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Abstract: The unique characteristics of traditional buildings can provide fresh insights for sustainable
building development. In this study, a deep learning model and methodology were developed for
classifying traditional buildings by using artificial intelligence (AI)-based image analysis technology.
The model was constructed based on expert knowledge of East Asian buildings. Videos and
images from Korea, Japan, and China were used to determine building types and classify and locate
structural members. Two deep learning algorithms were applied to object recognition: a region-based
convolutional neural network (R-CNN) to distinguish traditional buildings by country and you
only look once (YOLO) to recognise structural members. A cloud environment was used to develop
a practical model that can handle various environments in real time.

Keywords: East Asia; traditional buildings; deep learning; artificial intelligence; region-based
convolutional neural network (R-CNN); you only look once (YOLO); cloud computing

1. Introduction

Artificial intelligence (AI) is considered one of the greatest revolutions in human history [1]. To
some degree, AI has transcended human judgement at classifying and making decisions [2]. In this
study, AI deep learning technology was applied to traditional buildings, which has lagged behind
other field [3] in terms of applications of computer technology.

Although East Asian countries can trace their cultures to Chinese civilisation, they have evolved
with their own unique characteristics. For example, the traditional architectural style of each country
varies according to purpose. In China, the country’s vast landmass means that the style changes
regionally according to the climatic conditions. In northern China, which has little rainfall and people
tend to be frugal, roofs have a slightly emphasised curvature. South of the Yangtze River, which receives
heavy rainfall and has a mild climate, the curves are more elaborate and rise up around the eaves. In
Japan, wooden architecture techniques were altered to help buildings withstand earthquakes. Korea
placed importance on heating and insulation because of its four distinct seasons and emphasised
simplicity owing to Confucian philosophy [4].

Thus, the relationship between architectural design and culture can be defined as an integrated
product of the natural environment, climate, and customs of the region. Understanding architectural
culture holds the key to discovering significant cultural characteristics of the past and developing
alternative designs for sustainable buildings [5].

However, these factors alone cannot determine architectural culture. Modern technology such
as AI and cloud computing is an essential tool for uncovering the subtle and complex features of
past designs and their cultural and natural influences. Researchers have been using AI to develop
databases of architectural knowledge from experts. This makes it possible to quantify and analyse
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visual data of buildings to compare and analyse their forms and spaces. This can also be used to
obtain optimal solutions for architectural planning. To analyse architectural characteristics and make
design inferences, a method is needed for recognising forms similar to those obtained from visual
perception [6].

In this study, a model was developed for classifying forms and types of East Asian buildings
as belonging to China, Korea, or Japan. Deep learning algorithms were used to analyse images of
buildings with traditional buildings. In addition, a model was developed for specifically detecting and
classifying columns and gongpo (i.e., Korean capital order system) among the structural members of
traditional buildings based on videos or images. traditional buildings knowledge of a group of experts
was fashioned into a data format that can be understood by AI. The data were learned to create a deep
learning model. Figure 1 shows the research process:

Figure 1. Research process flow.

1. The features and image data of traditional buildings in three East Asian countries (Korea, China,
and Japan) were organised through consultation with experts on architectural history. Then, an
AI-based deep learning algorithm was used to create a form-recognition model that classifies
images of traditional buildings by country.

2. Images of structural members in Korean traditional buildings were used to create a deep learning
model that identifies their locations in the image or video and thus classifies them.

3. A plan for creating a cloud-based deep learning model for understanding and managing traditional
buildings was proposed, implemented, and verified.

Two types of form recognition algorithms were used for building analysis. A region-based
convolutional neural network (R-CNN) was built in TensorFlow for object recognition and was used
to classify images of traditional buildings in East Asia by country. Redmon’s you only look once
(YOLO) algorithm [7] was used to detect the structural members of columns and gongpo in Korean
architecture. The form recognition process acts as a trigger for importing related data and is a basic
technology for differentiating assembly-style traditional buildings. A training model was developed to
learn the traditional buildings of each region and the features of structural members. A vast number
of test images were used to verify the training model. In this study, photographic data were used to
classify the features of building styles by country. The scope was limited to recognising the forms of
columns and gongpo and developing a classification model.

