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ABSTRACT Social network services (SNSs) such as Twitter and Facebook have emerged as a new medium
for communication. They offer a unique mechanism of sharing information by allowing users to receive
all messages posted by those whom they ‘‘follow’’. As information in today’s SNSs often spreads in the
form of hashtags, detecting rapidly spreading hashtags in SNSs has recently attracted much attention. In this
paper, we propose realistic epidemic models to describe the probabilistic process of hashtag propagation.
Our models take into account the way how users communicate in SNSs; moreover the models consider the
influence of external media and separate it from internal diffusion within networks. Based on the proposed
models, we develop efficient inference algorithms that measure the propagation rates of hashtags in social
networks. With real-life social network data including hashtags and synthetic data obtained by simulating
information diffusion, we show that the proposed algorithms find fast-spreading hashtags more accurately
than existing algorithms. Moreover, our in-depth case study demonstrates that our algorithms correctly find
internal diffusion rates of hashtags as well as external media influences.

INDEX TERMS Social network, information diffusion, hashtag, probabilistic modeling, EM algorithm.

I. INTRODUCTION
With the rise of social network services (SNSs) such as
Twitter and Facebook, their role as media of information
is becoming increasingly important. These SNSs commonly
provide the concept of following other users as a way of shar-
ing information; a user receives all the messages from those
whom they follow. With the scale-free network structures of
the SNSs, a user’s postings can easily reach large numbers of
people via his followers and followers of followers, etc., by
content-sharing features, such as ‘‘retweet’’ in Twitter.

In this paper we are interested in detecting rapidly spread-
ing hashtags in SNSs. A hashtag is a user-generated tag
in text messages to make it easy for others to find their
messages. Usually, a hashtag represents a specific topic or
idea of a message. As more users find a hashtag, or its
representing idea, compelling, the hashtag becomes viral and
used by many people. For example in 2015, the hashtag
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#ILookLikeAnEngineer, initially used by a few female
engineers, was quickly adopted by many other female engi-
neers to break the gender stereotypes and highlight diversity
in the engineering industry.

Hashtags in SNSs propagate mainly in two distinct mech-
anisms: 1) users learn a new topic from external media such
as BBC and New York Times, and share them in SNSs with
a hashtag for the topic, or 2) users read the postings of their
followees (those whom they follow) then share the hashtag
on their messages. Note that it is already hard to find rapidly
spreading hashtags in SNSs, because there are too many
hashtags; simply counting the hashtags to detect the ones with
rapidly growing frequency does not scale. It is even harder to
identify the diffusion mechanisms (from external media or
from followee to follower) for rapidly spreading hashtags.

This paper presents a novel model-centric approach for
detecting rapidly spreading hashtags in social networks.
We design realistic models to describe the probabilistic pro-
cess of hashtag propagation. Based on our diffusion mod-
els, inference algorithms are proposed to estimate diffusion
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rates of hashtags. Our proposed models separate diffusion
by external influence from diffusion over the connections of
networks; hence the inference algorithms accurately estimate
the diffusion rates over networks and identify the hashtags
that primarily spread via networks.
To the best of our knowledge, this paper presents the

first practical technique to find spreading hashtags in SNSs
scalable to large graphs. The contributions of this paper are
as follows:

• We propose realistic diffusion models considering the
user’s pattern of posting messages with hashtags in
SNSs, such as the recency of posted messages and the
influence of external media.

• Based on our probabilistic diffusion models, we design
efficient inference algorithms. Using the Expectation
Maximization (EM) technique, our inference algorithms
estimate the diffusion rates as well as external influ-
ences, which maximize the likelihoods in the models.

• To evaluate how accurately our inference algorithms
identify rapidly spreading hashtags, we use a real-world
Twitter dataset, collected in a large metropolitan area
in Korea for three months. The tweet data is examined
by active Twitter users, and viral hashtags are manu-
ally annotated. With the annotated data, we perform an
in-depth analysis of the viral hashtags reported by our
algorithms.

