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A perpendicular spin transfer torque (p-STT)-based neuron was developed for a spiking
neural network (SNN). It demonstrated the integration behavior of a typical neuron in
an SNN; in particular, the integration behavior corresponding to magnetic resistance
change gradually increased with the input spike number. This behavior occurred when
the spin electron directions between double Co2Fe6B2 free and pinned layers in the
p-STT-based neuron were switched from parallel to antiparallel states. In addition, a
neuron circuit for integrate-and-fire operation was proposed. Finally, pattern-recognition
simulation was performed for a single-layer SNN.

Keywords: neuromorphic, MRAM, spiking neuron, spiking neural network, artificial neuron

INTRODUCTION

Artificial neural network (ANN)-based artificial intelligence (AI) has been one of the most
successful technologies in recent years. Today, it is applied in numerous fields, such as education,
security, finance, science, and entertainment. In particular, the performance of the AI has already
exceeded the ability of human beings (Szegedy et al., 2015; He et al., 2016; Silver et al., 2016;
Hu J. et al., 2018) in fields such as image recognition and the Go game. However, there
is a limitation to conventional ANNs working on the von-Neumann architecture. The low
bandwidth between processor and memory in the von-Neumann architecture hinders efficient
neural networks processing (Merolla et al., 2014; Monroe, 2014). Neuromorphic computing
systems that mimic the human brain has been designed to overcome this limitation using
complementary metal oxide semiconductor (CMOS)-based artificial neuron devices. However,
it is a major challenge to implement high neuronal density by means of conventional CMOS
technology because emulating the integration function of the neuron relies on the capacitor
where the area of capacitor would be prohibitively large (∼1,000 F2) to obtain the desired
capacitance (∼10 fF/µm2) (Gentet et al., 2000; Indiveri et al., 2013). Therefore, an artificial neuron
device without a capacitor is necessary to implement high-density neuromorphic chip. Recently,
emerging artificial neuron devices have been reported as an alternative to CMOS-based neuron
devices such as partially depleted silicon-on-insulator n-MOSFET (PD-SOI n-MOSFET) (Dutta
et al., 2017), phase change random-access memory (PCRAM) (Tuma et al., 2016), and magnetic
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random-access memory (MRAM) (Grollier et al., 2016; Sengupta
et al., 2016; Shim et al., 2017; Srinivasan et al., 2017; Torrejon
et al., 2017; Mizrahi et al., 2018; Kurenkov et al., 2019). Among
them, MRAM has been proposed as a promising candidate
for artificial neuron device due to its high-area efficiency, fast
operating speed, and low power consumption (Zhang et al.,
2016; Liyanagedera et al., 2017; Hu G. et al., 2018). However,
past researches have mainly focused on stochastic behavior of
MRAM, and its integration behavior has not yet been reported.
In this work, we first demonstrated the integration behavior of
perpendicular spin transfer torque magnetic tunneling junction
(p-STT MTJ) spin valve when switching from parallel to
antiparallel states between Co2Fe6B2 free and pinned layers.
In addition, its integration behavior was discussed with grain
boundary in MgO tunneling barrier. Finally, we conducted
a pattern recognition simulation of a spiking neural network
(SNN) using our p-STT-based neuron.

