ <p(x+y)H
<95.

(iif) If x>0,y <0 and x+y < 0, then (6) yields

=) Ewl

| =llo0 -t +20(- =57
<[pe(-3) ot

Hg(X)Jrg(y) —Zg<

+H2<p<—)%> _‘P(_x_y)H
+ox-n+ o -20(-2)|
<96.

Therefore g satisfies (7) and then according to [2], there exist an additive function
A:R — E such that ||g(x) —A(x)|]] <96 for all x € R. Since @(x) = g(x) for all
x >0, it follows from (5) that

1F() =A@ < IF(x) =g @)l + ll¢(x) — A < 118, x € [0,7).

COROLLARY 1. Let f:[0,r) — E be a function with f(0) =0 and satisfy

Hf )+ 10)-27(52)

’<6,

Sor some 6 >0 and all (x,y) € T(r). Then there exists an additive function A: R — E
such that

IF(x) A <118, x€]0,r).
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COROLLARY 2. Let f:(—nrr) — E be afunction with f(0) =0 and satisfy

1fr+y)+f(xr—y) =2f ()| < 6, ®)

Sfor some 6 >0 and all (x,y) € T(r). Then there exists an additive function A: R — E
such that

lf(x) —AX)|| <126, x€(—nr).

Proof. Letting x =0 in (8), we get || f(y)+ f(—y)|| < 8 forall y € (—r,r). By
Theorem 1, there exists an additive function A : R — E such that || f(x) —A(x)|| < 110
forall x € [0,r). If x € (—1,0), then

17() =A@ < 1f () + f (=) [ + [|A(=x) = f(=x) ]| < 126.
This completes the proof.

THEOREM 2. Let f: (—r 2, rﬁ) — E be afunction with f(0) =0 and satisfy

1fr+y)+f(xr—=y) =2f ()| <6, ©)

for some 8 >0 and all (x,y) € R?, where x> +y* < r*. Then there exists an additive
function A : R — E such that

IF() =AW <198, xe (-rv2,rv2). (10)

Proof. Ttis clear that if [x+y| < r, then x%+y? < r?. Therefore f satisfies (1) for
all (x,y) € T(r). By Theorem I, there exist an additive function A : R — E satisfying
(2) for all x € [0,r). Let @ and g be given as in the proof of Theorem 1. Then

p(x)=g(x), llok)—f(x)]<28, xel0,r). (11)
If r <x < rv2,then (x/2)?+ (x/2)? < r?, and we infer from (9) that
lrw—2r(3)| <8 xe[rrv2).
Since ¢@(x) = g(x) for all x > 0, we get from (6) that
X
e —2¢(5) | <36, €0, 4+).
Therefore from the above inequalities, we have
X X X X
11 - gl < |1 =21 (5) |+ |22 (5) — e +2[#(5) -2 (5)]|
2 2 2 2
<85, x€ {r,r\/z) .
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For the case —rv/2 < x < 0, from the definition of g,(9) and (11), we have
1/ (x) = g@) [l = [1f (x) + (=)
<[re-2s(3)[+2lr(5) +4(=3)

+26H¢(_g)—f<—g>u+uw<—x>—w<— 3l

Hence we get

1/ (x) — g(x)[| < 108, xe(—r 2,r\/§).

Since ||g(x) —A(x)|| <99 forall x € R (see the proof of Theorem 1), it follows from
the last inequality that

10—~ A < 1700 — g0 + 180~ AW <195, xe (~rv2rV2),
which ends the proof.
THEOREM 3. Let f:(—r,r) — E be a function with f(0) =0 and satisfy
[fr+y)+f(xr—y) =2f ()| <6, (12)
for some 6 >0 and all (x,y) € D(r), where
D(r) ={(x,y) € (—r,r) x (=nrr): |xL£y| <r}.
Then there exists an additive function A : R — E such that

1F(x) =AM <56, x€(=rr) (13)

Proof. Letting y=x and x = 0 in (12), respectively, we get

1F(2%) =2f ()1 <8, [fG)+F(=II <8, |2yl < r (14)

For an arbitrary x € R, we set x =n(r/2)+ u, where n is an integer and 0 < p < r/2.
Hence we can define a function g: R — E by g(x) = nf(r/2) + f(u). We show that
llg(x) — f(x)|| <28 forall x € (—r,r). For this we have the following cases:

1. For 0 <x < r/2,wehave g(x) = f(x).

2. For r/2 < x < r,wehave x =r/2+ p. Then it follows from (12) and (14) that
le) = £l = (3) + ) =)

<) rrw -2+ pr(3) -]
<8+06=20.



