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1. Introduction

Throughout this paper,N andQ are the set of all positive integers and rational numbers, respectively,

N0 := N ∪ {0},R+ := [0,∞). Moreover, for the set X, we denote
n−times︷              ︸︸              ︷

X × X × · · · × X by Xn. For any
l ∈ N0,m ∈ N, t = (t1, . . . , tm) ∈ {−1, 1}m and x = (x1, . . . , xm) ∈ Vm we write lx := (lx1, . . . , lxm) and
tx := (t1x1, . . . , tmxm), where ra stands, as usual, for the rth power of an element a of the commutative
group V .

Let V be a commutative group, W be a linear space, and n ≥ 2 be an integer. Recall from [15] that
a mapping f : Vn −→ W is called multi-additive if it is additive (satisfies Cauchy’s functional equation
A(x + y) = A(x) + A(y)) in each variable. Some basic facts on such mappings can be found in [19]
and many other sources, where their application to the representation of polynomial functions is also
presented. Besides, f is said to be multi-quadratic if it is quadratic in each variable, i.e., it satisfies the
quadratic equation

Q(x + y) + Q(x − y) = 2Q(x) + 2Q(y) (1.1)
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in each variable [14]. In [27], Zhao et al. proved that the mapping f : Vn −→ W is multi-quadratic if
and only if the following relation holds.∑

t∈{−1,1}n
f (x1 + tx2) = 2n

∑
j1, j2,..., jn∈{1,2}

f (x1 j1 , x2 j2 , . . . , xn jn) (1.2)

where x j = (x1 j, x2 j, . . . , xn j) ∈ Vn with j ∈ {1, 2}.
The stability of a functional equation originated from a question raised by Ulam: “when is it true that

the solution of an equation differing slightly from a given one must of necessity be close to the solution
of the given equation?” (see [26]). The first answer (in the case of Cauchy’s functional equation in
Banach spaces) to Ulam’s question was given by Hyers in [18]. Following his result, a great number of
papers on the the stability problems of several functional equations have been extensively published as
generalizing Ulam’s problem and Hyers’ theorem in various directions; see for instance [1,4,21,23,28],
and the references given there.

It is worth mentioning that the fixed point theorems have been considered for various mappings,
integral and fractional equations in [3,12,13]. Some investigations have been carried out on the stability
of functional equations via fixed point theorems in [5–7, 11]. Moreover, the fixed point theorem were
recently applied to obtain similar stability results in [9, 16, 22, 25].

In [14, 15], Ciepliński studied the generalized Hyers-Ulam stability of multi-additive and
multi-quadratic mappings in Banach spaces, respectively (see also [27]). Next, the stability of
multi-Cauchy-Jensen mappings in non-Archimedean spaces are studied in [2] by applying the fixed
point method, which was proved and used for the first time to investigate the Hyers-Ulam stability of
functional equations in [11]. For more information about multi-quadratic, multi-cubic and
multi-quartic mappings, we refer to [8, 10, 20, 24].

In this paper, we define the generalized multi-quadratic mappings and present a characterization of
such mappings. In other words, we reduce the system of n equations defining the generalized multi-
quadratic mappings to obtain a single functional equation. Then, we prove the generalized Hyers-Ulam
stability of multi-quadratic mapping (which was recently introduced by Salimi and Bodaghi in [24]) in
non-Archimedean normed spaces by a fixed point method.

2. Characterization of generalized multi-quadratic mappings

From now on, let V and W be vector spaces over Q, n ∈ N and xn
i = (xi1, xi2, . . . , xin) ∈ Vn, where

i ∈ {1, 2}. Let l j ∈ {1, 2}. Put

Mn
i = {x = (xl11, xl22, . . . , xlnn) ∈ Vn|Card{l j : l j = 1} = i}. (2.1)

We shall denote xn
i and Mn

i by xi and Mi, respectively if there is no risk of ambiguity.
A general form of (1.1), say the generalized quadratic functional equation is as follows:

Q(ax + by) +Q(ax − by) = 2a2
Q(x) + 2b2

Q(y) (2.2)

where a, b are the fixed non-zero numbers in Q. The mapping f : Vn −→ W is said to be generalized
n-multi-quadratic or generalized multi-quadratic if f is generalized quadratic in each variable.
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Put n := {1, . . . , n}, n ∈ N. For a subset T = { j1, . . . , ji} of n with 1 ≤ j1 < . . . < ji ≤ n and
x = (x1, . . . , xn) ∈ Vn,

T x := (0, . . . , 0, x j1 , 0, . . . , 0, x ji , 0, . . . , 0) ∈ Vn

denotes the vector which coincides with x in exactly those components, which are indexed by the
elements of T and whose other components are set equal zero. Note that φx = 0, nx = x. We use these
notations in the proof of upcoming lemma.