2. Materials and Methods

Knowledge and information from experts in traditional buildings were organised into datasets
to train the AI model [8]. Depending on the purpose, an appropriate algorithm was selected for
classification and object recognition [9]. After a comparative analysis of the characteristics and
limitations, an algorithm was selected considering the work environment of traditional buildings.



Sustainability 2020, 12, 5292 3 of 19

2.1. Features of Traditional Buildings in Korea, China, and Japan

The traditional buildings of the three countries include wooden structures with a superstructure
made of columns, beams, and roof trusses. The wooden structures are built by stacking structural
members in the direction of gravity. The structural members are fitted and joined assembly-style [10].
To use AI for classifying images of East Asian traditional buildings and recognising structural members,
features need to be organised so that a group of experts can recognise the style of each country. To
train the AI, the theory must be developed first. Then, each image in the dataset can be classified
and labelled. After the classification, an image recognition algorithm is used to find feature points
and patterns.

The traditional buildings of the three countries reflect their respective cultures and have individual
features that can be used to train the AI. The AI only needs basic guidelines to learn these features.
Korea, China, and Japan have several shared cultural aspects, and they have closely interacted with
each other throughout history. The knowledge required for AI training has already been organised
in previous studies comparing Korea, China, and Japan, such as Yongun Kim’s ‘cycle of history’ [11]
and Donguk Kim’s [4] comparative studies of Korean, Chinese, and Japanese traditional buildings.
Based on previous studies, features including the roof and colour scheme were used to train the AI to
recognise traditional buildings of the three countries.

As an example of the different roof shapes of the three countries, the Yu Garden Pavilion in China
has rich ornamentation and a highly curved roof [12]. In Japan, the roof of Izumotaisya has a steep
slope and even curvature. In Korea, the pillars of Munmyo Daeseongjeon are not standing in a straight
line, the centre is bent slightly inward, and the entire building forms a curve.

Thus, the roofs of wooden buildings in East Asia have larger features than the buildings, and they
form curves.

In China, bright colours such as red, orange, gold, and blue are commonly used. Furthermore,
buildings tend to be planned with a left–right symmetry, and they have many courtyards. The buildings
are decorated and large in scale. To make single-storey buildings look like two- or multi-storey
buildings, awnings are sometimes placed beneath the roof. In Chinese architecture, the imposing scale
of construction, which reflects the country’s vast overall landmass, stands out.

In Japan, dark-coloured schemes are often used, and they mainly include white, grey, red, and
green. Buildings are often designed to be asymmetrical, and they have many gardens. Chinese
buildings display grandeur and size, while Japanese buildings are characterised by minimalism.
Japanese buildings reflect a mechanical precision that is not seen in Korea or China, and the roofs are
straight and steeply sloped to deal with rain and snow. Additionally, because of the humid climate,
Japanese architecture tends to be open and well ventilated. Overall, Japanese buildings are simple and
subtle. Their restrained splendour and minimalism are apparent.

Korea mainly uses colours such as black, green, red, white, and dark blue. Chinese architecture
tends to restrain nature artificially, while Japanese architecture uses gardens to present a nature-friendly
appearance. Meanwhile, Korean architecture blends structures with nature to achieve harmony.

For example, rocks and wood that are taken from nature are not processed separately but used as
construction materials without modification. Natural and unmodified materials and topography are
used to display Korea’s unique natural beauty.

Moreover, the roofs of Korean buildings are the smoothest among the three countries because of
the natural and comfortable curves of their tiled eaves. The aesthetics of the architecture stands out
owing to its stable and comfortable appearance.

Figure 2 shows the organisation of the major features used for classification by the AI platform [4].
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Figure 2. Features of traditional buildings in Korea, China, and Japan.

2.2. Deep Learning with R-CNN and YOLO

In this study, two deep learning algorithms were used for object recognition: R-CNN and YOLO.
Hui [13] argued that deep learning algorithms are based on various concepts, so no model is best
suited to all environments, and fair comparisons are difficult to make. This means that each algorithm
should be tested for specific situations, and its suitability should be understood before application.
Figure 3 compares performance indicators of major deep learning algorithms for object recognition.
The performance indicators were derived with the PASCAL VOC (Visual Object Classes) 2007 test
set. Figure 3a compares the accuracy of the object recognition and detection: YOLO had an accuracy
of 78.6% with a unit module of 554 pixels, and Faster R-CNN had an accuracy of 70.4%. Figure 3b
compares the processing speed: Faster R-CNN and YOLO were at five and 40 frames per second (fps),
respectively, at a low detection speed and 17 and 91 fps, respectively, at a high detection speed. R-CNN
demonstrated a higher speed and accuracy than YOLO for object recognition.