SOME FUNCTIONAL EQUATIONS ON BOUNDED DOMAINS 461

3. For —(r/2) <x <0, we have x = —(r/2)+ . Then

let) = £l = |=£(3) + £ () — £

<rw+s(3) =20 (3) [+ (3) s
<0+8=20.

4. For —r <x < —(r/2), we have x = —2(r/2)+ u. Then

let) = £l = || =2/ (5) + £ — 1)

<l + =0 =21 (5) |+ 10+ @l
<0+8=20.

We now show that g satisfies
[g(x+y)+g(x—y)—28(x)[ <36, x,yeR. (15)

For given x,y € R, let x=n(r/2)4a and y =m(r/2)+ 3, where n and m are integers
and o, € [0,r/2). Therefore

,
x+y:(n+m)§+(a+[3)7 0<a+B<r
r

x—y:@—m%+«a—ﬁ% %—ga—ﬂ<%.

We consider following cases:

1. f0< a+fB <r/2,then
lg(x+y) +glx—y) —2g(x)[| = [|f(e+B) + fla—B) —2f(a)] < 6.
2.f0<a+B <r/2and —r/2 < o—f <0, then

lgCr+3) +g(x—y) =2l = ||r(a+B) + f(a—B+5) —£(5)—2f ()|
<|lf(o+B)+ flor—B) ~2f(al)|
Jrterer(5) - s(e-s+5)]
= lf(e+B)+ f(o—B) ~2f ()]

+flo=B) —gla=PBll
<8+256=30.
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3.Ifr2<a+B<rand 0< o—f <r/2,then

lgCr+3)+ee—y) =28l = ||7(5) + /(e +B—5) + e =B)—2f(e)|
<|lf(o+B)+ flo—B) ~2f(al)|
) esen5)-sters)
= f(e+B)+ f(o—B) ~2f ()]

+lg(o+pB) = flo+ Bl
<8+25=30.

4. Ifr/2<a+B <rand —r/2 < o—f <0, then
lg(x+y)+g(x—y)—2g(x)|| = Hf(aw—%) +f<a—[3+%) —2f(a)H <.

Therefore g satisfies (15). It is easy to show that

on om o368
Hg( nx) sl mx) <Y 2 asmxeRr (16)
2 2 i=m+1

Hence {27 "g(2"x)} is a Cauchy sequence for every x € R. Since E is a Banach space,
we can define a function A : R — E by

Alx) = 1im 82

N—roo 271

Letting m = 0 and taking the limit as n — o in (16), we obtain
[A(x) —g(x)|| <36, xeR.
Since ||g(x) — f(x)|| <28 on (—rr), we get
1F() =A@ = If (x) =@ + lg(x) —AX) <58, x € (=rr).
It follows from (15) that
llg(2"x+2"y) +g(2"x—2"y) —2¢(2"x)|| <38, x,yeR, n>1.

Dividing by 2" and letting n — oo in this inequality, we infer that A is an additive
function.

3. Stability of Drygas functional equation on bounded subsets of R

We now prove the stability of Drygas functional equation on a restricted domain.
First, we introduce a theorem of Skof and Terracini [11].
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THEOREM 4. [11] Let E be a Banach space and let a function [ : (—rr) — E
satisfy the inequality

1FGe+y) + fr=y) =2f(x) =2f ()] < 6, (17)

Sor some & >0 and all x,y € R with |x+y| < r. Then there exists a quadratic function
Q:R — E such that

81
I/ - 0wl < =

Using ideas from [5], we can state the following proposition which is a generalization
of Theorem 4.

6, xe(—nr).

PROPOSITION 1. Let E be a Banach space and let D be a bounded subset of
R. Assume, moreover, that there exist a non-negative integer n and a positive number
¢ > 0 such that

(i) DC2D,
(ii) (—c,c) CD,
(iii) D C (—2"¢,2"¢).

If a function f : D — E satisfies the functional inequality (17) for some 6 > 0 and for
all x,y € D with x+y € D, then there exists a quadratic function Q : R — E such that

82.4"—1

0, x€D.
) X

1/ (x) = Q) <

Proof. By Theorem 4, there exists a quadratic function Q : R — E such that

81

[£(x) = O] < 75, x € (—c,c).