MATERIALS AND METHODS

Device Fabrication
p-STT MTJ
A p-STT MTJ spin valve structure was fabricated using a 12-in
SiO2 wafer multichamber cluster magnetron sputtering system
under a high vacuum of <1 × 10−8 Torr. In particular, it was
vertically stacked with a W/TiN bottom electrode, Ta buffer
layer, Pt seed layer, [Co (0.47 nm)/Pt (0.23 nm)]6/Co (0.51 nm)
lower SyAF layer, Ru spacer layer (0.85 nm), Co (0.51 nm)/Pt
(0.23 nm)/[Co (0.47 nm)/Pt (0.23 nm)]3 upper SyAF layer, Co
buffer layer (0.4 nm), W bridge layer (0.2 nm), Co2Fe6B2 pinned
layer (0.95 nm), MgO tunneling barrier (1.0 nm), Fe insertion
layer (0.3 nm), Co2Fe6B2 lower free layer (0.8 nm), W spacer
layer (0.4 nm), Co2Fe6B2 upper free layer (0.8 nm), MgO capping
layer (0.8 nm)/Fe diffusion barrier (0.19 nm), W capping layer
(4.0 nm), and Ta/Ru top electrode. An amorphous Ta buffer layer
was used to prevent the texturing of the polycrystallinity of the
W/TiN bottom electrode. A Pt seed layer thickness was optimized
for the face-centered cubic (f.c.c) texturing of the [Co/Pt] SyAF
multilayers. The [Co/Pt]6 lower SyAF layer and [CoPt]3 upper
SyAF layer were perfectly antiferromagnetic coupled by inserting
an optimized Ru spacer layer by Ruderman–Kittel–Kasuya–
Yosida (RKKY) coupling. Then, the Co2Fe6B2 pinned layer was
ferrocoupled to the [CoPt]3 upper SyAF layer by a W bridge
layer. Then, the p-STT MTJ spin valve was ex situ annealed
at 350◦C for 30 min under a vacuum below 10−6 Torr and a
perpendicular magnetic field of 3 T. The p-STT MTJ spin valve
was cut into 1 × 1 cm2 pieces and was patterned into p-STT
MTJ with a device size of 1.6 × 1.6 µm2 using ion milling and
E-beam lithography. Then, p-STT MTJ was passivated, and their
contact pads were wire bonded to a sample holder to estimate the
electrical characteristics. The magnetic resistance versus applied
magnetic field (R–H) curve and integration characteristic of
the p-STT MTJ were measured with a homemade electrical
probing system with a ∼1-T electromagnet using a Keithley
236 source measure unit and an Agilent B2902A semiconductor
parameter analyzer.

IGZO-Based ReRAM
Five-nanometer-thick indium gallium zinc oxide (IGZO) film
was deposited on a 113-nm diameter plug-type TiN-bottom-
electrode-patterned wafer by radio frequency (RF) magnetron
sputtering at 40 W RF power, 40 sccm Ar flowrate, and 1 sccm
O2 flowrate for an IGZO target, followed by 400◦C annealing for
30 min in N2 ambient. For a top electrode patterning, 850 µl
photoresist (AZ5214E) was dropped on the IGZO thin film
layer followed by spin coating with 5,000 rpm for 30 s and
120◦C hard baking for 1 min and 40 s. Then, a photomask with
60 × 60 µm2 pattern size was aligned on the substrate followed
by exposure to UV light with a beam intensity of 20 mW/cm2

for 12 s. The exposed photoresist was developed for 50 s using
a developer (AZ300MIF) followed by deionized water rinse for
4 min. Afterward, the top Al electrode was deposited by direct
current (DC) magnetron sputtering at 30 W DC power and 30
sccm Ar flowrate for an Al target. Finally, lift-off process was
performed to make the top electrode pattern by acetone for 4 min
followed by methanol rinse for 4 min and deionized water rinse
for 4 min. Thus, the synapse devices have a sandwich device
structure of a bottom TiN electrode, an IGZO layer, and a top Al
electrode. Electrical characteristic was measured using a Keithley
4200A semiconductor parameter analyzer.

Pattern Recognition Simulation
Neuron
An empirical model was used to simulate the integration
characteristic of the p-STT MTJ. The logistic function was used to
fit a measured data (Supplementary Figure 1A). Thus, resistance
of the p-STT MTJ is given as follows:

r (n) =
rmin − rmax

1+
(

n
nv+nσ

)p + rmax + rσ (1)

where n, rmin, rmax, p, and nv were the number of applied pulse,
minimum and maximum resistance of the p-STT MTJ, fitting
constant (=0.3142), and curve fitting parameter depending on the
voltage, respectively. The integration characteristic of the p-STT
MTJ is determined by nv, which depends on the applied pulse
amplitude (Supplementary Figure 1B). In this empirical model,
nσ and rσ were added to account for device variation where
nσ∼N(µn, σn2) (µn = 0 and σn = 0.5) and rσ∼N(µr , σr2) (µr = 0
and σr = 0.2) are Gaussian random variables (Supplementary
Figures 1C,D).