Let a ∈ Q be as in (2.2). We say the mapping f : Vn −→ W satisfies the r-power condition in the
jth variable if

f (z1, . . . , z j−1, az j, z j+1, . . . , zn) = ar f (z1, . . . , z j−1, z j, z j+1, . . . , zn),

for all (z1, . . . , zn) ∈ Vn. In the sequel,
(

n
k

)
is the binomial coefficient defined for all n, k ∈ N0 with

n ≥ k by n!/(k!(n − k)!). We shall to show that if a mapping f : Vn −→ W satisfies the equation∑
q∈{−1,1}n

f (ax1 + qbx2) = 2n
n∑

i=0

a2ib2(n−i)
∑
x∈Mi

f (x), (2.3)

where a, b are the fixed non-zero in Q with a + b , 1, then it is generalized multi-quadratic quadratic.
In order to do this, we need the next lemma.

Lemma 2.1. If the mapping f : Vn −→ W satisfies the Eq. (2.3) with 2-power condition in all
variables, then f (x) = 0 for any x ∈ Vn with at least one component which is equal to zero.

Proof. Putting x1 = x2 = (0, . . . , 0) in (2.3), we get

2n f (0, . . . , 0) = 2n
n∑

i=0

(
n
i

)
a2ib2(n−i) f (0, . . . , 0) = 2n(a + b)2n f (0, . . . , 0).

Since a + b , 1, f (0, . . . , 0) = 0. Letting x1k = 0 for all k ∈ {1, . . . , n}\{ j} and x2k = 0 for 1 ≤ k ≤ n in
(2.3) and using f (0, . . . , 0) = 0, we obtain

2na2 f (0, . . . , 0, x1 j, 0, · · · , 0) = 2n f (0, . . . , 0, ax1 j, 0, . . . , 0)

= 2na2
n−1∑
i=0

(
n − 1

i

)
a2ib2(n−1−i) f (0, . . . , 0, x1 j, 0, . . . , 0)

= 2na2(a + b)2(n−1) f (0, . . . , 0, x1 j, 0, . . . , 0).

Hence, f (0, . . . , 0, x1 j, 0, . . . , 0) = 0. We now assume that f (k−1x1) = 0 for 1 ≤ k ≤ n− 1. We are going
to show that f (kx1) = 0. By assumptions, the above process can be repeated to obtain

2n f (kx1) = 2na2k
n−k∑
i=0

(
n − k

i

)
a2ib2(n−k−i) f (kx1) = 2na2k(a + b)2(n−k) f (kx1), (2.4)

where 1 ≤ k ≤ n − 1 and so f (kx1) = 0. This shows that f (x) = 0 for any x ∈ Vn with at least one
component which is equal to zero. �

Theorem 2.2. Consider the mapping f : Vn −→ W. Then, the following assertions are equivalent:
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(i) f is generalized multi-quadratic;
(ii) f satisfies Eq. (2.3) with 2-power condition in all variables.

Proof. (i)⇒(ii) We firstly note that it is not hard to show that f satisfies 2-power condition in all
variables. We now prove that f satisfies Eq. (2.3) by induction on n. For n = 1, it is trivial that f
satisfies Eq. (2.2). Assume that (2.3) is valid for some positive integer n > 1. Then,∑

q∈{−1,1}n+1

f
(
axn+1

1 + qbxn+1
2

)
= 2a2

∑
q∈{−1,1}n

f
(
axn

1 + qbxn
2, x1n+1

)
+ 2b2

∑
q∈{−1,1}n

f
(
axn

1 + qbxn
2, x2n+1

)
= 2n+1a2

n∑
i=0

a2ib2(n−i)
∑
x∈Mn

i

f (x, x1n+1) + 2n+1b2
n∑

i=0

a2ib2(n−i)
∑
x∈Mn

i

f (x, x2n+1)

= 2n+1
n+1∑
i=0

a2ib2(n+1−i)
∑

x∈Mn+1
i

f (x).