Figure 3. Object recognition performances of major deep learning algorithms: (a) accuracy and (b)
processing speed.

The biggest difference between R-CNN and YOLO is that the former can recognise and detect
objects inside a building through detailed masking. This is advantageous for analysing detailed
architectural elements when classifying architecture. Other advantages include utilising pre-trained
datasets in a cloud environment and not having to build servers for separate training. However,
the drawback of using R-CNN to classify images is that it incurs continuous costs to maintain the cloud
environment. Furthermore, the detailed masking task slows down the speed and places a constant
load on the computer, which restricts processing of videos in real time. Therefore, the design elements
considered for the masking task should be repetitive for easy classification; if the design elements
are not repetitive and are few in number, there is a risk of frequent failures of classification and
identification. The advantages of YOLO include a fast processing speed that is close to real time
and a high accuracy relative to the speed. This algorithm is optimised for recognising components
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through block-type object detection but has the disadvantage of being unable to detect overlapping
objects in an image. In particular, object recognition is limited when front-face data are mainly used
to train a deep learning model and test images are viewed from different angles or objects in a given
image have a low degree of exposure. However, YOLO can achieve a high recognition rate relative to
the amount of learning and is optimised for object recognition, despite its limitations at classifying
detailed designs. Therefore, an appropriate deep learning algorithm should be identified for different
purposes. Accurately determining which algorithm to use should be based on a logical organisation of
the work process, which should be in conjunction with relevant expert knowledge and field information
input by the user. R-CNN was used to classify traditional buildings by country, and YOLO was used to
recognise structural members. To examine the rationality of using two different algorithms, the same
photograph was analysed with the same weight values for each algorithm.

R-CNN combines region proposal with a CNN structure and is executed as follows.

1. Region proposal is performed to ascertain the locations of objects.
2. CNN is used to extract feature maps from areas that have undergone region proposal.
3. Bounding boxes are drawn around objects extracted by a linear support vector machine (SVM)

for classification via the extracted feature map.

Figure 4 shows the imaging procedure. R-CNN was not executed in a cloud environment but as
a local task. The processes were performed on a photograph taken at a Japanese convenience store, and
a pre-trained Common Objects in Context (COCO) image dataset was used. The COCO dataset, which
was released in 2015, was trained beforehand with a variety of objects. The format of the dataset was
used to include data on traditional buildings from each country and structural members. The results
showed that R-CNN could partially recognise the refrigerator and cans in the refrigerator. A major
feature of R-CNN is its sophistication at analysing overlapping results. By changing the threshold
value, it could detect a large number of cans in the refrigerator. However, the threshold value was
fixed at 0.5 for comparison with YOLO.

The main features of R-CNN are its recognition rate for overlapping objects and its ability to
classify small objects. Thus, it can be used to analyse the detailed aesthetic design of buildings from
each country. However, it was not designed for real-time processing [11] and has a low processing
speed. In addition, R-CNN lacks certain areas related to imitating human vision owing to its complex
processing procedures. Thus, YOLO was used to classify and detect the locations of structural members
in traditional buildings. YOLO uses a brief computation process for object recognition; this is similar
to a person discerning the details of objects in an image at a glance. However, the brief computation
process means that YOLO has low accuracy compared to algorithms with complex computation
methods like R-CNN. Moreover, it can only detect one object when several objects overlap. The main
concept of YOLO is as follows.

1. Grid lines are drawn on the input image at fixed intervals (S) as in graph paper.
2. N bounding boxes are created based on the grid, and the reliability is predicted to verify whether

objects are within the bounding boxes.
3. A CNN is used to determine the accuracy of the bounding boxes and confirm whether objects are

in the bounding boxes.
4. The probability of objects within the confirmed boxes being similar to objects in the dataset is

calculated. Bounding boxes with high probabilities are labelled as recognised objects.
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Figure 4. Region-based convolutional neural network (R-CNN) process flow and test results.