Synapse
In this simulation, IGZO-based ReRAM is used as the artificial
synapse, as shown in Supplementary Figure 2A. The IGZO-
based ReRAM shows typical bistable current versus voltage (I–V)
curve of interface-type ReRAM, as shown in Supplementary
Figure 2B. To emulate synaptic property, we used a synapse
model similar to Ziegler et al. (2015) and Hansen et al. (2017).
In this model, change in synaptic weight is given by

M wp,d(t) = βp,d (w)w (t)
[

1−
1

wmax
w (t)

]
(2)
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FIGURE 1 | Schematic of neural network. (A) Biological neural network. (B) Artificial neural network using the perpendicular spin transfer torque (p-STT)-based
neurons and memristor synapse.

where w, β, and wmax represent the synaptic weight, the
weight-dependent learning rate, and maximum synaptic weight,
respectively. β determines the potentiation and depression curves
depending on the switching mechanism of the ReRAM (Ziegler
et al., 2015; Hansen et al., 2017). In order to obtain synaptic
weight change, β should be determined. Here, we use a learning
rate model given by

βp,d (M V,M t,w)

=

{
cp (M V,M t)× (1− γw) , potentiation : (V > 0)

−cd (M V,M t)× w, depression : (V < 0)
(3)

where γ is a positive constant, and cp and cd are MV and
Mt dependent function. In our model, cp (=0.275) and cd
(=0.063) are constant since MV and Mt were fixed for the
potentiation and depression. The simulation is well correlated
with potentiation/depression of the experimental data, as shown
in Supplementary Figure 2C.

Synaptic Weight Update
We used simplified spike timing-dependent plasticity (STDP)
learning rule for training SNN. Synaptic weight was updated with

the following equation:

w (tn+1) =

{
w (tn)+ M wp (tn) , 0 ≤ tpost − tpre < 10T

w (tn)+ M wd (tn) , otherwise
(4)

where M wp and M wnd are the synaptic weight change for the
potentiation and depression, respectively. T is the time of a one
cycle of integration–read–reset. Since we assumed a synchronous
system, T is constant. Additional circuits are required for STDP
operation. However, it is beyond the scope of this paper to deal
with synaptic learning circuit in detail. When the spiking time
difference between a preneuron (tpre) and a postneuron (tpost)
was <10 cycles (1 cycle = integration–read–reset), the synapses
connected with the pre- and postneurons were potentiated, and
the remaining synapses were depressed.

RESULTS

Artificial Neural Network Based on
p-STT-Based Neuron
In biological neural networks, neurons are connected to other
neighboring neurons via synapses, as shown in Figure 1A.
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FIGURE 2 | Magnetic and electrical properties of the perpendicular spin transfer torque (p-STT)-based neuron (1.6× 1.6 µm2). (A) Schematic structure. (B) M–H
curve in a wide scanning range of the applied perpendicular magnetic field (i.e., −4 ∼ + 4 KOe). (C) M–H curve in a narrow scanning range of the applied
perpendicular magnetic field (i.e., −0.5 ∼ + 0.5 KOe). (D) R–V curve. (E) R–H curve of the p-STT-based neuron.

