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1. Introduction

Fixed point results have a crucial role to construct methods for solving problems in applied
mathematics and other sciences. A large number of mathematicians have focused on this interesting
topic. The Banach contraction mapping principle is the most important result in fixed point theory. It
is considered the source of metric fixed point theory. Metric spaces form a natural environment for
exploring fixed points of single and multivalued mappings which can be noted to Banach contraction
principle [7], that is, a very interesting useful and pivotal result in fixed point theory. The important
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feature of the Banach contraction principle is that it gives the existence, uniqueness and the
covergence of the sequence of the successive approximation to a solution of the problem. Banach
contraction principle is generalized in many different ways. Reader can see two short survey of the
development of fixed point theory in [15, 18].

Recently, Samet et al. [24] introduced the notions of α-ψ-contractive mappings and α-admissible
mappings. Also, Alizadeh et al. [2] offered the concept of cyclic (α, β)-admissible mappings and obtain
some new fixed point results. For more information on fixed point results, see [1, 4, 5, 8, 9, 11, 12, 17,
19, 20, 22, 23, 25, 26].

Definition 1.1. [16] A function ϕ : [0,+∞) → [0,+∞) is called an altering distance function if the
following properties are satisfied:

(i) ϕ is non-decreasing and continuous,
(ii) ϕ (t) = 0 if and only if t = 0.

Definition 1.2. [2] Let f : X → X and α, β : X → [0,+∞). We say that f is a cyclic (α, β)-admissible
mapping if

(i) α (x) ≥ 1 for some x ∈ X implies β ( f x) ≥ 1;
(ii) β (x) ≥ 1 for some x ∈ X implies α ( f x) ≥ 1.

Definition 1.3. [14] Let X be a nonempty set and f ,T : X → X. The pair ( f ,T ) is said to be weakly
compatible if f and T commute at their coincidence points (i.e., f T x = T f x whenever f x = T x).
A point y ∈ X is called a point of coincidence of f and T if there exists a point x ∈ X such that
y = f x = T x.

Following the direction in [10], we denote by Ψ the family of all functions ψ : R4
+ → R+ such that

(ψ1) ψ is nondecreasing in each coordinate and continuous;
(ψ2) ψ (t, t, t, t) ≤ t, ψ (t, 0, 0, t) ≤ t and ψ

(
0, 0, t, t

2

)
≤ t for all t > 0;

(ψ3) ψ (t1, t2, t3, t4) = 0 if and only if t1 = t2 = t3 = t4 = 0.

Definition 1.4. [3] A mapping h : R+ × R+ → R is a function of subclass of type I if x ≥ 1, then
h(1, y) ≤ h(x, y).

Example 1.5. [3] The following are some examples of function of subclass of type I, for all x, y ∈ R+

and positive integers m, n,
(1) h(x, y) = (y + l)x, l > 1;
(2) h(x, y) = (x + l)y, l > 1;
(3) h(x, y) = xmy;
(4) h(x, y) = xn+xn−1+···+x1+1

n+1 y;
(5) h(x, y) = ( xn+xn−1+···+x1+1

n+1 + l)y, l > 1.

Definition 1.6. [3] Suppose that F : R+ ×R+ → R. A pair (F, h) is called an upper class of type I if h
is a subclass of type I and
(1) 0 ≤ s ≤ 1 =⇒ F(s, t) ≤ F(1, t);
(2) h(1, y) ≤ F(s, t) =⇒ y ≤ st.

Example 1.7. [3] The following are some examples of upper class of type I, for all s, t ∈ R+ and
positive integers m, n,
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(1) h(x, y) = (y + l)x, l > 1, F(s, t) = st + l;
(2) h(x, y) = (x + l)y, l > 1, F(s, t) = (1 + l)st;
(3) h(x, y) = xmy, F(s, t) = st;
(4) h(x, y) = xn+xn−1+···+x1+1

n+1 y, F(s, t) = st;
(5) h(x, y) = ( xn+xn−1+···+x1+1

n+1 + l)y, l > 1, F(s, t) = (1 + l)st.

Definition 1.8. [3] A mapping h : R+×R+×R+ → R is a function of subclass of type II if for x, y ≥ 1,
h(1, 1, z) ≤ h(x, y, z).

Example 1.9. [3] The following are some examples of subclass of type II, for all x, y, z ∈ R+,
(1) h(x, y, z) = (z + l)xy, l > 1;
(2) h(x, y, z) = (xy + l)z, l > 1;
(3) h(x, y, z) = z;
(4) h(x, y, z) = xmynzp,m, n, p ∈ N;
(5) h(x, y, z) =

xm+xnyp+yq

3 zk,m, n, p, q, k ∈ N.

Definition 1.10. [3] Let h : R+ ×R+ ×R+ → R and F : R+ ×R+ → R. Then we say that the pair (F, h)
is called an upper class of type II if h is a subclass of type II and

(1) 0 ≤ s ≤ 1 =⇒ F(s, t) ≤ F(1, t);
(2) h(1, 1, z) ≤ F(s, t) =⇒ z ≤ st.

Example 1.11. [3] The following are some examples of upper class of type II, for all s, t ∈ R+,
(1) h(x, y, z) = (z + l)xy, l > 1, F(s, t) = st + l;
(2) h(x, y, z) = (xy + l)z, l > 1, F(s, t) = (1 + l)st;
(3) h(x, y, z) = z, F(s, t) = st;
(4) h(x, y, z) = xmynzp,m, n, p ∈ N, F(s, t) = sptp;
(5) h(x, y, z) =

xm+xnyp+yq

3 zk,m, n, p, q, k ∈ N, F(s, t) = (st)k.

Definition 1.12. [13] Let f , T : X → X and α, β : X → [0,+∞). We say that f is a T -cyclic
(α, β)-admissible mapping if

(i) α (T x) ≥ 1 for some x ∈ X implies β ( f x) ≥ 1;
(ii) β (T x) ≥ 1 for some x ∈ X implies α ( f x) ≥ 1.

Example 1.13. [13] Let f ,T : R→ R be defined by f x = x and T x = −x. Suppose that α, β : R→ R+

are given by α (x) = e−x for all x ∈ R and β (y) = ey for all y ∈ R. Then f is a T -cyclic (α, β) admissible
mapping. Indeed, if α (T x) = ex ≥ 1, then x ≥ 0 implies f x ≥ 0 and so β ( f x) = e f x ≥ 1. Also, if
β (Ty) = e−y ≥ 1, then y ≤ 0 which implies f y ≤ 0 and so α ( f y) = e− f y ≥ 1.

The following result will be used in the sequel.

Lemma 1.14. [6, 21] Let (X, d) be a metric space and {xn} be a sequence in X such that

lim
n→+∞

d (xn, xn+1) = 0.

If {xn} is not a Cauchy sequence in X, then there exist ε > 0 and two sequences {m (k)} and {n (k)} of
positive integers such that n (k) > m (k) > k and the following sequences tend to ε+ when k → +∞:

d
(
xm(k), xn(k)

)
, d

(
xm(k), xn(k)+1

)
, d

(
xm(k)−1, xn(k)

)
,

d
(
xm(k)−1, xn(k)+1

)
, d

(
xm(k)+1, xn(k)+1

)
.
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In this paper, we introduce new notions of T -cyclic (α, β,H, F)-contractive and T -cyclic
(α, β,H, F)-rational contractive using a pair (F, h) upper class functions to obtain new fixed point and
common fixed point theorems.

2. Main results

The following definitions will be used efficiently in the proof of main results.