Thus, YOLO leverages a computer’s ability to perform repetitive tasks and recognises objects by
drawing boxes randomly and then comparing them to a dataset all at once. This method is much faster
than other object recognition algorithms. According to Hui [13], the difference in speed of YOLO and
Faster R-CNN, which is a real-time version of R-CNN, is 91 fps to 5 fps. However, YOLO has limited
ability to recognise overlapping objects because of the structure of its algorithmic process. For example,
it was unable to detect the cans in the refrigerator, as shown in Figure 5. Thus, this algorithm should
be used when it suits the objective and situation. YOLO is suitable for recognising and analysing East
Asian traditional buildings because the structural members are assembled by a stacking method. In
this study, YOLO was used to recognise structural members. The above analysis indicates that R-CNN
should be used in environments that allow a slow work speed but require high accuracy, and YOLO
should be used in environments that require a high work speed with relatively low accuracy and do
not require overlapping objects to be recognised.
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Figure 5. You only look once (YOLO) process flow and test results.

2.3. Machine Learning in a Cloud Environment

Machine learning can be used in a cloud environment as well as local environment [14]. In
the case of image recognition, cloud environments allow for higher accuracy at a faster pace than local
environments. This is mainly because cloud environments have pre-trained models. For example,
Google has an image-based storage system called Google Photos that provides a large comparison
group for reference. However, when this process is run on a local computer, increasing the accuracy
requires a long time because of the limited data in the comparison group. When an image recognition
algorithm is implemented in a local environment, the task of pre-emptively procuring a dataset to
increase the accuracy during the learning process incurs a load. This is because few pre-trained datasets
are available, and referring to data of other objects has limited value during the learning process.
Machine learning in a cloud environment allows pre-trained datasets provided by large-scale platform
services to be used, along with additional datasets from specialised fields. Recently, Forbes predicted
a 42.8% increase in the combined annual growth rate of platforms incorporating cloud-based machine
learning from 2018 to 2024 [15].

Additionally, cloud computing is often used for machine learning tasks on existing platform
services. This allows hardware systems with a fast replacement period to be rented and operated
remotely over the Internet. In addition, the machine learning can be updated in real time. Platforms for
object recognition in a cloud environment include Cloud Vision and Auto Machine Learning (AutoML).
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2.3.1. Cloud Vision

Cloud Vision is an application programming interface (API) for deep learning [16]-based image
analysis. Users can automatically find features in images that have been classified by individuals [17].
Images can be quickly analysed according to thousands of categories, and defined labels can be
detected. Defined objects and faces can be recognised in images, and words that are printed in images
can be read to extract text. Datasets can be used to define various functions, such as reviewing harmful
content, analysing emotions, and recognising logos. Then, mass processing can be performed. Table 1
presents the functions that can be performed. Cloud Vision can also be used for customised tasks using
image recognition algorithms such as R-CNN and YOLO.

Table 1. Cloud Vision functions.

Function Description

Label recognition Recognise various objects and categories in images

Web recognition Search for similar images on the web

Optical character recognition
(OCR) Recognise text in images

Logo recognition Recognise famous logos in images

Landmark recognition Recognise labels for famous regions in images and
find the latitude and longitude

Face recognition Recognise faces in images and analyse their emotions

Content review Recognise harmful content in images

2.3.2. Cloud AutoML

Cloud AutoML is a deep learning optimisation method that allows even users with minimal
machine learning [18] knowledge to customise high-quality models to fit their business needs through
the Cloud Vision API. Cloud AutoML provides a graphical user interface (GUI) environment that can
be used to train, evaluate, improve, and distribute a model based on the user’s own data. Therefore,
custom machine learning models can be created on a web console [19]. Because it is completely
integrated with other Google cloud services, users can use a consistent access method for all of
Google’s product lines. In Cloud AutoML, if a grouped and labelled dataset is placed in AutoML,
the train, deploy, and serve processes are performed internally. The serve process can be used to
publish a platform created by deep learning on all platforms including webpages, mobile devices, and
computers, as shown in Figure 6. Thus, it provides a work environment with excellent and immediate
scalability. Because Cloud AutoML supports Python and REST (Representational State Transfer) API
for model generation, it can be used to create application programs. Once a deep learning model has
been built, realising practical utilisation is simple. Therefore, it can be used intuitively in needed areas,
and feedback is possible. The biggest advantage is that a model can be made smarter continuously and
gradually after development by using data results with the user’s approval. The traditional buildings
classification model requires specialised knowledge as reference data for deep learning. AI is used to
obtain desired feature points within the image by itself, and the points are reviewed with non-training
data to increase the accuracy further. Thus, a deep learning model can train itself in real time and
improve its own performance [20].