• We develop a parallel/distributed version of the infer-
ence algorithms running on Pregel, a well-known par-
allel graph processing model. Our evaluation demon-
strates that the distributed inference algorithm scales to
a large network with 80 million connections; for the
network it takes less than six minutes for eight machines
to compute the diffusion rates for a hundred hashtags.

Case Study (Viral Hashtags Discovered): In our in-depth
analysis with real-world Twitter dataset, our algorithm iden-
tified interesting viral hashtags. Among the identified hash-
tags, a few notable topics for them are #MeToo movement
and political scandal. In October 2016, a year before the
global #MeToomovement begins, there was a similar move-
ment in Korea in artistic communities; a few artists held a
public interview to reveal the prevalent sexual harassment in
the communities. Soon the related hashtags started circulating
in social media as users share their own #MeToo stories.
Those hashtags discovered by our algorithm spread fast over
many local communities in SNSs. However, at that time, it did
not become very well-known in Korea like the world-wide
#MeToo movement.

Another group of viral hashtags we identified is about
the political scandal in Korea, the one that resulted in the
impeachment of the former president. Although we iden-
tified many widely used hashtags for this topic, most of
them became viral due to the influence of external media.
However, our algorithm did successfully discover some hash-
tags that became viral primarily because of the network
effect – i.e., with little influence from the external media.

For instance, the hashtag #by_the_way_Choi (Choi is the
person at the center of the political scandal) is used jokingly
in the messages of unrelated topics to draw people’s attention
to the political scandal. The SNS users found it fun to use
the hashtag and other similar ones in unrelated messages,
thus those hashtags became viral and widely used. These
examples show that our algorithm effectively captures the
user’s behavior of using hashtags in SNSs and discovers viral
hashtags that primarily spread via the networks.

II. PRELIMINARIES
In this section, we describe the notations that are used in
our hashtag diffusion models in SNSs and in our inference
algorithms to estimate the diffusion rates. We then formally
define the problem of hashtag diffusion in SNSs.
Notations:Many popular SNSs such as Twitter, Facebook

and Instagram offer a mechanism of sharing information by
allowing each user to receive all messages from those who he
follows. We will refer to those who follow a user as followers
and those whom a user follows as followees. When users
log into those services, they may see a list of all messages
posted by their followees in reverse chronological order of the
posting times in their homepages, which is called a timeline.

Let H be the set of hashtags appearing in the mes-
sages posted in SNSs. If a message posted by a user u
with a hashtag h ∈ H is followed by another message
including h posted by a user v who follows u, with the influ-
ence of the preceding one by u, we say that u infected v with
the hashtag h. Note that we will present formal definitions
of infection later in Section IV. Furthermore, we call those
who are either recovered or never infected, and thus can be
infected with a hashtag, a susceptible user. Let G=(V ,E)
denote a directed graph that represents relationships between
users in a SNS. A vertex u ∈ V is an SNS user and a directed
edge (u, v) ∈ E exists if a user v follows another user u, which
implies that all messages posted by u are published on the
timeline of v. In other words, u can infect v with a hashtag.
We consider SNS message logs with hashtags collected in

a short term of time such as a week or a month as input.
For convenience in modeling, each infection time is recorded
in uniform discrete time segments, each of which is about
several hours to a day long. We call this time segment a day
in this paper and T denotes the number of days in the observed
data. Let τh(u) be the set of days when a user u posted a
message with a hashtag h. Especially we use τ 0h (u) to refer to
the first day when umentioned h. If u is never infected with h
in our observed period, we set τ 0h (u) = ∞. INh(u, t) denotes
the number of u’s followees who have already posted one or
more messages with h no later than t . Similarly, we refer to
the number of u’s followees who have mentioned h between
t−1 and t as INh(u, t,1). We summarize the notations used
in our paper in Table 1.

Our problem is then defined as follows.
Problem Definition: Given a set H of hashtags, a social

network graph G = (V ,E) and the infection days τh(v) for
every hashtag h ∈ H and user v ∈ V , our goal is to find
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TABLE 1. List of notations.

the top-k most rapidly spreading hashtags among H and to
identify the influence from external media for those hashtags.