For x € D, the conditions (i) and (iii) imply that 2~%x € D for k = 1,2,...,n and
27"x € (—c,c). It follows from (17) that for each x € D

) r() o e
Therefore
4" — 1

35.

o475+ 5100 <

Using the above inequalities and 2| f(0)|| < &, we get

1702wl < [0 —4"7 () + 5 )+ (%) e [+ sl
<782'4n_15 xeD
X 2 ) .

This completes the proof.
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THEOREM 5. Let f: (—r,r) — E be a function with f(0) =0 and satisfy
1f(ety) + f(x=y) =2f () = f(¥) = f(=D) < 6, (18)
for some 6 >0 and all (x,y) € D(r), where
D(r)={(x,y) € (—=r,r) x (=n,r): |xLty| <r}.

Then there exist a quadratic function Q : R — E and an additive function A : R — E
such that

1/(0) —AX) QW[ < 58, xe(=nr). (19)

Proof. We denote by g and h the even and odd part of f, respectively. i.e.,

gh:(—nr)—E, gx) = W, h(x) =

It is clear that g and & satisfy in (18) for all (x,y) € D(r). Since g is even and h is
odd, we have

. x,y€eD(r), (20)
, xy€eD(r). 21D

lg(x+y)+g(x—y) —2g(x) —2¢(y)
[7(x +y) + h(x —y) — 2h(x)

By Theorems 3 and 4, there exist an additive function A : R — E and a quadratic
function Q : R — E such that

I8t~ QW < 58, ) ~AW] <58, xe (~rr)

Since f =g+ h, we get (19).

PROPOSITION 2. Let E be a Banach space and let D be a symmetric bounded
subset of R. Assume, moreover, that there exist a non-negative integer n and a positive
number ¢ > 0 such that

(i) DC2D,
(ii) (—c,c)CD,
(iii) D C (—2"¢,2"¢).

If a function f: D — E satisfies the functional inequality (18) for some 6 > 0 and for
all x,y € D with x+y € D, then there exist a quadratic function Q : R — E and an
additive function A : R — E such that

£ (x) —Ax) — O(x)]| < {6.2" 414" — %] 5, xeD.
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Proof. Let g and h be the even and odd part of f, respectively. Since D is
symmetric, g satisfies (20) and & satisties (21) for all x,y € D with x££y € D. By
Proposition 1, there exists a quadratic function Q : R — E such that

lg(x) = Q)| £ ——86, x€D. (22)
Similarly, as in the proof of Proposition 1, it follows from (21) that for each x € D
k—1 X ky (X k-1 _
Hz h(F) ) h<?>H <?l§, k=1.2,....n.
Therefore

Hh(x) - 2h(zi) H <(@2"-1)8, xeD.

On the other hand, by Theorem 3, there exists an additive function A : R — E such that
|h(x) —A(x)|| <506 forall x € (—c,c). Using the above inequalities, we get

) 4w

X

2"h< =

) A < ||t —20( 57 ) | +
< (6.2"—1)6, xeD.

(23)

Since f = g+ h, the result follows from (22) and (23).
Theorem 4 was generalized by Jung and Kim [4]. They proved the following result:

THEOREM 6. Let E be a Banach space and let 1,8 > 0 be given constants. If a
function f : [—r,r|" — E satisfies the inequality

1fGe+y) +f(x—y) =2f () =2/ (V)| < &

Sforall x,y € [—rr]" with xty € [—nr]|", then there exists a quadratic function Q :
R" — E such that

£ (x) — O(x)|| < (29120 + 1872n + 334)8,

forany x € [—r,r]".

4. Stability of f(px+ (1—p)y)+ f((1—p)x+py) = f(x) + f(y) on bounded
subsets of RV>! for p=1 and p =}

In this section » > 0 and 6 > 0 are real numbers and we assume that E is a normed
space. We will now start this section with the following lemma presented by Kominek
[5] (see also [3]).

LEMMA 1. Let E be a Banach space and let N be a positive integer. Suppose D
is a bounded subset of RN containing zero in its interior. Assume, moreover, that there
exist a nonnegative integer n and a positive number ¢ > 0 such that

(i) DC2D,
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(ii) (—c,c)N CD,
(iti) D C (—2"¢,2"c)N.