Sustainability 2020, 12, 5292 9 of 19

Figure 6. Cloud AutoML operating diagram and concept map.

This is the difference between cloud-based and local deep learning. Cloud-based deep learning
has a pipeline structure in which the algorithm gradually becomes smarter as it is used. However,
the specific algorithms and learning method must be set according to the type of data and situation.
When a pre-trained model is used in a cloud environment, basic functionalities such as cloud
vision, natural language, and translation can be operated. However, when a model incorporating
specialised theory is developed, customisation is necessary. Therefore, AutoML was used to incorporate
certain requirements.

2.4. AI-Based Model for Traditional Buildings and Structural Member Classification

R-CNN was used to classify traditional buildings by country (Korea, Japan, and China) [7], and
YOLO was used to detect structural members [7]. This section summarises the purpose-specific
datasets and construction process of the deep learning model [21].

2.4.1. Datasets for Classifying Traditional Buildings by Country and Structural Members

Non-experts may have difficulty distinguishing traditional buildings styles by country. To
train a deep learning model with relevant expert knowledge and allow non-experts to distinguish
architecture styles, data need to be collected to train and test object recognition.

Figure 7 shows the ways that the object recognition data were used in this study.

Figure 7. Object recognition techniques by purpose: (a) classification of type and (b) shape detection.
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The first approach was type classification, which is an object recognition technique. Images
were used to train the AI in classifying traditional buildings styles by country. Experts classify
the architecture styles of the three East Asian countries by the exterior colour scheme and curvature
of the roof. Rather than teaching these rules to the computer in detail, a playground was created so
that the computer could learn on its own. A dataset for deep learning was completed by grouping
together images that depict building styles and saving their labels in a cloud AutoML dataset. Because
the dataset was constructed in a cloud environment, this task can easily be completed by a computer
running a web browser.

Figure 8 diagrams a dataset in which images have been grouped for classification and labels have
been applied. This was done with Google Teachable Machine, which is a cloud-based object-recognition
platform that can easily construct datasets to popularise AI. However, the platform can only be used
for specific image classification tasks without specifying the deep learning algorithm. This limits its
ability to perform intermediate deep learning tasks such as image calibration and weight adjustment.
For a simple classification test, 1500 images were used. The epoch value was set to 50 (i.e., the training
process was repeated 50 times), and the batch size was set to 16. The batch size is the number of
hidden layers and refers to the degree of resolution. In other words, the features of an image are
decomposed into 16 stages and analysed. A real-time test was performed on Gyeongbokgung Palace
in Korea. The analysis results showed a 75% probability that it was a traditional Korean building and
25% probability that it was Japanese.

Figure 8. Dataset task process for classification of type using Google Teachable Machine.

The second approach was to combine object recognition with location. As shown in Figure 7b,
this method requires not only classifying structural members but also locating them in the image.
In this study, this task was performed with a pre-trained model on Google Cloud Platform (GCP).
Therefore, the model did not yield specific names of structural members in traditional Korean buildings
or specialised information but rather analysed buildings, people, and clothing types. This task requires
not only grouping data but also labelling members accurately. Square bounding boxes were drawn
around the structural members in images (i.e., masking). To create the dataset for structural member
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classification, images containing gongpo and columns [22] were labelled with Supervisely, which is
a cloud-based labelling tool.

As shown in Figure 9, the basic learning task was performed by masking the major structural
members of traditional buildings. The bounding box and masking tasks were performed on the gongpo
and columns in parallel. These structural members were labelled so that the computer could
recognise them.

Figure 9. Data labelling task for type classification and location recognition using Supervisely.