Neurons integrate input spike signals from adjacent neurons via
synapses, i.e., integrate. In addition, neurons generate output
spike signals when membrane potentials reach a threshold
value, i.e., fire. This neuronal behavior is called “integrate-
and-fire,” which is the key operation of neuron (Hodgkin and
Huxley, 1952; Izhikevich, 2003). Similarly, artificial neurons
could be connected with other artificial neurons via artificial
synapses, where p-STT-based neurons are connected with
memristor-type synapse, as shown in Figure 1B. The p-STT-
based neurons receive spike signals through synapses connected
with preneurons, integrate the signals, and then sends out
output spike signals when the resistance of the p-STT-
based neurons reaches a certain threshold value. In the
following sections, we will describe in detail how p-STT-
based neuron works.

Magnetic Properties of p-MTJ
Figure 2A shows schematic structure of p-STT MTJ. Its magnetic
moment versus applied perpendicular magnetic field (M–H)
loop was investigated to determine the static magnetic behavior
of the p-STT MTJ, as shown in Figures 2B,C. It includes
four perpendicular magnetic anisotropy (PMA) layers: a double
Co2Fe6B2 free layer (i in Figure 2A), Co2Fe6B2 pinned layer (ii
in Figure 2A), upper [Co/Pt]3 SyAF layer (iii in Figure 2A), and
lower [Co/Pt]6 SyAF layer (iv in Figure 2A). Here, the Co2Fe6B2
pinned layer was ferrocoupled with the upper SyAF layer, whereas
the upper [Co/Pt]3 SyAF layer was antiferro coupled with the
lower [Co/Pt]6 SyAF layer. The magnetic moments of the double
Co2Fe6B2 free layer, Co2Fe6B2 pinned layer ferrocoupled with

the upper [Co/Pt]3 SyAF layer, and lower [Co/Pt]6 SyAF layer
were 0.130 (Mi in the inset of Figure 2C), 0.362 (Mii + iii in
Figure 2B), and 0.370 (Miv in Figure 2B) memu, respectively.
In addition, the double Co2Fe6B2 free layer showed an excellent
interface PMA characteristic with a good squareness and fair
coercivity (Hc, ∼0.13 kOe), as shown in Figure 2C. This result
indicates that the MgO tunneling barrier had good face-centered
cubic crystallinity that enhanced the coherent tunneling of the
spin electrons (Lee et al., 2016a,c,d). The magnetic resistance
versus voltage (R–V) behavior at room temperature (295 K)
was measured to investigate the spin transfer torque switching
behavior of the p-MTJ, as shown in Figure 2D. The switching
voltage from parallel to antiparallel states was −0.53 V (VPtoAP),
while the switching voltage from antiparallel to parallel states
was + 0.61 V (VAPtoP). The magnetic resistance versus magnetic
field (R–H) loop of the p-STT MTJ is shown in Figure 2E.
When the applied perpendicular magnetic field was scanned
from+ 0.5 to−0.5 kOe, the electron spin direction of the double
Co2Fe6B2 free layer was rotated from upward to downward so
that the electron spin directions between the double Co2Fe6B2
free and pinned layers were switched from antiparallel to parallel
states. As a result, the resistance of the p-STT MTJ decreased
from 82 to 46 �. The squareness and coercivity of the p-STT
MTJ measured with an R–H loop was almost the same as that
measured with an M–H loop, indicating that this device could
maintain a stable magnetic state in a zero magnetic field so that
the integration behavior would be characterized during the switch
from parallel to antiparallel between the double Co2Fe6B2 free
and pinned layers.
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FIGURE 3 | Integration characteristics of the perpendicular spin transfer torque (p-STT) magnetic tunneling junction (MTJ)-based neuron. (A) Dependence of the
integration behavior on the input spike number and amplitude. (B) Repeated integration characteristic of the p-STT MTJ (five sets of 100 input pulse spikes).

FIGURE 4 | Integration mechanism of the perpendicular spin transfer torque (p-STT) magnetic tunneling junction (MTJ). (A) Schematic of switching energy diagram
at grain inside (black) and grain boundary (yellow). Schematic illustration of integration mechanism: (B) initial state, (C) switching at grain boundary, (D) switching at
grain inside, and (E) integration.