If a function f : D — E satisfies the functional inequality

1FG+y) = f) = fO)I < 6

Sorsome 6 >0 and for all x,y € D with x+Yy € D, then there exists an additive function
A:RN — E such that

If(x)—AX)| < (2"5N-1)6, xe€D.
THEOREM 7. Let f:(—r,r) — E be a function with f(0) =0 and satisfy
1 2 2 1
Hf<§x+ §Y> +f<§x+ 5)’) —f(x) —f(Y)H <6, xy€(—nr). (24)
Then

[ £Gr+y) — ()~ FOI <98, xye (%%) |

Proof. Replacing x by 3x and y by 3y in (24), we have

[£er29) + f2x+3) ~ FG) ~F@ <8, wye(-3.5). @9
. 2y —x 2x—y .
By replacing x by and y by in (25), we get
rr
IF@+F0) = fx=y) = f2y =) <8, xye(-3.5). @6

Replacing y by —y in (26), we have

If@ry) + (-2 =) = f@) - f(-DI <8, xye(-55)- @D

Replacing y = 0 in (25), we infer

IF@)+ (20 - 30l <8, xe(-5.5) 8)
and replacing x by —x in (28), we have
IF(=0)+£(=20 = f(=3)| <3, xe (-5.5)- (29)

Letting y = —x in (25), we have

(04 £0) = f(30) — f(-3)| < 8. xe (-5.3)- (30)
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Using (28), (29) and (30), we have || f(2x) + f(—2x)|| < 38, for all x € (—g r).

Therefore :
2r 2
I+ sl <36, e (-3.5). 61
Putting y = —2x in (25), we get
rr
IF(=30) — 3x) ~ f(-60)| <8, xe(~Log). (32)

Using the triangle inequality, it follows from (31) and (32) that

12(=3x) - f(-6v)|| <48, xe(-£,%).

66
Then .
l2f @) - 0l <48, xe(-5.5). (33)
2r 2r
It follows from (31) that || f(—2y —x) + f(2y+x)|| < 30 for all x,y € <—3, 3> .
Hence (25), (27) and (28) imply
2r 2r
[2£2x+3) = (20 ~20() - 1) = FO) - A <78, xwve (-5.5).
Using this inequality and applying (31) and (33), we obtain
2r 2r
Ix) -1 - )l <98, xve (<355, 64

Then we have

[£(r+y) — () — FOI <98, xye (%%) |

A similar argument as in the proof of Theorem 7 yields the following results in the case
of functions defined on certain subsets of RN (N is a positive integer) with values in a
normed space.

THEOREM 8. Suppose that D is a symmetric and bounded subset of RN contain-
ing zero. Let f : D — E be a function with f(0) =0 and satisfy

[r(Ge+ 2) + £ (ox+ 39) — 1) - 560 <. (35)

for some & >0 and for all x,y € D with 2x+y € 3D. Then

[fx+y) = f(x) = FO) <98, x,y€(2/9)D.
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COROLLARY 3. Let f: (—r,r)N — E be a function with f(0) =0 and satisfy

Hf(éxﬂL §y> +f<§x+ %y> —f(x) —f(y)H <8, xye(-nnV.

Then N
2r 2
I+9) = 1) - FON <98, xve (5.5 ) -

1
Using Lemma 1 and Theorem 8 we prove the stability of the functional equation f ( §x+

2 2 1
§y> +f<§x+ §y> = f(x)+ f(y) on a restricted domain.

THEOREM 9. Let E be a Banach space and let f : (—r,r)N — E be a function
with f(0) = 0 and satisfy (35) for all x,y € (—r,r)N. Then there exists an additive
function A : RN — E such that

N
1£() —A)[ <9(BN - 1)8, xe<_%%) ,

THEOREM 10. Let E be a Banach space and let N be a positive integer. Suppose
D is a symmetric and bounded subset of RN containing zero in its interior. Assume,
moreover, that there exist a nonnegative integer n and a positive number ¢ > 0 such
that

(i) DC2D,
(ii) (—c,c)N CD,
(iii) D C (—2"¢c,2"c)V.

If a function f : D — E satisfies f(0) =0 and the functional inequality

(b 25 b st s00] <5,

for some 0 > 0 and for all x,y € D with 2x+y € 3D, then there exists an additive
function A : RN — E such that

£ (x) —A(x)|| <9(2".5N—1)8, x€(2/9)D.

Proof. Let G= (2/9)D and r = (2/9)c. Then G C 2G, (—r,r)N C G and D C
(—=2"r,2"r)N . By Theorem 8, f satisfies

1fGe+y) = f(x) = fODI <98, xy€eG.