This means that (2.3) holds for n + 1.
(ii)⇒(i) Fix j ∈ {1, · · · , n}, put x2k = 0 for all k ∈ {1, · · · , n}\{ j}. Using Lemma 2.1, we obtain

2n−1a2(n−1)[ f (x11, . . . , x1 j−1, ax1 j + bx2 j, x1 j+1, . . . , x1n)
+ f (x11, · · · , x1 j−1, ax1 j − bx2 j, x1 j+1, · · · , x1n)]

= 2n−1[ f
(
ax11, . . . , ax1 j−1, ax1 j + bx2 j, ax1 j+1, . . . , ax1n

)
+ f

(
ax11, . . . , ax1 j−1, ax1 j − bx2 j, ax1 j+1, . . . , ax1n

)
]

= 2na2(n−1)[a2 f (x11, . . . , x1 j−1, x1 j, x1 j+1, . . . , x1n)
+ b2 f (x11, . . . , x1 j−1, x2 j, x1 j+1, . . . , x1n)]. (2.5)

It follows from relation (2.5) that f is quadratic in the jth variable. Since j is arbitrary, we obtain the
desired result. �

3. Stability Results

An special case of (2.2) is the following quadratic functional equation when a = b = 1
2 .

2Q
( x + y

2

)
+ 2Q

( x − y
2

)
= Q(x) + Q(y). (3.1)

A mapping f : Vn −→ W is called n-multi-quadratic or multi-quadratic if f is quadratic in each
variable (see Eq. (3.1)). It is shown in [24, Proposition 2.2] (without extra 2-power condition in each
variable) that a mapping f : Vn −→ W is multi-quadratic if and only if it satisfies the equation

2n
∑

q∈{−1,1}n
f
( x1 + qx2

2

)
=

∑
l1,...,ln∈{1,2}

f (xl11, xl22, . . . , xlnn). (3.2)
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In this section, we prove the generalized Hyers-Ulam stability of Eq. (3.2) in non-Archimedean
spaces.

We recall some basic facts concerning non-Archimedean spaces and some preliminary results. By
a non-Archimedean field we mean a field K equipped with a function (valuation) | · | from K into [0,∞)
such that |r| = 0 if and only if r = 0, |rs| = |r||s|, and |r + s| ≤ max{|r|, |s|} for all r, s ∈ K. Clearly
|1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N.

Let X be a vector space over a scalar field K with a non-Archimedean non-trivial valuation | · |. A
function ‖ · ‖ : X −→ R is a non-Archimedean norm (valuation) if it satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖rx‖ = |r|‖x‖, (x ∈ X, r ∈ K);

(iii) the strong triangle inequality (ultrametric); namely,

‖x + y‖ ≤ max{‖x‖, ‖y‖} (x, y ∈ X).

Then (X, ‖ · ‖) is called a non-Archimedean normed space. Due to the fact that

‖xn − xm‖ ≤ max{‖x j+1 − x j‖; m ≤ j ≤ n − 1} (n ≥ m)

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a non-Archimedean normed
space X. By a complete non-Archimedean normed space we mean one in which every Cauchy
sequence is convergent.

In [17], Hensel discovered the p-adic numbers as a number theoretical analogue of power series
in complex analysis. The most interesting example of non-Archimedean normed spaces is p-adic
numbers. A key property of p-adic numbers is that they do not satisfy the Archimedean axiom: for all
x, y > 0, there exists an integer n such that x < ny.

Let p be a prime number. For any non-zero rational number x = pr m
n in which m and n are coprime

to the prime number p. Consider the p-adic absolute value |x|p = p−r on Q. It is easy to check that | · |
is a non-Archimedean norm on Q. The completion of Q with respect to | · | which is denoted by Qp is
said to be the p-adic number field. One should remember that if p > 2, then |2n| = 1 in for all integers
n.

Throughout, for two sets A and B, the set of all mappings from A to B is denoted by BA. The proof
is based on a fixed point result that can be derived from [11, Theorem 1]. To present it, we introduce
the following three hypotheses:

(H1) E is a nonempty set, Y is a complete non-Archimedean normed space over a non-Archimedean
field of the characteristic different from 2, j ∈ N, g1, . . . , g j : E −→ E and L1, . . . , L j : E −→ R+,

(H2) T : YE −→ YE is an operator satisfying the inequality

‖Tλ(x) − Tµ(x)‖ ≤ maxi∈{1,..., j}Li(x) ‖λ(gi(x)) − µ(gi(x))‖ , λ, µ ∈ YE, x ∈ E,

(H3) Λ : RE
+ −→ R

E
+ is an operator defined through

Λδ(x) := maxi∈{1,..., j}Li(x)δ(gi(x)) δ ∈ RE
+, x ∈ E.

Here, we highlight the following theorem which is a fundamental result in fixed point theory [11].
This result plays a key role in obtaining our goal in this paper.