III. HASHTAG DIFFUSION MODELS AND INFECTION
RATE INFERENCE
We propose three generative models that statistically capture
the behavior of social network users who post with hashtags
influenced by their followees in this section. The models are
commonly based on the following assumptions. It is generally
accepted in many information diffusion models [1]–[3] that
infection occurs with a uniform probability each time people
are exposed to information. Thus we assume the followings:
Assumption 1 (Social Infection Rate): For a hashtag h,

each uninfected user becomes infected with probability ρh,
which is called infection rate (or diffusion rate) of h, every
time he/she sees a message with h posted by his followees in
the timeline.

Based on the above assumption, each day a user stays
susceptible for h with probability (1− ρh)n despite of having
n already-infected followees, and should be infected with h
with probability 1− (1− ρh)n.
Many classical diffusion models have assumed a discrete

time period at which a single chance is allowed for an
information to be transmitted [4]. Thus, the next assumption
follows:
Assumption 2 (Periodic Media Access): We simply assume

that people check any media such as new papers and SNSs
at least once in a day, and post a message on SNSs about
what they read from those media. Note that throughout this
paper we use the term day to denote the period people access
media, rather than its literal meaning. Furthermore, even if a
user posts a hashtag multiple times in a day, we regard it as

Algorithm 1 EM-IPSI: EM Algorithm for IPSI
Input : G = (V ,E) and for a h ∈ H , τh(v) ∀v ∈ V
Output: ρ and ε

1 Randomly initialize ρ and ε;
2 while logL does not converge do
3 Set ρ1, ρ2, ρ3, ε1 and ε2 to 0;
4 for each vertex v ∈ V do
5 for each t from 1 to min(τ 0(v)− 1,T ) do
6 Compute xv,t,1 and xv,t,2 in Eqn. (2) ;
7 ε2← ε2 + xv,t,1, ρ2← ρ2 + xv,t,2 · IN(v, t);
8 end
9 if τ (v) 6= ∅ then

10 Compute yv,1 and yv,2 in Eqn. (3) ;
11 ε1← ε1 + yv,1, ρ1← ρ1 + yv,2;
12 Compute zv,k for k=0,...,IN(v, τ 0(v))−1 in

Eqn. (4);

13 ρ3← ρ3 + yv,2 ·
∑IN(v,τ 0(v))−1

k=0 zv,k · k;
14 end
15 end
16 ε ← ε1/(ε1 + ε2), ρ ← ρ1/(ρ1 + ρ2 + ρ3);
17 end

a single posting to simplify the different access rates between
SNS users.

We next consider the influence from external media as
following:
Assumption 3 (External Infection Rate): Whenever users

access media once a day, they check external media (other
than the SNS) with probability 1− δ (or read their timeline in
the SNS with δ). They then may be infected with a hashtag h
from those external media with probability εh.

Myers et al reported that information diffusion in a social
media service may be influenced by external out-of-network
sources such as New York Times and CNN [5], [6]. With the
above assumption of external infection rate, we can estimate
both the internal infection rate of a hashtag and its external
infection rate separately.

Based on the above three assumptions, we propose hashtag
diffusion models by adopting the traditional state transition
models (e.g., SI, SIR and SIR) and generalizing independent
cascade model [7]. Some studies claim that information dif-
fusion follows complex contagion process rather than simple
traditional models [8]; for instance, they argue that the trends
of diffusion (e.g. infection rates) may change over time. How-
ever, the models that we are based on can still describe the
diffusion process with reasonably high accuracy, especially
whenwe focus on a small time span. Becausewe aim to assess
the infection rates of hashtags in a relatively small time span,
the claims in those work do not undermine our assumptions.