Therefore on account of Lemma 1, we get the result.



SOME FUNCTIONAL EQUATIONS ON BOUNDED DOMAINS

469

THEOREM 11. Let f: (—r,r) — E be a function with f(0) =0 and satisfy

1 3 3 1
Hf (Z)H' Z)’) +f (ZJH' Z)’) —f(x) —f()’)H <6, xye(-nr).
Then
3r 3
IFa+9) = £ = F0) <93, xve (3035 ).
Proof. Replacing x by 4x and y by 4y in (36), we have

IF6r39) + f(Bx+) — F(4) ~ F@) <8, xye (-3.7)-

3y — 3x—
y4xandyby x4y

By replacing x by in (37), we have

£+ £29) = FBx—y) = FBy =) <8, xye (-5.7)-

If we replace y by —y in the last inequality, we obtain

IFGry) +£(=3y =) = £(20 - F-) <8, xye (-5.7)-

Putting x = 0 in (38), we get

IFO) + F(=3y) — fF(=2y)| <8, ye (_;’;,2).

Putting y =0 in (37), we have

1£()+ £(3x) - A0 < 8, xe (=2 z>-

If we put y = —x in (37), we obtain
(=29 + £(20) — f(~4x) ~ f4x) | < 8, xe (~.7)-

and then
r r

(=) + 1) = f(=20) = f20)| <8, xe (-5.5)-
It follows from (40) that

rr

(=) £+ £ (=30) + £(32) = f(~40) —fA0)| <26, xe (~5.5).

Hence we get from (42) and (43) that

r

| F(=20)+ £ (22) + £(=33) + F(3x) = f(—42) = f(42)]| <36, xe (=77

(36)

(37)

(38)
(39)
(40)

(41)

(42)

(43)

). @
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Using the triangle inequality for (41) and (44), we obtain

IF(=3x)+7Bx)] <48, xe(-2.7)- (45)

Therefore

-0+ sl <46, xe (<3.3).
(46)

3r 3r
- - <4 ) ) BETEYE N
If(=3y=2)+ fy 0l <43, xve (30 37)
Using the last inequality (46) and inequalities (37) and (38), we get
3r 3r
2/ Gx-+9) = f(40) = f(4y) — £(20) — F(-2)[ <68, xye (~Te.Te). @D
If we consider (40) with x and y, then it follows by (47) that

[2f(Bx+y) — f(3x) = f(3y) — f(x) — f(y) — f(2x) — f(=2y)[| < 86,

3r 3r

for all -, =
orall x,y € ( 616
above inequality, we obtain

) . Consider the inequality (39) for y and —x, and using the

12/ (3x+y) = 2f(3x) — f(3y) — f(—3y) — f(x) — f(—x) = 2f ()] < 108,

3r 3
for all x,y € (—l—g, 1—;) . Hence this inequality with the inequalities (45) and (46)
imply
3r 3r
[2/Gx-+3) ~2/(3x) - 27 ()| <185, xye (~o 70 ).
Therefore

1fCet3) = f0) = f)I <98, xy€ (‘f—gf—g)

By a similar way as in the proof of Theorem 11 we obtain the following results on
restricted domains of RV .

THEOREM 12. Suppose that D is a symmetric and bounded subset of RN con-
taining zero. Let f: D — E be a function with f(0) =0 and satisfy

oG+ )+ (o 3) 10100 <

Sfor some 6 >0 and for all x,y € D with 3x+y € 4D. Then

[fr+y) = f() = fWI <98, x,y€(3/16)D.
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THEOREM 13. Let f: (—r,r)N — E be a function with f(0) = 0 and satisfy

HfG” %y> +f<%?¢+ %y> —f(x) —f(y)H <8, xye(-nrV. (48

Then

N
1f (x+y) = f(x) = f(¥)]| < 96, we(—f—}f—g) '

Using Lemma | and Theorem 13 we prove the stability of the functional equation

f(%x—i— % ) +f<§x+% ) = f(x)+ f(y) on a restricted domain.

THEOREM 14. Let E be a Banach space and let f : (—r,r)¥ — E be a function
with f(0) = 0 and satisfy (48) for all x,y € (—r,r)N. Then there exists an additive
function A : RN — E such that

3r 3r\Y
1£(x)—AE)| <IN =18, x,ye(_l_g,l_g) ,
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