AIMS Mathematics Volume 5, Issue 5, 5230–5239.



5235

Theorem 3.1. Let hypotheses (H1)-(H3) hold and the function ε : E −→ R+ and the mapping ϕ :
E −→ Y fulfill the following two conditions:

‖Tϕ(x) − ϕ(x)‖ ≤ ε(x), lim
l→∞

Λlε(x) = 0 (x ∈ E).

Then, for every x ∈ E, the limit liml→∞ T
lϕ(x) =: ψ(x) and the function ψ ∈ YE, defined in this way, is

a fixed point of T with
‖ϕ(x) − ψ(x)‖ ≤ supl∈N0

Λlε(x) (x ∈ E).

Here and subsequently, given the mapping f : Vn −→ W, we consider the difference operator
Γ f : Vn × Vn −→ W by

Γ f (x1, x2) = 2n
∑

q∈{−1,1}n
f
( x1 + qx2

2

)
−

∑
l1,...,ln∈{1,2}

f (xl11, xl22, . . . , xlnn).

In the sequel, S stands for {0, 1}n. With this notations, we have the upcoming result.

Theorem 3.2. Let V be a linear space and W be a complete non-Archimedean normed space over a
non-Archimedean field of the characteristic different from 2. Suppose that φ : Vn × Vn −→ R+ is a
mapping satisfying the equality

lim
l→∞

(
1
|2|2n

)l

maxs∈Sφ(2l(sx1, sx2)) = 0 (3.3)

for all x1, x2 ∈ Vn. Assume also f : Vn −→ W is a mapping satisfying the inequality

‖Γ f (x1, x2)‖ ≤ φ(x1, x2) (3.4)

for all x1, x2 ∈ Vn. Then, there exists a unique multi-quadratic mapping Q : Vn −→ W such that

‖ f (x) − Q(x)‖ ≤ supl∈N0

(
1
|2|2n

)l+1

maxs∈Sφ(2lsx, 0) (3.5)

for all x ∈ Vn.

Proof. Replacing x = x1 = (x11, . . . , x1n), x2 = (x21, . . . , x2n) by 2x1, (0, . . . , 0) in (3.4), respectively, we
have

‖22n f (x) −
∑
s∈S

f (2sx)‖ ≤ φ(2x, 0) (3.6)

for all x ∈ Vn. Inequality (3.6) implies that

‖ f (x) − T f (x)‖ ≤ ξ(x) (3.7)

for all x ∈ Vn, where ξ(x) := 1
|2|2nφ(2x, 0) and T f (x) := 1

22n

∑
s∈S f (2sx). Define

Λη(x) :=maxs∈S
1
|2|2nη(2sx) for all η ∈ RVn

+ , x ∈ Vn. It is easy to see that Λ has the form described in
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(H3) with E = Vn, gi(x) := gs(x) = 2sx for all x ∈ Vn and Li(x) = 1
|2|2n for any i. Moreover, for each

λ, µ ∈ WVn
and x ∈ Vn, we get

‖Tλ(x) − Tµ(x)‖ ≤ maxs∈S
1
|2|2n ‖λ(2sx) − µ(2sx)‖ .

The above inequality shows that the hypothesis (H2) holds. By induction on l, one can check that for
any l ∈ N and x ∈ Vn that

Λlξ(x) :=
(

1
|2|2n

)l

maxs∈S ξ(2lsx) (3.8)

for all x ∈ Vn. Indeed, by definition of Λ, equality (3.8) is true for l = 1. If (3.8) holds for l ∈ N, then

Λl+1ξ(x) = Λ(Λlξ(x)) = Λ

( 1
|2|2n

)l

maxs∈S ξ(2lsx)


=

(
1
|2|2n

)l

maxs∈S Λ
(
ξ(2lsx)

)
=

(
1
|2|2n

)l+1

maxs∈S ξ(2l+1sx)

for all x ∈ Vn. Relations (3.7) and (3.8) necessitate that all assumptions of Theorem 3.1 are satisfied.
Hence, there exists a unique mapping Q : Vn −→ W such that Q(x) = liml→∞(T l f )(x) for all x ∈ Vn,
and also (3.5) holds. We are going to show that

‖Γ(T l f )(x1, x2)‖ ≤
(

1
|2|2n

)l

maxs∈Sφ(2lsx1, 2lsx2) (3.9)

for all x1, x2 ∈ Vn and l ∈ N. We argue by induction on l. For l = 1 and for all x1, x2 ∈ Vn, we have