First, 16,478 traditional buildings-related data were masked (A in Figure 9). The deep learning
algorithm (B-2) was combined with the masking data (B-1). The model was then built (C), and the type
classification and location recognition tasks were performed. The number of images was increased
by a factor of four by stretching, resizing, and distorting each image. This transformation task is
a special training that allows the model to recognise objects when viewing images with various
perspectives. The image data were masked and labelled on Supervisely, but a personal Linux server
had to be prepared to compute the deep learning algorithm. Because Supervisely is a free service, it is
structured so that personal hardware is needed to create an actual model. The basic requirements of
the deep learning algorithm were a Linux operating system and Nvidia 1080 Ti professional-grade
graphics hardware.

Thus, a Linux server was built to implement the deep learning algorithm. The dataset created
by this process was uploaded to the GCP’s dataset server by a backend system so that it could be
used by the deep learning model. Datasets were created for object recognition of traditional Korean
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architecture with the two approaches. The methods for creating the deep learning model using these
datasets are presented in the next section.

2.4.2. Deep Learning Model for Classifying Traditional Buildings Styles and Structural Members

Separate datasets were created for classifying the architecture types and structural members. Next,
a deep learning [23] model was created with TensorFlow and trained with the datasets and different
algorithms: R-CNN for type classification and YOLO for structural member recognition. As discussed
in Section 2.2, R-CNN and YOLO use different methods for object recognition but the same structure
for deep learning. They only differ in methodology for learning datasets. Figure 10 shows the deep
learning structure.

Figure 10. Deep learning structure for traditional buildings classification.

Image data were used for training. The deep learning process is similar to solving problems
in a workbook; labels in a large dataset were matched to the correct country without being taught
to the computer. For this experiment, the dataset was divided at a 7:3 ratio for training and testing,
respectively. For the training, the epoch and batch size of the model were calibrated to ensure
the appropriate percentage for accuracy.

An accuracy that is too high or too low can cause overfitting or underfitting, respectively. With
overfitting, the AI can only solve problems used during training and performs poorly at solving new
problems. With underfitting, the AI needs more training because it cannot solve either the training
problems or new problems. The epoch was set to 50, and problems corresponding to 70% of the given
dataset were solved 50 or more times. The batch size refers to how many problems are solved at once
before an answer is produced during each epoch.

For example, if 70 problems must be solved and the batch size is set to 7, all 70 problems are
solved in one epoch, but an answer is produced after 10 problems are solved simultaneously. Thus,
the AI creates patterns for studying to increase accuracy.

Finally, the calibrated variables were used to set the number of hidden layers. As shown on
the right side of Figure 10, an image of Gyeongbokgung in Seoul [24] was inserted in the input layer.
Then, the outlined part was extracted in hidden layer 1. As the layers increased, image elements were
split gradually to create samples for analysis.

The number of samples that segmented the image also increased. R-CNN analysed the image in
detail; this algorithm is structured so that the weights of the hidden layers have a greater effect than in
YOLO. In the experiments, R-CNN classified buildings according to country by a detailed analysis
of patterns in the data that were depicted externally, such as the aesthetic elements of the building,
curvature of the roof, and colour scheme. The values of the hidden layers were used as a variable
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that correlates with accuracy. Meanwhile, YOLO can quickly scan images and videos to classify and
locate objects in real time. It can recognise structural members that are stacked to create a prefabricated
structure. Thus, the accuracy was more affected by the sophistication of the labelling performed in
Supervisely than the settings for the batch size and epoch.

3. Results

3.1. Performance Analysis of the Deep Learning Model

The performance of the deep learning model was analysed. Firstly, the model performance with
R-CNN was analysed. For classification, 968 data were selected and transformed to increase the size of
the dataset fourfold to 3872. The deep learning model was trained 50 times with 70% of the dataset.
The training precision was 93.8%. The remaining 30% of the dataset was used for testing.

The results showed that the model had an 85.4% probability of classifying images to the correct
country. There were no cases where a single image was classified to two countries. The recall value is
the probability that the answer is correct 70% of the time or more; it was determined to be 89.8% for
this model.

Detailed analysis showed that the images were correctly classified at rates of 93% for Japan,
77% for China, and 95% for Korea. In keeping with the principle of garbage in garbage out (GIGO),
the accuracy should increase further with the number and quality of images in the dataset. As shown
in Figure 11, the performance was limited by the images used in this study. The accuracy can be
increased by providing clearer data or increasing the volume of data. As discussed in the next section,
experiments were performed on 30 images simultaneously, and the results showed that the model
correctly classified Chinese buildings even when images were dark and unclear. Ninety images were
individually tested, and no error probability was observed.