Integration Property of p-MTJ Spin
Valves
Interestingly, the p-STT MTJ showed integration property when
consecutive voltage pulses (spike) were applied, as shown in
Figure 3A. The spike width was 50 µs, and the spike amplitude
was varied from −0.50 to −0.70 V. At all spike amplitudes,
i.e., −0.50, −0.55, −0.60, −0.65, and −0.70 V, the p-STT MTJ

performed the integration at input spikes of ∼100 pulses. In
addition, the resistance difference increased when the input
spike amplitude increased from −0.50 to −0.70 V at input
spikes of ∼100 pulses, as shown in Figure 3A. Over an input
spike amplitude of −0.7 V, no integration behavior was found.
In addition, the p-STT MTJ showed a good repeatability for
five sets of ∼100 input spike pulses, where the resistance
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FIGURE 5 | Schematic of artificial neural network. (A) Crossbar array of artificial synapses and (B) neuron circuit for integrate-and-fire.

increment by the 100 input spike pulses increased with the
input spike, as shown in Figure 3B. Our proposed p-STT
MTJ in Figure 3 showed a unique neuron characteristic (i.e.,
integration characteristic) compared to MTJ-based neurons
(stochastic characteristic with a two-terminal device or leaky-
integrate-and-fire characteristic with a three-terminal device),
as shown in Supplementary Table 1. The mechanism of this
behavior could be explained by understanding the grain-size
distribution of the polycrystalline MgO tunneling barrier. The
distribution of the sputtered polycrystalline MgO tunneling
barrier was 0.6 to ∼1.8 nm, where the average grain size was
∼0.94 nm, as shown in Supplementary Figure 3. This indicates
that even for a p-STT MTJ with a cell size of 35× 35 nm2,
multiple grains would exist within the p-STT MTJ cell, as shown
in Supplementary Figure 4. As a result, we can expect that the
p-STT MTJ with a cell size of 35× 35 nm2 would show an
integrate characteristic similar to Figure 3 since it has a large
number of grain within the p-STT MTJ cell. The interfacial PMA
of both the double Co2Fe6B2 free and pinned layers originated
from the hybridization between O atoms and X (Fe or Co)
atoms at the MgO tunneling barrier and Co2Fe6B2 layer interface.
Thus, the polygrain size distribution of the polycrystalline MgO
tunneling barrier directly and strongly affects the ferromagnetic
properties of both the double Co2Fe6B2 free and pinned layers,
i.e., resistance difference between parallel and antiparallel states
of the p-MTJ. In addition, the hybridized Fe–O and Co–O bonds
within the grains would be well oriented with the crystallinity of
the MgO tunneling barrier, so the electron spins would require
a high activation energy to switch from parallel to antiparallel.
Otherwise, the spin electrons at the grain boundaries would
have a relatively low energy barrier to switch from parallel to
antiparallel, compared with the spin electrons within the grains
(MacLaren and Willoughby, 2001; Victora et al., 2003; Kondo
et al., 2018), as shown in Figure 4A. Thus, the spin electrons at
the grain boundaries (Figure 4B) would first be switched from