Definition 2.1. Let f , T : X → X and λ, γ : X → [0,+∞). We say that f is a T -cyclic (λ, γ)-
subadmissible mapping if

(i) λ (T x) ≤ 1 for some x ∈ X implies γ ( f x) ≤ 1;
(ii) γ (T x) ≤ 1 for some x ∈ X implies λ ( f x) ≤ 1.

Definition 2.2. Let (X, d) be a metric space and f be a T -cyclic (α, β)-admissible and T -cyclic (λ, γ)-
subadmissible mapping. We say that f is a T -cyclic (α, β,H, F)-contractive mapping if

H(α (T x) , β (Ty) , ϕ (d ( f x, f y))) ≤ F(γ (T x) λ (Ty) , η (M (x, y))), (2.1)

for all x, y ∈ X, where

M (x, y) = ψ

(
d (T x,Ty) , d (T x, f x) , d (Ty, f y) ,

1
2

[
d (T x, f y) + d (Ty, f x)

])
for ψ ∈ Ψ, the pair (F, h) is an upper class of type II, ϕ is an altering distance function and η :
[0,+∞)→ [0,+∞) is a nondecreasing and right-continuous function with the condition ϕ(t) > η(t) for
all t > 0.

Theorem 2.3. Let (X, d) be a complete metric space and let f and T be self-mappings on X such that
f X ⊂ T X. Let f be a T-cyclic (α, β,H, F)-contractive mapping. Assume that T X is a closed subset of
X and the following conditions are satisfied:

(i) there exists x0 ∈ X such that α (T x0) ≥ 1 and β (T x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that xn → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1, and γ (xn) ≤ 1

for all n, then γ (x) ≤ 1;
(iii) α (Tu) ≥ 1 and β (Tv) ≥ 1, and λ (Tu) ≤ 1 and γ (Tv) ≤ 1 whenever f u = Tu and f v = Tv.

Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly compatible,
then f and T have a unique common fixed point.

Proof. Let x0 ∈ X such that α (T x0) ≥ 1 and β (T x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1. Define the
sequences {xn} and {yn} in X by

yn = f xn = T xn+1, n ∈ N ∪ {0} . (2.2)

If yn = yn+1, then yn+1 is a point of coincidence of f and T . Suppose that yn , yn+1 for all n ∈ N.
Since f is a T -cyclic (α, β)-admissible mapping and α (T x0) ≥ 1, β ( f x0) = β (T x1) ≥ 1 which implies
α (T x2) = α ( f x1) ≥ 1. By continuing this process, we get α (T x2n) ≥ 1 and β (T x2n+1) ≥ 1 for all
n ∈ N ∪ {0} . Similarly, since f is a T -cyclic (α, β)-admissible mapping and β (T x0) ≥ 1, we have
β (T x2n) ≥ 1 and α (T x2n+1) ≥ 1 for all n ∈ N ∪ {0}, that is, α (T xn) ≥ 1 and β (T xn) ≥ 1 for all
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n ∈ N ∪ {0} . Equivalently, α (T xn) β (T xn+1) ≥ 1 for all n ∈ N ∪ {0} . Since f is a T -cyclic (λ, γ)-
subadmissible mapping and λ (T x0) ≤ 1, γ ( f x0) = γ (T x1) ≤ 1 which implies λ (T x2) = λ ( f x1) ≤ 1.
By continuing this process, we get λ (T x2n) ≤ 1 and γ (T x2n+1) ≤ 1 for all n ∈ N∪{0} . Similarly, since f
is a T -cyclic (λ, γ)-admissible mapping and γ (T x0) ≤ 1,we have γ (T x2n) ≤ 1 and λ (T x2n+1) ≤ 1 for all
n ∈ N∪ {0}, that is, λ (T xn) ≥ 1 and β (T xn) ≥ 1 for all n ∈ N∪ {0} . Equivalently, λ (T xn) γ (T xn+1) ≤ 1
for all n ∈ N ∪ {0}. Therefore, by (2.1) and using (2.2), we get

H(1, 1, ϕ (d (yn, yn+1))) = H(1, 1, ϕ (d ( f xn, f xn+1)))
≤ H(α (T xn) , β (T xn+1) , ϕ (d ( f xn, f xn+1)))
≤ F(λ (T xn) γ (T xn+1) , η (M (xn, xn+1)))
≤ F(1, η (M (xn, xn+1))).

This implies that

ϕ (d (yn, yn+1)) ≤ η (M (xn, xn+1)) < ϕ (M (xn, xn+1)) . (2.3)

Since ϕ is nondecreasing, we have

d (yn, yn+1) < M (xn, xn+1) , (2.4)

where

M (xn, xn+1)

= ψ

(
d (T xn,T xn+1) , d (T xn, f xn) , d (T xn+1, f xn+1) ,

1
2

[
d (T xn, f xn+1) + d (T xn+1, f xn)

])
= ψ

(
d (yn−1, yn) , d (yn−1, yn) , d (yn, yn+1) ,

1
2

[
d (yn−1, yn+1) + d (yn, yn)

])
≤ ψ

(
d (yn−1, yn) , d (yn−1, yn) , d (yn, yn+1) ,

1
2

[
d (yn−1, yn) + d (yn, yn+1)

])
. (2.5)

Thus, from (2.4), we obtain

d (yn, yn+1) < M (xn, xn+1)

≤ ψ

(
d (yn−1, yn) , d (yn−1, yn) , d (yn, yn+1) ,

1
2

[
d (yn−1, yn) + d (yn, yn+1)

])
.

If d (yn−1, yn) ≤ d (yn, yn+1) for some n ∈ N, then

d (yn, yn+1) < ψ

(
d (yn−1, yn) , d (yn−1, yn) , d (yn, yn+1) ,

1
2

[
d (yn−1, yn) + d (yn, yn+1)

])
≤ ψ (d (yn, yn+1) , d (yn, yn+1) , d (yn, yn+1) , d (yn, yn+1))

≤ d (yn, yn+1) ,

which is a contradiction and hence d (yn, yn+1) < d (yn−1, yn) for all n ∈ N. Therefore, the sequence
{d (yn, yn+1)} is decreasing and bounded below. Thus, there exists r ≥ 0 such that limn→+∞ d (yn, yn+1) =

r. Assume r > 0. Also, from (2.3), (2.5) and using the properties of ψ, we deduce

ϕ (d (yn, yn+1)) ≤ η (M (xn, xn+1))
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≤ η

(
ψ

(
d (yn−1, yn) , d (yn−1, yn) , d (yn, yn+1) ,

1
2

[
d (yn−1, yn) + d (yn, yn+1)

]))
≤ η (ψ (d (yn−1, yn) , d (yn−1, yn) , d (yn−1, yn) , d (yn−1, yn)))

≤ η (d (yn−1, yn)) . (2.6)

Consider the properties of ϕ and η. Letting n→ +∞ in (2.6), we get

ϕ (r) = lim
n→+∞

ϕ (d (yn, yn+1))

≤ lim
n→+∞

η (d (yn−1, yn)) = η (r) < ϕ (r) ,

which implies r = 0 and so
lim

n→+∞
d (yn, yn+1) = 0. (2.7)

Now, we prove that {yn} is a Cauchy sequence. Suppose, to the contrary, that {yn} is not a Cauchy
sequence. Then, by Lemma 1.14, there exist an ε > 0 and two subsequences

{
ymk

}
and

{
ynk

}
of {yn} with

mk > nk > k such that d(ym(k), yn(k)) ≥ ε, d(ym(k)−1, yn(k)) < ε and

lim
k→+∞

d
(
ynk , ymk

)
= lim

k→+∞
d
(
ynk−1, ymk

)
= lim

k→+∞
d
(
ymk−1, ynk

)
= lim

k→+∞
d
(
ymk−1, ynk−1

)
= ε. (2.8)

From (2.1), we get

H(1, 1, ϕ
(
d
(
ynk , ymk

))
) = H(1, 1, ϕ

(
d
(
f xnk , f xmk

))
)

≤ H(α
(
T xnk

)
, β

(
T xmk

)
, ϕ (d ( f x, f y))

≤ F(λ
(
T xnk

)
γ
(
T xmk

)
, η

(
M

(
xnk , xmk

))
)

≤ F(1, η (M (x, y))).