Figure 11. Performance of the deep learning model with R-CNN.

This result was because of the use of AutoML; the pre-trained library allowed compensatory
revisions with related cases and relevant data. This is akin to a piece of self-driving compensation
equipment. Normally, when a dataset is created locally, 60,000 images must be used to produce
accurate data. However, in the case of GCP, the difference in server support between local and cloud
environments was made evident even with only 100 feature data.

Next, the model performance with YOLO was analysed. The model was created with 16,478
images of structural members; 70% were used for training, and the remaining 30% were used for
testing. The epoch was set to 50. The training accuracy was 99.6%, and the test accuracy was 73.04%. In
addition to the accuracy, the loss function indicator was also calculated; a model is considered reliable
with a small error rate as the loss function value approaches zero. As shown in Figure 12, epoch 49 had
the smallest loss function value during training.
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Figure 12. Performance of the deep learning model with YOLO.

However, epoch 50 had the smallest value when the loss function value during testing was
also considered and thus was selected as the model. However, the test accuracy of epoch 50 was
73.04%, which is insufficient given that deep learning models normally have an accuracy of 80% or
more. The volume of data was found to be insufficient for accurately recognising the locations of
gongpo and structural members. The deep learning model was created to analyse only gongpo and
columns but needs to be trained for other structural members so that feature points can be defined
through correlations.

3.2. Application and Verification of the Deep Learning Model

Two experiments were performed with the deep learning model. Firstly, the model trained with
R-CNN was tested with 30 randomly selected photographs of traditional buildings from each country.
In addition, a controversial case concerning a Korean national museum was considered. Secondly,
an object recognition experiment was conducted on photographs showing traditional features of
Korean architecture.

3.2.1. Application and Verification of Deep Learning Model with R-CNN

Pictures of Bulguksa and Gamsansa Temples in the Keyongju region of Korea and pictures taken
when the authors visited Japan and China but were not included in the training process were used
to validate the deep learning model. Data used to analyse the AI performance were not included
in the dataset randomly. Additionally, images used for model testing and training were not from
the same city or region. A few photographs were captured with poor quality or taken at night to
observe the limits of the deep learning model.

The authors visited each country and captured pictures with mobile phones. Figure 13 shows
the results of the model based on 30 photographs from each country. Surprisingly, images were
classified with an accuracy of 100%. Even the Chinese buildings, for which the performance analysis
showed that the model had the lowest accuracy, were recognised accurately.
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Figure 13. Classification results of the R-CNN deep learning model by country.

An additional experiment was performed on images that had previously returned errors. This
case has become a social issue in Korea: Buyeo National Museum, which was designed by Korean
architect Sugeun Kim and completed in 1967, is claimed to resemble the architectural style of Shinto
temples in Japan. In particular, the roof shape resembles a chigi (i.e., the part where the wood intersects
with the roof to form an X-shape). The aim of the experiment was to examine this claim with the deep
learning model. Three images of the museum from different angles were considered. Figure 14
shows the classification results. Two of the three images were classified as Korean, but one image
was classified as Japanese with a 100% probability and Korean with a 98% probability. Follow-up
studies will be necessary to examine exactly which elements are used by the deep learning model to
predict each type. Nonetheless, because this image shows the actual design elements of the museum,
the building has a high probability of being in the Japanese style.

Figure 14. Classification results of the deep learning model with R-CNN for a disputed building.
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3.2.2. Application and Verification of Deep Learning Model with YOLO

Images clearly showing gongpo and columns that were not included in the training process
were used to test the model trained with YOLO. Before the model was tested, the structural members
within the overall layout of the building shape needed to be classified, and their location needed to be
displayed in the images. Having the model find features was more difficult than classifying structures
by country. Moreover, the COCO dataset normally used for YOLO consists of more than 60,000
data; however, only 16,478 images were used in this study, so the model had quantitative limitations.
Consequently, the model showed an accuracy of 73.04%. As shown in Figure 15, the model trained
with YOLO was applied to traditional buildings that were photographed with mobile phones [25].
Four images showing typical major features are presented. The model performance showed a high
correlation between the main features and composition in the masking step. Objects could not be
detected because of the angle at which the photograph was taken or when they had a low degree of
exposure. In A and C, the structural members of the facade were generally well detected. In A, four
of six columns were detected and had their locations displayed despite being covered in script. In B,
however, even though all gongpo were recognised, the columns could not be recognised at all when
only a small portion was visible. Gongpo at the corners of A and D were not detected successfully
because they were not close enough to the camera as in B. In the future, masking must be performed
for object recognition to overcome these detection blind spots.