A. AN OVERVIEW OF THE PROPOSED MODELS
While a user’s posting with a hashtag may infect other users
and trigger them to use the hashtag, it is not generally feasible
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TABLE 2. Summary of our proposed models.

in online social media to pinpoint the causal effect; i.e., it is
hard to determine which a hashtag in a user’s posting infected
another user or how long the posting is able to influence
neighbors since it is posted. For our analysis, we design three
infection models that adopt different definitions of infection
events. We first divided two cases about the chance of being
infection; a user can be influenced by the hashtag only once
when the user first mentioned the hashtag or user can be
infected repeatedly every 1 days. For the ability of infecting
neighbors, we assume that a message of a user including a
hashtag can influence his/her neighbors forever once after it
is posted, or a message can influence its owner’s neighbors
for only 1 days.

According to these assumptions we develop three models
named IPSI, IPSI+ and IPSI+S models. Note that IPSI+S
model is based on more complicated and realistic assump-
tions than the others, but it does not guarantee that it estimates
the infection rate of a hashtag more accurately than simpler
models such as IPSI. We provide a summary of differences
between these models and their corresponding infection rate
estimation algorithms in Table 2.

B. IPSI MODEL: INDEPENDENT PROPAGATION MODEL
WITH SUSCEPTIBLE-INFECTED STATES
The first model is based on the assumption that users can be
influenced by one of their followees who previously have ever
mentioned the hashtag at least once. Furthermore, since the
state of infection lasts indefinitely once a user is infected,
the event of infection can happen only once when the user
mentions the hashtag the first time.

Consider an infected vertex v ∈ V (an SNS user) with
τh(v)6=∅ (or τ 0h (v) 6=∞). For a hashtag h, the user v had
survived the infection of h from the independent contagions
of its infected followees for each time t < τ 0h (v) (i.e., v is
not infected with probability (1 − ρh)IN(v,t) for each time
t < τ 0h (v)). If v is a susceptible user, we can regard that
v survives for every t from 1 to T , which is the number of
days in the data. Thus, for each day when user v remains
uninfected, v survives the infection from the hashtag h by
following the statistical process below:

• For each day t = 1, . . . ,min(τ 0h (v)−1,T ),

– With probability 1 − δ, v is exposed to an external
source, and v survives the infection with probability
1− εh.

– With probability δ, v is exposed to his timeline
listing his followee’s messages, and v survives the
infection with probability (1− ρh)IN(v,t).

After surviving the infection for t < τ 0h (v), v is finally
infected with h at time τ 0h (v) following the next steps:
• At τ 0h (v) (i.e., the day when first v mentions h),

– With probability 1 − δ, v is exposed to an external
source, and v is infected with probability εh.

– With probability δ, v is exposed to his timeline, and
v is infected with 1− (1− ρh)IN(v,τ

0
h (v)).

The probability δ with which a user accesses the social
media in a given time period, or a day, is set to 0.7 by default,
which is empirically detemined. According to the above prob-
abilistic process, the likelihood L given parameters ρh and εh
can be formulated as

L =

∏
v∈V

min(τ 0h (v)−1,T )∏
t=1

{(1− δ)(1− εh)

+ δ(1− ρh)IN(v,t)




·

∏
v∈V : τh(v)6=∅

{
(1− δ)εh + δ

(
1− (1− ρh)IN(v,τ

0
h (v))

)}
(1)

1) EM INFERENCE ALGORITHM (EM-IPSI)
We apply the Expectation Maximization technique to opti-
mize the likelihood in equation (1). We can derive Eqns. (2),
(3) and (4) that are necessary for E-step, and Eqns. (5) and (6)
forM-step with Mean Field Approximation [9]. Note that we
omitted h from the subscription of the symbols for concise
presentations.

xv,t,1 =
(1− δ)(1− ε)

(1− δ)(1− ε)+ δ(1− ρ)IN(v,t)
, (2)

yv,1 =
(1− δ)ε

(1− δ)ε + δ
(
1− (1− ρ)IN(v,τ 0(v))

) , (3)
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zv,k =
ρ̄k

1+ρ̄+ . . .+ρ̄IN(v,τ 0(v))−1
=

ρ · ρ̄k

1−ρ̄IN(v,τ 0(v))
, (4)