‖Γ(T f )(x1, x2)‖

=

∥∥∥∥∥∥∥∥2n
∑

q∈{−1,1}n
(T f )

( x1 + qx2

2

)
−

∑
l1,...,ln∈{1,2}

(T f )(xl11, xl22, . . . , xlnn)

∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥ 1
2n

∑
q∈{−1,1}n

∑
s∈S

f (sx1 + sqx2) −
1

22n

∑
l1,...,ln∈{1,2}

∑
s∈S

f (2sxl11, 2sxl22, . . . , 2sxlnn)

∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥ 1
22n

∑
s∈S

Γ( f )(2(sx1, sx2))

∥∥∥∥∥∥∥
≤

1
|2|2n maxs∈S ‖Γ( f )(2(sx1, sx2))‖

≤
1
|2|2n maxs∈Sφ(2(sx1, sx2))

for all x1, x2 ∈ Vn. Assume that (3.9) is true for an l ∈ N. Then

‖Γ(T l+1 f )(x1, x2)‖
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=

∥∥∥∥∥∥∥∥2n
∑

q∈{−1,1}n
(T l+1 f )

( x1 + qx2

2

)
−

∑
l1,...,ln∈{1,2}

(T l+1 f )(xl11, xl22, . . . , xlnn)

∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥ 1
2n

∑
q∈{−1,1}n

∑
s∈S

T l f (sx1 + sqx2) −
1

22n

∑
l1,...,ln∈{1,2}

∑
s∈S

T l f (2sxl11, 2sxl22, . . . , 2sxlnn)

∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥ 1
22n

∑
s∈S

Γ(T l f )(2(sx1, sx2))

∥∥∥∥∥∥∥
≤

1
|2|2n maxs∈S

∥∥∥Γ(T l f )(2(sx1, sx2))
∥∥∥

≤

(
1
|2|2n

)l+1

maxs∈Sφ(2l+1(sx1, sx2)) (3.10)

for all x1, x2 ∈ Vn. Letting l → ∞ in (3.9) and applying (3.3), we arrive at ΓQ(x1, x2) = 0 for all
x1, x2 ∈ Vn. This means that the mapping Q satisfies (3.2) and the proof is now completed. �

The following example is an application of Theorem 3.2 concerning the stability of multi-quadratic
mappings when the norm of Γ f (x1, x2) is controlled by the powers sum of norms of components of
vectors x1 and x2 in Vn.

Example 3.3. Let p ∈ R fulfills p > 2n. Let V be a normed space and W be a complete non-
Archimedean normed space over a non-Archimedean field of the characteristic different from 2 such
that |2| < 1. Suppose that f : Vn −→ W is a mapping satisfying the inequality

‖Γ f (x1, x2)‖ ≤
2∑

k=1

n∑
j=1

‖xk j‖
p

for all x1, x2 ∈ Vn. Putting φ(x1, x2) =
∑2

k=1
∑n

j=1 ‖xk j‖
p, we have φ(2lx1, 2lx2) = |2|lpφ(x1, x2) and so

lim
l→∞

(
1
|2|2n

)l

maxs∈S

2∑
k=1

n∑
j=1

‖2lsxk j‖
p = lim

l→∞

(
|2|p

|2|2n

)l 2∑
k=1

n∑
j=1

‖xk j‖
p = 0

for all x1, x2 ∈ Vn. On the other hand,

supl∈N

(
1
|2|2n

)l+1

maxs∈Sφ(2lsx, 0) =
1
|2|2n

n∑
j=1

‖x1 j‖
p.

By Theorem 3.2, there exists a unique multi-quadratic mapping Q : Vn −→ W such that

‖ f (x) − Q(x)‖ ≤
1
|2|2n

n∑
j=1

‖x1 j‖
p

for all x ∈ Vn.

Recall that a functional equation F is hyperstable if any mapping f satisfying the equation F
approximately is a true solution of F . Under some conditions functional Eq. (3.2) can be hyperstable
as follows.
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Corollary 3.4. Suppose that pk j > 0 for k ∈ {1, 2} and j ∈ {1, . . . , n} fulfill
∑2

k=1
∑n

j=1 pk j > 2n. Let
V be a normed space and W be a complete non-Archimedean normed space over a non-Archimedean
field of the characterisitic different from 2 such that |2| < 1. If f : Vn −→ W is a mapping satifying the
inequality

‖Γ f (x1, x2)‖ ≤
2∏

k=1

n∏
j=1

‖xk j‖
pk j

for all x1, x2 ∈ Vn, then f is multi-quadratic.
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