This implies that

ϕ
(
d
(
ynk , ymk

))
≤ η

(
M

(
xnk , xmk

))
< ϕ

(
M

(
xnk , xmk

))
(2.9)

where

M
(
xnk , xmk

)
= ψ

(
d
(
T xnk ,T xmk

)
, d

(
T xnk , f xnk

)
, d

(
T xmk , f xmk

)
,

1
2

[
d
(
T xnk , f xmk

)
+ d

(
T xmk , f xnk

)] )
≤ ψ

(
max{ε, d

(
ynk−1, ymk−1

)
}, d

(
ynk−1, ynk

)
, d

(
ymk−1, ymk

)
,

max
{
ε,

1
2

[
d
(
ynk−1, ymk

)
+ d

(
ymk−1, ynk

)]} )
.

Now, from the properties of ϕ, ψ and η and using (2.8) and the above inequality, as k → +∞ in (2.9),
we have

ϕ (ε) ≤ η (ψ (ε, 0, 0, ε)) ≤ η (ε) < ϕ (ε) ,
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which implies that ε = 0, a contradiction with ε > 0. Thus, {yn} is a Cauchy sequence in X. From the
completeness of (X, d) , there exists z ∈ X such that

lim
n→+∞

yn = z. (2.10)

From (2.2) and (2.10), we obtain

f xn → z and T xn+1 → z. (2.11)

Since T X is closed, by (2.11), z ∈ T X. Therefore, there exists u ∈ X such that Tu = z. Since yn → z
and β (yn) = β (T xn+1) ≥ 1 for all n ∈ N, by (ii) , β (z) = β (Tu) ≥ 1. Similarly, γ (z) = γ (Tu) ≤ 1. Thus,
λ (T xn) γ (Tu) ≤ 1 for all n ∈ N.

Now, applying (2.1), we get

H(1, 1, ϕ (d ( f xn, f u))) ≤ H(α (T xn) , β (Tu) , ϕ (d ( f xn, f u))

≤ F(λ (T xn) γ (Tu) , η (M (xn, u)))
≤ F(1, η (M (xn, u))).

This implies that

ϕ (d ( f xn, f u)) ≤ η (M (xn, u)) , (2.12)

where

M (xn, u)

= ψ

(
d (T xn,Tu) , d (T xn, f xn) , d (Tu, f u) ,

1
2

[
d (T xn, f u) + d (Tu, f xn)

])
≤ ψ

(
d (T xn,Tu) , d (T xn, f xn) , d (Tu, f u) ,

1
2

max{d(Tu, f u),
[
d (T xn, f u) + d (Tu, f xn)

]
}

)
.

Taking k → ∞ in the inequality (2.12) and using the properties of ϕ, ψ, η and the above inequality, we
have

ϕ (d (z, f u)) ≤ η

(
ψ

(
0, 0, d (z, f u) ,

1
2

d (z, f u)
))

≤ η (d (z, f u)) < ϕ (d (z, f u)) ,

which implies d (z, f u) = 0, that is, z = f u. Thus we deduce

z = f u = Tu (2.13)

and so z is a point of coincidence for f and T . The uniqueness of the point of coincidence is a
consequence of the conditions (2.1) and (iii), and so we omit the details.

By (2.13) and using weakly compatibility of f and T, we obtain

f z = f Tu = T f u = Tz

and so f z = Tz. Uniqueness of the coincidence point implies z = f z = Tz. Consequently, z is a unique
common fixed point of f and T . �
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Corollary 2.4. Let (X, d) be a complete metric space and let f and T be self-mappings on X such
that f X ⊂ T X. Let f be a T-cyclic (α, β,H, F)-admissible mapping and T-cyclic (λ, γ)-subadmissible
mapping such that

H(α (T x) , β (Ty) , ϕ (d ( f x, f y))) ≤ F(γ (T x) λ (Ty) , η (M (x, y)))

for all x, y ∈ X, where ϕ is an altering distance function and η : [0,+∞)→ [0,+∞) is a nondecreasing
and right-continuous function with the condition ϕ(t) > η(t) for all t > 0 and

M (x, y) = ψ(d (T x,Ty) , d (T x, f x) , d (Ty, f y) ,
1
2

[
d (T x, f y) + d (Ty, f x)

]
)

for ψ ∈ Ψ. Assume that T X is a closed subset of X and the following conditions are satisfied:
(i) there exists x0 ∈ X such that α (T x0) ≥ 1 and β (T x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that xn → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1, and γ (xn) ≤ 1

for all n, then γ (x) ≤ 1;
(iii) α (Tu) ≥ 1 and β (Tv) ≥ 1, and λ (Tu) ≤ 1 and γ (Tv) ≤ 1 whenever f u = Tu and f v = Tv.

Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly compatible,
then f and T have a unique common fixed point.

Corollary 2.5. Let (X, d) be a complete metric space and let f and T be self-mappings on X such
that f X ⊂ T X. Let f be a T-cyclic (α, β,H, F)-admissible mapping and T-cyclic (λ, γ)-subadmissible
mapping such that

(α (T x) β (Ty) + l)ϕ(d( f x, f y))
≤ (1 + l)γ(T x)λ(Ty)η(M(x,y))

for all x, y ∈ X, where ϕ is an altering distance function and η : [0,+∞)→ [0,+∞) is a nondecreasing
and right-continuous function with the condition ϕ(t) > η(t) for all t > 0 and

M (x, y) = ψ(d (T x,Ty) , d (T x, f x) , d (Ty, f y) ,
1
2

[
d (T x, f y) + d (Ty, f x)

]
)

for ψ ∈ Ψ. Assume that T X is a closed subset of X and the following conditions are satisfied:
(i) there exists x0 ∈ X such that α (T x0) ≥ 1 and β (T x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that xn → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1, and γ (xn) ≤ 1

for all n, then γ (x) ≤ 1;
(iii) α (Tu) ≥ 1 and β (Tv) ≥ 1, and λ (Tu) ≤ 1 and γ (Tv) ≤ 1 whenever f u = Tu and f v = Tv.

Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly compatible,
then f and T have a unique common fixed point.

Corollary 2.6. Let (X, d) be a complete metric space and let f and T be self-mappings on X such
that f X ⊂ T X. Let f be a T-cyclic (α, β,H, F)-admissible mapping and T-cyclic (λ, γ)-subadmissible
mapping such that

(ϕ (d ( f x, f y)) + l)α(T x)β(Ty)
≤ (γ (T x) λ (Ty) η (M (x, y)) + l

for all x, y ∈ X, where ϕ is an altering distance function and η : [0,+∞)→ [0,+∞) is a nondecreasing
and right-continuous function with the condition ϕ(t) > η(t) for all t > 0 and

M (x, y) = ψ(d (T x,Ty) , d (T x, f x) , d (Ty, f y) ,
1
2

[
d (T x, f y) + d (Ty, f x)

]
)
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for ψ ∈ Ψ. Assume that T X is a closed subset of X and the following conditions are satisfied:
(i) there exists x0 ∈ X such that α (T x0) ≥ 1 and β (T x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that xn → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1, and γ (xn) ≤ 1

for all n, then γ (x) ≤ 1;
(iii) α (Tu) ≥ 1 and β (Tv) ≥ 1, and λ (Tu) ≤ 1 and γ (Tv) ≤ 1 whenever f u = Tu and f v = Tv.

Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly compatible,
then f and T have a unique common fixed point.

Corollary 2.7. Let (X, d) be a complete metric space and let f and T be self-mappings on X such
that f X ⊂ T X. Let f be a T-cyclic (α, β,H, F)-admissible mapping and T-cyclic (λ, γ)-subadmissible
mapping such that

H(α (T x) , β (Ty) , ϕ (d ( f x, f y))) ≤ F(γ (T x) λ (Ty) , η (M (x, y))) (2.14)

for all x, y ∈ X, where ϕ is an altering distance function and η : [0,+∞)→ [0,+∞) is a nondecreasing
and right-continuous function with the condition ϕ(t) > η(t) for all t > 0 and

M (x, y) = max{d (T x,Ty) , d (T x, f x) , d (Ty, f y) ,
1
2

[
d (T x, f y) + d (Ty, f x)

]
}.

Assume that T X is a closed subset of X and the following conditions are satisfied:
(i) there exists x0 ∈ X such that α (T x0) ≥ 1 and β (T x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that xn → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1, and γ (xn) ≤ 1

for all n, then γ (x) ≤ 1;
(iii) α (Tu) ≥ 1 and β (Tv) ≥ 1, and λ (Tu) ≤ 1 and γ (Tv) ≤ 1 whenever f u = Tu and f v = Tv.

Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly compatible,
then f and T have a unique common fixed point.

Corollary 2.8. Let (X, d) be a complete metric space and let f and T be self-mappings on X such
that f X ⊂ T X. Let f be a T-cyclic (α, β,H, F)-admissible mapping and T-cyclic (λ, γ)-subadmissible
mapping such that

(α (T x) β (Ty) + l)ϕ(d( f x, f y))
≤ (1 + l)γ(T x)λ(Ty)η(M(x,y))

for all x, y ∈ X, where ϕ is an altering distance function and η : [0,+∞)→ [0,+∞) is a nondecreasing
and right-continuous function with the condition ϕ(t) > η(t) for all t > 0 and

M (x, y) = max{d (T x,Ty) , d (T x, f x) , d (Ty, f y) ,
1
2

[
d (T x, f y) + d (Ty, f x)

]
}.

Assume that T X is a closed subset of X and the following conditions are satisfied:
(i) there exists x0 ∈ X such that α (T x0) ≥ 1 and β (T x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that xn → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1, and γ (xn) ≤ 1

for all n, then γ (x) ≤ 1;
(iii) α (Tu) ≥ 1 and β (Tv) ≥ 1, and λ (Tu) ≤ 1 and γ (Tv) ≤ 1 whenever f u = Tu and f v = Tv.

Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly compatible,
then f and T have a unique common fixed point.
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Corollary 2.9. Let (X, d) be a complete metric space and let f and T be self-mappings on X such
that f X ⊂ T X. Let f be a T-cyclic (α, β,H, F)-admissible mapping and T-cyclic (λ, γ)-subadmissible
mapping such that

(ϕ (d ( f x, f y)) + l)α(T x)β(Ty)
≤ γ (T x) λ (Ty) η (M (x, y)) + l

for all x, y ∈ X, where ϕ is an altering distance function and η : [0,+∞)→ [0,+∞) is a nondecreasing
and right-continuous function with the condition ϕ(t) > η(t) for all t > 0 and

M (x, y) = max{d (T x,Ty) , d (T x, f x) , d (Ty, f y) ,
1
2

[
d (T x, f y) + d (Ty, f x)

]
}.

Assume that T X is a closed subset of X and the following conditions are satisfied:
(i) there exists x0 ∈ X such that α (T x0) ≥ 1 and β (T x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that xn → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1, and γ (xn) ≤ 1

for all n, then γ (x) ≤ 1;
(iii) α (Tu) ≥ 1 and β (Tv) ≥ 1, and λ (Tu) ≤ 1 and γ (Tv) ≤ 1 whenever f u = Tu and f v = Tv.

Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly compatible,
then f and T have a unique common fixed point.

Corollary 2.10. Let (X, d) be a complete metric space and let f and T be self-mappings on X such that
f X ⊂ T X. Let f be a T-cyclic (α, β,H, F)-admissible mapping such that

H(α (T x) , β (Ty) , ϕ (d ( f x, f y))) ≤ F(1, η (M (x, y))) (2.15)

for all x, y ∈ X, where ϕ is an altering distance function and η : [0,+∞)→ [0,+∞) is a nondecreasing
and right-continuous function with the condition ϕ(t) > η(t) for all t > 0 and

M (x, y) = max
{

d (T x,Ty) , d (T x, f x) , d (Ty, f y) ,
1
2

[
d (T x, f y) + d (Ty, f x)

]}
.

Assume that T X is a closed subset of X and the following conditions are satisfied:
(i) there exists x0 ∈ X such that α (T x0) ≥ 1 and β (T x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that xn → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1;
(iii) α (Tu) ≥ 1 and β (Tv) ≥ 1 whenever f u = Tu and f v = Tv.

Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly compatible,
then f and T have a unique common fixed point.

Proof. Take γ (T x) λ (Ty) = 1, for x, y ∈ X. If we take ψ (t1, t2, t3, t4) = max {t1, t2, t3, t4} in Corollary
2.7, then from (2.15), we have

α (T x) β (Ty)ϕ (d ( f x, f y)) ≤ γ (T x) λ (Ty) η (M (x, y)) .

This implies that the inequality (2.14) holds. Therefore, the proof follows from Corollary 2.7. �

If we choose T = IX in Theorem 2.3, then we have the following corollary.
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Corollary 2.11. Let (X, d) be a complete metric space and f : X → X be a cyclic
(α, β,H, F)-admissible mapping and a cyclic (λ, γ)-subadmissible mapping such that

H(α (x) , β (y) , ϕ (d ( f x, f y))) ≤ F(γ (x) λ (y) , η (M (x, y)))

for all x, y ∈ X, where the pair (F, h) is an upper class of type II, ϕ is an altering distance function and
η : [0,+∞)→ [0,+∞) is a nondecreasing and right-continuous function with the condition ϕ(t) > η(t)
for all t > 0 and

M f (x, y) = ψ

(
d (x, y) , d (x, f x) , d (y, f y) ,

1
2

[
d (x, f y) + d (y, f x)

])
.

Assume that the following conditions are satisfied:
(i) there exists x0 ∈ X such that α (x0) ≥ 1 and β (x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that xn → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1;
(iii) α (u) ≥ 1 and β (v) ≥ 1 whenever f u = u and f v = v.

Then f has a unique fixed point.

If we take η (t) = ϕ (t) − η1 (t) in Corollary 2.5, then we have the following corollary.

Corollary 2.12. Let (X, d) be a complete metric space and f : X → X be a cyclic
(α, β,H, F)-admissible mapping and a cyclic (λ, γ)-subadmissible mapping such that

H(α (x) , β (y) , ϕ (d ( f x, f y))) ≤ F(γ (x) λ (y) , ϕ
(
M f (x, y)

)
− η1

(
M f (x, y)

)
)

for all x, y ∈ X, where the pair (F, h) is an upper class of type II, ϕ is an altering distance function and
η1 : [0,+∞)→ [0,+∞) is such that ϕ(t)− η1(t) is nondecreasing and η1(t) is continuous from the right
with the condition ϕ(t) > η1(t) for all t > 0.
Assume that the following conditions are satisfied:

(i) there exists x0 ∈ X such that α (x0) ≥ 1 and β (x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that xn → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1;
(iii) α (u) ≥ 1 and β (v) ≥ 1 whenever f u = u and f v = v.