parallel to antiparallel states (Figure 4C), and the spin electrons
inside the grain would then rotate due to the ferrocoupling
between the spin electrons at the grain boundary and inside the
grain (Figure 4D). As a result, the spin electrons in the grains
would be switched from parallel to antiparallel, which would
be a similar switching behavior to a previous report (Suzuki
et al., 2016). This switching process would induce the integration
behavior when the spikes are sequentially applied to p-STT MTJ
(Figure 4E). The integration behavior of a p-STT MTJ was
influenced by the crystallinity of the MgO tunneling barrier
in Figure 2A, i.e., a better crystallinity of the MgO tunneling
barrier led to a better integration characteristic, as shown in
Supplementary Figure 5. This integration behavior of the p-STT
MTJ would suggest that the p-STT MTJ could be applied
with the complementary metal–oxide–semiconductor field-effect
transistor (C-MOSFET) technology to produce artificial neuron.
In general, the perpendicular spin torque switching time of a
p-STT MTJ has been reported as ∼10 ns, which is the fastest
switching time among other semiconductor devices (Hu G. et al.,
2018). In addition, the operation of the integration by a p-STT
MTJ in Figure 3 was performed prior to a full the perpendicular
spin torque switching. Thus, the width of a spike pulse in Figure 3
could be less than ∼10 ns if the size of a neuron using a p-STT
MTJ can be scaled down–up to 35× 35 nm2, suggesting a lowest
power consumption per a spike in neuron (i.e., 1.6 × 1.6 µm2),
as shown in Supplementary Table 2.

p-STT MTJ-Based Integrate-and-Fire
Neuron
Although the p-STT MTJ exhibited integration behavior
depending on the input spike amplitude, it requires an additional
circuit to perform the fire operation. Thus, the p-STT MTJ-based
neuron circuit was designed using one p-STT MTJ, seven n-MOS
FETs, three p-MOS-FETs, and one reference resistance to conduct
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FIGURE 6 | Pattern recognition simulation. (A) Schematic of a single-layer spiking neural network (SNN). (B) Normalized synaptic weight before learning.
(C) Normalized synaptic weight connected with active neurons after learning. (D) Normalized synaptic weight connected with silent neurons after learning.
(E) Pattern recognition accuracy.

the integrate-and-fire operation as shown in Figure 5A. Note
that we calculated the area of the p-STT MTJ-based integrate-
and-fire neuron using 1.6×1.6 µm2 p-STT MTJ (i.e.,∼8.2 µm2),
which was approximately one-fourth smaller than the previous
report (Sourikopoulos et al., 2017), as shown in Supplementary
Figure 6 and Supplementary Table 3. In this circuit, “fire” occurs
when the resistance of the p-STT-based neuron exceeds the
reference resistance (Rref ). The neuron receives control signals
from a controller and performs integration, read, and reset
operations in each clock cycle, as shown in Figure 5A. One
controller can control multiple neurons simultaneously. In order
to implement neural network, cross-point array can be used
to realize analog matrix-vector multiplication. Figure 5B shows
the schematic illustration of typical cross-point neural network
implementation, which was fabricated by a cross-point synapse
array being connected with our proposed p-STT MTJ neuron.
Synapse would be IGZO-based memristor (in our experiment
shown in Supplementary Figure 2). Where the bias voltage
(Vbias) serves to ensure that the p-STT-based neuron is within
its proper operating range.

Pattern Recognition
To investigate the performance of the SNN, a single-layer SNN
consisting of input and output layers (50 p-STT-based neuron)
was designed, as shown in Figure 6A. In this simulation, IGZO-
based ReRAM was used in artificial synapse. A performance
test of the SNN was carried out using the MNIST handwritten
image set. MNIST images (6 × 104) were used for training,
and 1 × 104 images not included in the training were used for
testing. The probability of the input spike occurrence was set
to be proportional to the pixel value of an input image, and