Figure 15. Linking task using object recognition information.
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4. Discussion

Deep learning algorithms were characterised and selected for their applicability to classifying
architecture. Because deep learning algorithms are developed according to different concepts [26],
a fair performance comparison is difficult. As demonstrated in this study, a selection process is
necessary for determining the suitability of deep learning algorithms to the type classification of
structures and detection of structural members. During the training of a deep learning model, refined
data are used as input and output. The model learns the correlation between input and output data
with the backpropagation algorithm, which it uses for prediction and classification. A model with
a high degree of accuracy is constructed through repetition. However, a major risk of deep learning
is the absence of explanation why a certain model produces the best result. A deep learning model
only calculates the output of an input but does not explain why it produces such a result. Thus,
a deep learning model can only be trained to a high degree of accuracy through experience rather than
through theory. To address this issue, this study used architectural expertise to summarise the features
that should be detected by the deep learning model for classification and prediction. The colours,
roof curvature, and outer wall shape were used to classify traditional Korean, Japanese, and Chinese
architecture, and the model demonstrated a high classification accuracy [27]. However, AI cannot be
used to derive suitable algorithms for classifying architectural features. Therefore, simple experiments
were used to characterise the performances of R-CNN and YOLO and determine their suitability to
different purposes according to how they recognise patterns [28]. The results of this study can be
summarised as follows:

1. A new method was developed for classifying East Asian traditional buildings by country based on
aesthetic design elements. R-CNN can closely analyse images and classify complex overlapping
areas like design patterns; the deep learning model with R-CNN was able to classify traditional
architectural features of each country with an accuracy of 90% using slightly over 1000 images. In
preliminary research, the error probability was reduced with 10,000 or more images. However, no
errors were observed during direct verification, where the model analysed the similarity between
a library pre-trained by AutoML in a cloud environment and the uploaded images.

2. The deep learning model with YOLO was used to classify and locate structural members of
traditional buildings in videos and images. YOLO has a faster processing speed than R-CNN
and can detect major objects in videos and images in real time. However, it cannot detect objects
in images taken from various angles or less exposed images with blind spots. Because of this
disadvantage, YOLO was applied to traditional buildings with layered structures. The deep
learning model with YOLO was able to detect structural members like gongpo and columns [25],
which have large differences in shape, rather than examine differences in similar images.

3. The composition of the dataset and resulting methodology for AI-based training were analysed
theoretically. The deep learning model was given two roles: classification of type and classification
and location of structural members. For the classification of type, data were labelled, and deep
learning variables such as the epoch, batch size, and number of hidden layers were adjusted to
ensure proper learning with R-CNN. For the classification and location of structural members,
a large number of images needed to be masked when creating the dataset to allow locations to
be displayed clearly. The Web-based Supervisely platform was used for masking; this platform
has the advantage that a threshold amount of manual masking can be used as the basis for
automatically masking the remaining dataset. However, the disadvantage is errors that occur
during processing and the initial repetition of data feedback. Nonetheless, this approach can be
used for real-time processing.

The model was confirmed to be able to classify traditional buildings by country and recognise/locate
structural members such as gongpo and columns [29]. In the additional experiment on the style of
Buyeo National Museum, the deep learning model showed conflicting results. Follow-up research is
needed on visualising the AI decision-making through methods such as heat maps, which can be used
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to delineate Korean parts from Japanese parts. Additional research is needed on whether classification
was performed based on certain design elements or whether forms were recognised based on certain
parts. Furthermore, research is also needed on increasing the efficiency of building management and
drawing connections between publicly available data such as wooden structural member deterioration
and earthquakes rather than simply classifying buildings by country.
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