Then f has a unique fixed point.

If we take ϕ (t) = t in Corollary 2.12, then we have the following corollary.

Corollary 2.13. Let (X, d) be a complete metric space and f : X → X be a cyclic
(α, β,H, F)-admissible mapping and a cyclic (λ, γ)-subadmissible mapping such that

H(α (x) , β (y) , d ( f x, f y)) ≤ F(γ (x) λ (y) ,M f (x, y) − η1
(
M f (x, y)

)
)

for all x, y ∈ X, where the pair (F, h) is an upper class of type II and η1 : [0,+∞) → [0,+∞) is such
that t− η1(t) is nondecreasing and η1(t) is continuous from the right with the condition η1(t) > 0 for all
t > 0.
Assume that the following conditions are satisfied:

(i) there exists x0 ∈ X such that α (x0) ≥ 1 and β (x0) ≥ 1;
(ii) if {xn} is a sequence in X such that xn → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1;
(iii) α (u) ≥ 1 and β (v) ≥ 1 whenever f u = u and f v = v.

Then f has a unique fixed point.
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Example 2.14. Let X = R be endowed with the usual metric d (x, y) = |x − y| for all x, y ∈ X. Let
H : R+ × R+ × R+ → R+ be defined by H(x, y, z) = z and F : R+ × R+ → R+ by F(s, t) = st for
all x, y, s, t ∈ R+ and ϕ (t) = t, η (t) = 1

5 t for all t ≥ 0, and ψ (t1, t2, t3, t4) = max {t1, t2, t3, t4} for all
t1, t2, t3, t4 ≥ 0.
Now, we define the self-mappings f and T on X by

f x =

− x
5 if x ∈ [0, 1] ,

x
25 if x ∈ R\ [0, 1]

and T x =

 x
5 if x ∈ [−1, 0] ,
x
6 if R\ [−1, 0] .

and the mappings α, β, γ, λ : X → [0,∞) by

α (x) = β (x) =

1 if x ∈
[
−1

4 , 0
]
,

0 otherwise.
γ (x) = 1and λ (x) =

1
2
.

Then it is clear that f X ⊂ T X.
Let x ∈ X such that α (T x) ≥ 1 so that T x ∈

[
−1

5 , 0
]

and hence x ∈ [−1, 0] . By the definitions of f

and β, we have f x ∈
[
−1

5 , 0
]

and so β ( f x) ≥ 1.
Similarly, one can show that if β (T x) ≥ 1 then α ( f x) ≥ 1. Thus, f is a T -cyclic (α, β)-admissible

mapping. Moreover, the conditions α (T x0) ≥ 1 and β (T x0) ≥ 1 are satisfied with x0 = −1.
Now, let {xn} be a sequence in X such that β (xn) ≥ 1 for all n ∈ N and {xn} → x as n → +∞. Then, by
the definition of β, we have xn ∈

[
−1

5 , 0
]

for all n ∈ N and so x ∈
[
−1

5 , 0
]
, that is, β (x) ≥ 1.

Next, we prove that f is a T -cyclic (α, β)-contractive mapping. By the definitions of the mappings
we get

H(α (T x) , β (Ty) , ϕ (d ( f x, f y))) ≤ F(γ (T x) λ (Ty) , η (M (x, y)))

and so
ϕ (d ( f x, f y))) ≤ γ (T x) · λ (Ty) · η (M (x, y)) .

Let α (T x) β (Ty) ≥ 1. Then T x,Ty ∈
[
−1

5 , 0
]

and so x, y ∈ [−1, 0] . Thus, we get

ϕ (d ( f x, f y)) = (d ( f x, f y)) = | f x − f y| =
1

25
|x − y| ≤

2
25
|x − y| =

2
5
|T x − Ty| =

= 1 · 2 ·
1
5

M (x, y) = γ(T x) · λ(Ty) · η (M (x, y)) .

Obviously, the assumption (iii) of Corollary 2.10 is satisfied. Consequently, all the conditions of
Corollary 2.10 hold and hence f and T have a unique common fixed point. Here, 0 is the common
fixed point of f and T.

Definition 2.15. Let (X, d) be a metric space and let f be a T -cyclic (α, β)-admissible mapping and
a cyclic (λ, γ)-subadmissible mapping. We say that f is a T -cyclic (α, β,H, F)-rational contractive
mapping if

H(α (T x) , β (Ty) , ϕ (d ( f x, f y))) ≤ F(γ (T x) λ (Ty) , η (N (x, y))) (2.16)

for all x, y ∈ X, where

N (x, y) = φ

(
d (T x,Ty) ,

1
2

d (T x, f y) , d (Ty, f x) ,
[
1 + d (T x, f x)

]
d (Ty, f y)

1 + d (T x,Ty)

)
AIMS Mathematics Volume 5, Issue 5, 4853–4873.



4865

for φ ∈ Φ, ϕ is an altering distance function, pair (F, h) is an upper class of type II and η : [0,+∞) →
[0,+∞) is a nondecreasing and right-continuous function with the condition ϕ(t) > η(t) for all t > 0.

Theorem 2.16. Let (X, d) be a complete metric space and let f and T be self-mappings on X such that
f X ⊂ T X. Let f be a T-cyclic (α, β,H, F)-rational contractive mapping. Assume that T X is a closed
subset of X and the following conditions are satisfied:

(i) there exists x0 ∈ X such that α (T x0) ≥ 1 and β (T x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that xn → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1, and γ (xn) ≤ 1

for all n, then γ (x) ≤ 1;
(iii) α (Tu) ≥ 1 and β (Tv) ≥ 1, and λ (Tu) ≤ 1 and γ (Tv) ≤ 1whenever f u = Tu and f v = Tv.

Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly compatible,
then f and T have a unique common fixed point.

Proof. Similar to the proof of Theorem 2.3, we define sequences {xn} and {yn} in X by yn = f xn = T xn+1

and note that α (T xn) , β (T xn+1) ≥ 1 and also λ (T xn) γ (T xn+1) ≤ 1 for all n ∈ N∪{0} .Also, we assume
that yn , yn−1 for all n ∈ N. Then by (2.16), we have

H(1, 1, ϕ (d (yn, yn+1))) = H(1, 1, ϕ (d ( f xn, f xn+1)))
≤ H(α (T xn) , β (T xn+1) , ϕ (d ( f xn, f xn+1)))
≤ F(λ (T xn) γ (T xn+1) , η (N (xn, xn+1))) ≤ F(1, η (N (xn, xn+1))).

This implies that

ϕ (d (yn, yn+1)) ≤ η (N (xn, xn+1)) < ϕ (N (xn, xn+1)) . (2.17)

Since ϕ is nondecreasing, we get
d (yn, yn+1) < N (xn, xn+1) , (2.18)

where

N (xn, xn+1) = φ
(
d (T xn,T xn+1) ,

1
2

d (T xn, f xn+1) , d (T xn+1, f xn) ,[
1 + d (T xn, f xn)

]
d (T xn+1, f xn+1)

1 + d (T xn,T xn+1)

)
= φ

(
d (yn−1, yn) ,

1
2

d (yn−1, yn+1) , d (yn, yn) ,
[
1 + d (yn−1, yn)

]
d (yn, yn+1)

1 + d (yn−1, yn)

)
≤ φ

(
d (yn−1, yn) ,

1
2

[
d (yn−1, yn) + d (yn, yn+1)

]
, 0, d (yn, yn+1)

)
. (2.19)

Thus, from (2.18), we deduce

d (yn, yn+1) < N (xn, xn+1)

≤ φ

(
d (yn−1, yn) ,

1
2

[
d (yn−1, yn) + d (yn, yn+1)

]
, 0, d (yn, yn+1)

)
.