the amplitude of an input spike was set to −1 V. The neurons
integrate the input spike signals and fire when the resistance
of the p-STT MTJ exceed Rth (=70 �). When the neurons fire,
they generated an output spike. The winner takes all (WTA)
was applied to the output neuron nodes. WTA improved the
accuracy of a single-layer SNN since the WTA guarantees non-
linear mapping in a single-layer SNN (Du et al., 2015; Hansen
et al., 2017). Finally, only the synaptic weights associated with
the fired output neurons were updated. In the initial synaptic
weight map, the conductance of the synapses was randomly
distributed. After training, the distribution of synaptic weights
was changed. The weights for active and silent neurons are
shown in Figures 6C,D, respectively. Even if there were more
than 10 epochs, there were some silent neurons, as shown in
Figure 6D. These silent neurons exhibited almost no firing
during training. The reason for this is that the WTA updates
only synaptic weights associated with neurons that have fired;
consequently, synaptic weights connected with neurons that
rarely fire are slower to learn. As a result, these less learned
synapses reduce the firing rate of the connected silent neurons
compared to other neurons. In the end, learning is rarely achieved
for the silent neurons. In biological neural networks, there is a
mechanism called “homeostasis” to overcome these problems.
With this mechanism, a neuron that frequently fires increases
the threshold required to fire, and a neuron that rarely fires
decreases it (Lee et al., 2016b,d; Johnson et al., 2018). This
mechanism lowers the fire threshold of neurons where learning
has not been achieved; thus, it causes neurons to be more
likely to fire during subsequent learning. However, it is difficult
to change the reference resistance Rth once it is set in the
circuit. This remains a problem to be solved in the future.
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We use simplified STDP learning rule for synaptic learning. The
synaptic weights before training are shown in Figure 6B. First,
we simulated the dependence of pattern recognition accuracy
on read error using our proposed the cross-point synapse array
(i.e., Figure 5B) being connected with our proposed p-STT MTJ
neuron (i.e., Figure 5A), as shown in Supplementary Figure 7.
The pattern recognition accuracy sustained at ∼76% up to read
error of 5% and then rapidly decreased with read error larger
than 5%. In addition, we tested the dependence of pattern
recognition accuracy on the reference resistance by simulation,
as shown below Supplementary Figure 8. We determined the
reference resistance that showed the highest accuracy of pattern
recognition simulation. Using the simulated reference resistance,
the pattern recognition accuracy rapidly increased to ∼76%
in two epochs, as shown in Figure 6E. Since the single-layer
SNN used in training is learned through STDP unsupervised
learning, so only clustering was performed for each output stage.
Therefore, the most frequent output values of each node were
compared with the determined input value to measure the pattern
recognition accuracy. The single-layer SNN, composed of p-STT-
based neurons, showed a maximum recognition accuracy of
∼76%, which was somewhat lower than that of other reported
neural networks (Burr et al., 2014). In the single-layer SNN,
pattern recognition accuracy increases with the number of output
neurons (Querlioz et al., 2015; Zahari et al., 2015; Hansen
et al., 2017). However, even if the number of output neurons is
increased to 100, it is difficult to obtain more than 90% accuracy.
The major reason for the low accuracy is the lack of proper
learning algorithms to train SNN. The spike signals are not
differentiable, so global learning rule such as backpropagation
cannot be used for training SNN. Therefore, local learning rule
such as STDP is mainly used for training SNN. This limits the
structure of neural network to a single layer. Therefore, in order
to increase the accuracy of the SNN, further study of the learning
algorithm is necessary.

DISCUSSION

p-STT MTJ could perform integration when the spin electron
directions at double Co2Fe6B2 free and pinned layers were
switched from parallel to antiparallel states. However, for
the integrate-and-fire operation, a neuron circuit performing
the fire behavior was essentially designed. Pattern recognition
accuracy of ∼76% was achieved using a ReRAM-based synapse

model and the STDP learning rule. In summary, the p-STT-
based neuron could perform like a typical neuron showing
integrate-and-fire behavior and would be a suitable for SNN.
In addition, a cross-point synapse array is essentially necessary,
where a selector is vertically stacked on a synapse to eliminate
a sneak current between synapses. Thus, further studies are
necessary on processes for fabricating cross-point synapse arrays
connected with p-STT-based neurons. In addition, since the two-
terminal p-STT-based neuron can perform only the integration
behavior, a circuit performing the fire behavior should also
be designed. Therefore, further study is also necessary on
a three-terminal p-STT-based neuron that uses a magnetic
domain moving mechanism. Finally, since a strong merit of
the p-STT-based neuron would be its power consumption;
further study is necessary for a neuron circuit design with low
power consumption.
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