If d (yn−1, yn) ≤ d (yn, yn+1) for some n ∈ N, then

d (yn, yn+1) < φ

(
d (yn−1, yn) ,

1
2

[
d (yn−1, yn) + d (yn, yn+1)

]
, 0, d (yn, yn+1)

)
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≤ φ (d (yn, yn+1) , d (yn, yn+1) , d (yn, yn+1) , d (yn, yn+1))

≤ d (yn, yn+1) ,

which is a contradiction and hence d (yn, yn+1) < d (yn−1, yn) for all n ∈ N. Therefore, the sequence
{d (yn, yn+1)} is decreasing and bounded from below. Thus, there exists δ ≥ 0 such that
limn→+∞ d (yn, yn+1) = δ. Also, from (2.17), (2.19) and using the properties of ϕ and η, we obtain

ϕ (d (yn, yn+1))

≤ η (N (xn, xn+1))

≤ η

(
φ

(
d (yn−1, yn) ,

1
2

[
d (yn−1, yn) + d (yn, yn+1)

]
, 0, d (yn, yn+1)

))
≤ η (φ (d (yn−1, yn) , d (yn−1, yn) , d (yn−1, yn) , d (yn−1, yn)))

≤ η (d (yn−1, yn)) < ϕ (d (yn−1, yn)) . (2.20)

Consider the properties of ϕ and η. Letting n→ +∞ in (2.20), we get

ϕ (δ) = lim
n→+∞

ϕ (d (yn, yn+1))

≤ lim
n→+∞

η (d (yn−1, yn)) = η (δ) < ϕ (δ) ,

which implies δ = 0 and so
lim

n→+∞
d (yn, yn+1) = 0. (2.21)

Now, we want to show that {yn} is a Cauchy sequence. Suppose, to the contrary, that {yn} is not a
Cauchy sequence. Then, by Lemma 1.14, there exist an ε > 0 and two subsequences

{
ymk

}
and

{
ynk

}
of

{yn} with mk > nk > k such that d(ym(k), yn(k)) ≥ ε, d(ym(k)−1, yn(k)) < ε and

lim
k→+∞

d
(
ynk , ymk

)
= lim

k→+∞
d
(
ynk−1, ymk

)
= lim

k→+∞
d
(
ymk−1, ynk

)
= lim

k→+∞
d
(
ymk−1, ynk−1

)
= ε. (2.22)

From (2.16), we get

H(1, 1, ϕ
(
d
(
ynk , ymk

))
) = H(1, 1, ϕ

(
d
(
f xnk , f xmk

))
)

≤ H(α
(
T xnk

)
, β

(
T xmk

)
, ϕ

(
d
(
f xnk , f xmk

))
≤ F(λ

(
T xnk

)
γ
(
T xmk

)
, η

(
N

(
xnk , xmk

))
) ≤ F(1, η

(
N

(
xnk , xmk

))
).

This implies

ϕ
(
d
(
ynk , ymk

))
≤ η

(
N

(
xnk , xmk

))
< ϕ

(
N

(
xnk , xmk

))
, (2.23)

where

N
(
xnk , xmk

)
= φ

(
d
(
T xnk ,T xmk

)
,

1
2

d
(
T xnk , f xmk

)
, d

(
T xmk , f xnk

)
,[

1 + d
(
T xnk , f xnk

)]
d
(
T xmk , f xmk

)
1 + d

(
T xnk ,T xmk

) )
= φ

(
d
(
ynk−1, ymk−1

)
,

1
2

d
(
ynk−1, ymk

)
, d

(
ymk−1, ynk

)
,
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1 + d

(
ynk−1, ynk

)]
d
(
ymk−1, ymk

)
1 + d

(
ynk−1, ymk−1

) )
≤ max{ε,N

(
xnk , xmk

)
}

= φ
(

max{ε, d
(
ynk−1, ymk−1

)
},

1
2

max{ε, d
(
ynk−1, ymk

)
},

max{ε, d
(
ymk−1, ynk

)
},

[
1 + d

(
ynk−1, ynk

)]
d
(
ymk−1, ymk

)
1 + d

(
ynk−1, ymk−1

) )
.

Therefore, limk→+∞max{ε,N
(
xnk , xmk

)
} = φ

(
ε, ε2 , ε, 0

)
≤ ε.

Now, from the properties of ϕ and η and using (2.22) and the previous inequality, as k → +∞ in
(2.23), we have

ϕ (ε) = lim
k→+∞

ϕ
(
d
(
ymk , ynk

))
≤ lim

k→+∞
η
(
max{ε,N

(
xnk , xmk

)
}
)
≤ η (ε) < ϕ (ε) ,

which implies that ε = 0, a contradiction with ε > 0. Thus, {yn} is a Cauchy sequence in X. From the
completeness of (X, d) , there exists w ∈ X such that

lim
n→+∞

yn = w (2.24)

and so by (2.24), we obtain
f xn → w and T xn+1 → w. (2.25)

Since T X is closed, by (2.25), w ∈ T X. Therefore, there exists v ∈ X such that Tv = w. Since yn → w
and β (yn) = β (T xn+1) ≥ 1 for all n ∈ N, by (ii) , β (w) = β (Tv) ≥ 1. Similarly, γ (z) = γ (Tu) ≤ 1.
Thus, λ (T xn) γ (Tv) ≤ 1 for all n ∈ N.

Now, applying (2.16), we get

H(1, 1, ϕ (d ( f xn, f v))) ≤ H(α (T xn) , β (Tv) , ϕ (d ( f xn, f v))

≤ F(λ (T xn) γ (Tv) , η (N (xn, v))) ≤ F(1, η (N (xn, v))),

which implies that

ϕ (d ( f xn, f v)) ≤ η (N (xn, v)) , (2.26)

where

N (xn, v) ≤ φ
(
d (T xn,Tv) ,

1
2

max{d(v, f v), d (T xn, f v)}, d (Tv, f xn) ,

d (Tv, f v) max
{[

1 + d (T xn, f xn)
]

1 + d (T xn,Tv)
, 1

} )
.

Taking k → +∞ in the inequality (2.26), using the properties of ϕ, η and the previous inequality, we
have

ϕ (d (w, f v)) ≤ η

(
φ

(
0,

1
2

d (w, f v) , 0, d (w, f v)
))

≤ η (d (w, f v)) < ϕ (d (w, f v)) ,
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which implies d (w, f v) = 0, that is, w = f v. Thus, we deduce

w = f v = Tv, (2.27)

and so w is a point of coincidence for f and T . The uniqueness of the point of coincidence is a
consequence of the conditions (2.16) and (iii), and so we omit the details.

By (2.27) and using weakly compatibility of f and T, we obtain

f w = f Tv = T f v = Tw.

The uniqueness of the point of coincidence implies w = f w = Tw. Consequently, w is the unique
common fixed point of f and T . �

Corollary 2.17. Let (X, d) be a complete metric space and let f and T be self-mappings on X such
that f X ⊂ T X. Let f be a T-cyclic (α, β,H, F)-admissible mapping and T-cyclic (λ, γ)-subadmissible
mapping such that

H(α (T x) , β (Ty) , ϕ (d ( f x, f y))) ≤ F(γ (T x) λ (Ty) , η (N (x, y)))

for all x, y ∈ X, where ϕ is an altering distance function and η : [0,+∞)→ [0,+∞) is a nondecreasing
and right-continuous function with the condition ϕ(t) > η(t) for all t > 0 and

N (x, y) = φ

(
d (T x,Ty) ,

1
2

d (T x, f y) , d (Ty, f x) ,
[
1 + d (T x, f x)

]
d (Ty, f y)

1 + d (T x,Ty)

)
for φ ∈ Φ. Assume that T X is a closed subset of X and the following conditions are satisfied:

(i) there exists x0 ∈ X such that α (T x0) ≥ 1 and β (T x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that {xn} → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1, and

γ (xn) ≤ 1 for all n, then γ (x) ≤ 1;
(iii) α (Tu) ≥ 1 and β (Tv) ≥ 1, and λ (Tu) ≤ 1 and γ (Tv) ≤ 1 whenever f u = Tu and f v = Tv.

Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly compatible,
then f and T have a unique common fixed point.

Corollary 2.18. Let (X, d) be a complete metric space and let f and T be self-mappings on X such
that f X ⊂ T X. Let f be a T-cyclic (α, β,H, F)-admissible mapping and T-cyclic (λ, γ)-subadmissible
mapping such that

(α (T x) β (Ty) + l)ϕ(d( f x, f y))
≤ (1 + l)γ(T x)λ(Ty)η(N(x,y))

for all x, y ∈ X, where ϕ is an altering distance function and η : [0,+∞)→ [0,+∞) is a nondecreasing
and right-continuous function with the condition ϕ(t) > η(t) for all t > 0 and

N (x, y) = φ

(
d (T x,Ty) ,

1
2

d (T x, f y) , d (Ty, f x) ,
[
1 + d (T x, f x)

]
d (Ty, f y)

1 + d (T x,Ty)

)
for φ ∈ Φ. Assume that T X is a closed subset of X and the following conditions are satisfied:

(i) there exists x0 ∈ X such that α (T x0) ≥ 1 and β (T x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that {xn} → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1, and

γ (xn) ≤ 1 for all n, then γ (x) ≤ 1;
(iii) α (Tu) ≥ 1 and β (Tv) ≥ 1, and λ (Tu) ≤ 1 and γ (Tv) ≤ 1 whenever f u = Tu and f v = Tv.

Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly compatible,
then f and T have a unique common fixed point.
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Corollary 2.19. Let (X, d) be a complete metric space and let f and T be self-mappings on X such
that f X ⊂ T X. Let f be a T-cyclic (α, β,H, F)-admissible mapping and T-cyclic (λ, γ)-subadmissible
mapping such that

(ϕ (d ( f x, f y)) + l)α(T x)β(Ty)
≤ (γ (T x) λ (Ty) η (N (x, y)) + l

for all x, y ∈ X, where ϕ is an altering distance function and η : [0,+∞)→ [0,+∞) is a nondecreasing
and right-continuous function with the condition ϕ(t) > η(t) for all t > 0 and

N (x, y) = φ

(
d (T x,Ty) ,

1
2

d (T x, f y) , d (Ty, f x) ,
[
1 + d (T x, f x)

]
d (Ty, f y)

1 + d (T x,Ty)

)
for φ ∈ Φ. Assume that T X is a closed subset of X and the following conditions are satisfied:

(i) there exists x0 ∈ X such that α (T x0) ≥ 1 and β (T x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that {xn} → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1, and

γ (xn) ≤ 1 for all n, then γ (x) ≤ 1;
(iii) α (Tu) ≥ 1 and β (Tv) ≥ 1, and λ (Tu) ≤ 1 and γ (Tv) ≤ 1 whenever f u = Tu and f v = Tv.

Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly compatible,
then f and T have a unique common fixed point.

Corollary 2.20. Let (X, d) be a complete metric space and let f and T be self-mappings on X such
that f X ⊂ T X. Let f be a T-cyclic (α, β,H, F)-admissible mapping and T-cyclic (λ, γ)-subadmissible
mapping such that

H(α (T x) , β (Ty) , ϕ (d ( f x, f y))) ≤ F(γ (T x) , λ (Ty) , η (N (x, y)))

for all x, y ∈ X, where ϕ is an altering distance function and η : [0,+∞)→ [0,+∞) is a nondecreasing
and right-continuous function with the condition ϕ(t) > η(t) for all t > 0 and

N (x, y) = max{d (T x,Ty) ,
1
2

d (T x, f y) , d (Ty, f x) ,
[
1 + d (T x, f x)

]
d (Ty, f y)

1 + d (T x,Ty)
}.

Assume that T X is a closed subset of X and the following conditions are satisfied:
(i) there exists x0 ∈ X such that α (T x0) ≥ 1 and β (T x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that {xn} → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1, and

γ (xn) ≤ 1 for all n, then γ (x) ≤ 1;
(iii) α (Tu) ≥ 1 and β (Tv) ≥ 1, and λ (Tu) ≤ 1 and γ (Tv) ≤ 1 whenever f u = Tu and f v = Tv.

Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly compatible,
then f and T have a unique common fixed point.

Corollary 2.21. Let (X, d) be a complete metric space and let f and T be self-mappings on X such
that f X ⊂ T X. Let f be a T-cyclic (α, β,H, F)-admissible mapping and T-cyclic (λ, γ)-subadmissible
mapping such that

(α (T x) β (Ty) + l)ϕ(d( f x, f y))
≤ (1 + l)γ(T x)λ(Ty)η(N(x,y))

for all x, y ∈ X, where ϕ is an altering distance function and η : [0,+∞)→ [0,+∞) is a nondecreasing
and right-continuous function with the condition ϕ(t) > η(t) for all t > 0 and

N (x, y) = max{d (T x,Ty) ,
1
2

d (T x, f y) , d (Ty, f x) ,
[
1 + d (T x, f x)

]
d (Ty, f y)

1 + d (T x,Ty)
}.
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Assume that T X is a closed subset of X and the following conditions are satisfied:
(i) there exists x0 ∈ X such that α (T x0) ≥ 1 and β (T x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that {xn} → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1, and

γ (xn) ≤ 1 for all n, then γ (x) ≤ 1;
(iii) α (Tu) ≥ 1 and β (Tv) ≥ 1, and λ (Tu) ≤ 1 and γ (Tv) ≤ 1 whenever f u = Tu and f v = Tv.

Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly compatible,
then f and T have a unique common fixed point.

Corollary 2.22. Let (X, d) be a complete metric space and let f and T be self-mappings on X such
that f X ⊂ T X. Let f be a T-cyclic (α, β,H, F)-admissible mapping and T-cyclic (λ, γ)-subadmissible
mapping such that

(ϕ (d ( f x, f y)) + l)α(T x)β(Ty)
≤ γ (T x) λ (Ty) η (N (x, y)) + l

for all x, y ∈ X, where ϕ is an altering distance function and η : [0,+∞)→ [0,+∞) is a nondecreasing
and right-continuous function with the condition ϕ(t) > η(t) for all t > 0 and

N (x, y) = max{d (T x,Ty) ,
1
2

d (T x, f y) , d (Ty, f x) ,
[
1 + d (T x, f x)

]
d (Ty, f y)

1 + d (T x,Ty)
}.

Assume that T X is a closed subset of X and the following conditions are satisfied:
(i) there exists x0 ∈ X such that α (T x0) ≥ 1 and β (T x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that {xn} → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1, and

γ (xn) ≤ 1 for all n, then γ (x) ≤ 1;
(iii) α (Tu) ≥ 1 and β (Tv) ≥ 1, and λ (Tu) ≤ 1 and γ (Tv) ≤ 1 whenever f u = Tu and f v = Tv.

Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly compatible,
then f and T have a unique common fixed point.

If we take ψ (t1, t2, t3, t4) = max {t1, t2, t3, t4} and γ (T x) λ (Ty) = 1 for all x, y ∈ X, then we have the
following result.

Corollary 2.23. Let (X, d) be a complete metric space and let f and T be self-mappings on X such that
f X ⊂ T X. Let f be a T-cyclic (α, β,H, F)-admissible mapping such that

H(α (T x) , β (Ty) , ϕ (d ( f x, f y))) ≤ F(1, η (N (x, y)))

for all x, y ∈ X, where ϕ is an altering distance function and η : [0,+∞)→ [0,+∞) is a nondecreasing
and right-continuous function with the condition ϕ(t) > η(t) for all t > 0 and

N (x, y) = max
{

d (T x,Ty) ,
1
2

d (T x, f y) , d (Ty, f x) ,
[
1 + d (T x, f x)

]
d (Ty, f y)

1 + d (T x,Ty)

}
.

Assume that T X is a closed subset of X and the following conditions are satisfied:
(i) there exists x0 ∈ X such that α (T x0) ≥ 1 and β (T x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that {xn} → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1;
(iii) α (Tu) ≥ 1 and β (Tv) ≥ 1 whenever f u = Tu and f v = Tv.

Then f and T have a unique point of coincidence in X. Moreover, if f and T are weakly compatible,
then f and T have a unique common fixed point.
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If we choose T = IX in Theorem 2.3, then we have the following corollary.

Corollary 2.24. Let (X, d) be a complete metric space and f : X → X be a cyclic
(α, β,H, F)-admissible mapping and a cyclic (λ, γ)-subadmissible mapping such that

H(α (x) , β (y) , ϕ (d ( f x, f y))) ≤ F(γ (x) λ (y) , η
(
N f (x, y)

)
)

for all x, y ∈ X, where pair (F, h) is an upper class of type II, ϕ is an altering distance function and
η : [0,+∞)→ [0,+∞) is a nondecreasing and right-continuous function with the condition ϕ(t) > η(t)
for all t > 0 and

N f (x, y) = φ

(
d (x, y) ,

1
2

d (x, f y) , d (y, f x) ,
[
1 + d (x, f x)

]
d (y, f y)

1 + d (x, y)

)
.

Assume that the following conditions are satisfied:
(i) there exists x0 ∈ X such that α (x0) ≥ 1 and β (x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that {xn} → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1;
(iii) α (u) ≥ 1 and β (v) ≥ 1 whenever f u = u and f v = v.

Then f has a unique fixed point.

If we take η (t) = ϕ (t) − η1 (t) in Corollary 2.5, then we have the following corollary.

Corollary 2.25. Let (X, d) be a complete metric space and f : X → X be a cyclic (α, β)-admissible
mapping and a cyclic (λ, γ)-subadmissible mapping such that

H(α (x) , β (y) , ϕ (d ( f x, f y))) ≤ F(γ (x) λ (y) , ϕ
(
N f (x, y)

)
− η1

(
N f (x, y)

)
)

for all x, y ∈ X, where pair (F, h) is an upper class of type II, ϕ is an altering distance function and
η1 : [0,+∞)→ [0,+∞) is such that ϕ(t)− η1(t) is nondecreasing and η1(t) is continuous from the right
with the condition ϕ(t) > η1(t) for all t > 0.
Assume that the following conditions are satisfied:

(i) there exists x0 ∈ X such that α (x0) ≥ 1 and β (x0) ≥ 1, and λ (T x0) ≤ 1 and γ (T x0) ≤ 1;
(ii) if {xn} is a sequence in X such that {xn} → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1;
(iii) α (u) ≥ 1 and β (v) ≥ 1 whenever f u = u and f v = v.

Then f has a unique fixed point.

If we take ϕ (t) = t in Corollary 2.6, then we have the following corollary.

Corollary 2.26. Let (X, d) be a complete metric space and f : X → X be a cyclic
(α, β,H, F)-admissible mapping and a cyclic (λ, γ)-subadmissible mapping such that

H(α (x) , β (y) , d ( f x, f y)) ≤ F(γ (x) λ (y) ,N f (x, y) − η1
(
N f (x, y)

)
)

for all x, y ∈ X, where pair (F, h) is an upper class of type II and η1 : [0,+∞) → [0,+∞) is such that
t − η1(t) is nondecreasing and η1(t) is continuous from the right with the condition η1(t) > 0 for all
t > 0.
Assume that the following conditions are satisfied:

(i) there exists x0 ∈ X such that α (x0) ≥ 1 and β (x0) ≥ 1;
(ii) if {xn} is a sequence in X such that {xn} → x and β (xn) ≥ 1 for all n, then β (x) ≥ 1;
(iii) α (u) ≥ 1 and β (v) ≥ 1 whenever f u = u and f v = v.

Then f has a unique fixed point.
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3. Conclusion

In this paper, we have introduced the notions of T -cyclic (α, β,H, F)-contractive mappings using a
pair (F, h)-upper class functions type in order to obtain new common fixed point results in the settings
of metric spaces. The presented results have generalized and extended existing results in the literature.
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intégrales, Fund. Math., 3 (1922), 133–181.

8. T. C. Bhakta and S. Mitra, Some existence theorems for functional equations arising in dynamic
programming, J. Math. Anal. Appl., 98 (1984), 348–362.

9. N. Boonsri and S. Saejung, Fixed point theorems for contractions of Reich type on a metric space
with a graph, J. Fixed Point Theory Appl., 20 (2018), 84.

10. S. H. Cho and J. S. Bae, Fixed points of weak α-contraction type maps, Fixed Point Theory Appl.,
2014 (2014), 175.

11. D. Gopal, M. Abbas and C. Vetro, Some new fixed point theorems in Menger PM-spaces with
application to Volterra type integral equation, Appl. Math. Comput., 232 (2014), 955–967.

12. M. Imdad, S. Chauhan, Z. Kadelburg, et al. Fixed point theorems for non-self mappings in
symmetric spaces under φ-weak contractive conditions and an application to functional equations
in dynamic programming, Appl. Math. Comput., 227 (2014), 469–479.

AIMS Mathematics Volume 5, Issue 5, 4853–4873.



4873

13. H. Isik, B. Samet and C. Vetro, Cyclic admissible contraction and applications to functional
equations in dynamic programming, Fixed Point Theory Appl., 2015 (2015), 163.

14. G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J.
Pure Appl. Math., 29 (1998), 227–238.

15. Z. Kadelburg and S. Radenovic, On generalized metric spaces: a survey, TWMS J. Pure Appl.
Math., 5 (2014), 3–13.

16. M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points,
Bull. Austral. Math. Soc., 30 (1984), 1–9.

17. W. A. Kirk, P. S. Srinavasan and P. Veeramani, Fixed points for mapping satisfying cylical
contractive conditions, Fixed Point Theory, 4 (2003), 79–89.

18. S. Kumar, A short survey of the development of fixed point theory, Surveys Math. Appl., 8 (2013),
91–101.

19. M. Pacurar and I. A. Rus, Fixed point theory for cyclic φ-contractions, Nonlinear Anal., 72 (2010),
1181–1187.

20. A. Padcharoen, D. Gopal, P. Chaipunya, et al. Fixed point and periodic point results for α–type
F-contractions in modular metric spaces, Fixed Point Theory Appl., 2016 (2016), 39.
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