ε =

∑
v∈V : τ (v)6=∅ yv,1∑

v∈V :
τ (v) 6=∅

yv,1 +
∑

v∈V
∑min(τ 0(v)−1,T )

t=1 xv,t,1
, (5)

ρ =

∑
v∈V : τ (v)6=∅ yv,2( ∑

v∈V :
τ (v)6=∅

yv,2+
∑

v∈V
∑min(τ0(v)−1,T )

t=1 xv,t,2·IN(v,t)

+
∑

v∈V : τ (v) 6=∅
∑IN(v,τ0(v))−1

k=0 yv,2·zv,k ·k

) (6)

where ρ̄ represents 1− ρ and k = 0, . . . , IN(v, τ 0(v))− 1 in
Eqn. (4). The terms xv,t,2 and yv,2 in Eqn. (4) are simply the
complements of xv,t,1 and yv,1 respectively (i.e., 1−xv,t,1 and
1 − yv,1). To yield a factorization of the term with 1 − (1 −
ρ)IN(v,τ

0(v)), we need a non-trivial trick.

2) A TRICK FOR APPLYING JENSEN’s INEQUALITY
To apply Jensen’s inequality to the logarithm of the likelihood
L in Eqn. (1), we introduce the arbitrary weights xv,t,· and yv,·,
which can be interpreted as the probability distributions of the
hidden variables about whether the node v survived at t and
is infected at t(v) from external contagion, and obtain a lower
bound of log-likelihood logL as follows:

logL

≥

∑
v∈V

min(τ 0h (v)−1,T )∑
t=1

{
log xv,t,1(1−δ)(1−εh)−xv,t,1 log xv,t,1

}

+

∑
v∈V

min(τ 0h (v)−1,T )∑
t=1

{
xv,t,2 log δρ̄

IN(v,t)
h − xv,t,2 log xv,t,2

}
+

∑
v∈V : τh(v) 6=∅

{
yv,1 log(1− δ)εh − yv,1 log yv,1

}
+

∑
v∈V : τh(v) 6=∅

{
yv,2 log δ

(
1−ρ̄

IN(v,τ 0h (v))
h

)
−yv,2 log yv,2

}
(7)

Since we cannot apply Jensen’s inequality to the term
1− (ρ̄h)IN(v,τ

0
h (v)) directly, we substitute the term with ρh(1+

(ρ̄h)+(ρ̄h)2+. . .+(ρ̄h)IN(v,τ
0
h (v))−1). By introducing arbitrary

weights zv,k with k = 0, . . . , IN(v, τ 0h (v)) − 1 in Eqn. (4),
we finally obtain the lower bound F of log-likelihood L as

F =
∑
v∈V

min(τ 0h (v)−1,T )∑
t=1

{
log xv,t,1(1− δ)(1− εh)

− xv,t,1 log xv,t,1
}

+

∑
v∈V

min(τ 0h (v)−1,T )∑
t=1

{
xv,t,2 log δρ̄

IN(v,t)
h −xv,t,2 log xv,t,2

}
+

∑
v∈V : τh(v)6=∅

{
yv,1 log(1− δ)εh − yv,1 log yv,1

}
+

∑
v∈V : τh(v)6=∅

{
yv,2 log δρ − yv,2 log yv,2

}

+

∑
v∈V : τh(v)6=∅

IN(u,τ 0h (v))−1∑
k=0

{
yv,2zv,kk log ρ̄h

− yv,2zv,k log zv,k
}

(8)

3) PSEUDOCODE OF EM-IPSI
The algorithm EM-IPSI in Algorithm 1 works as follows:
For each vertex v in V , xv,t,·’s are computed for every t
when v is susceptible (i.e., 1 ≤ t ≤ min(τ 0(v) − 1,T ), and
aggregated into ε2 and ρ2 to compute the second terms in the
denominators of ε and ρ in Eqns. (5) and (6) respectively.
Similarly, for t = τ 0(v) when v is infected, yv,·’s are com-
puted and summed into ε1 and ρ1, which are the first terms
in the denominators of ε and ρ respectively. Furthermore,
zv,k for every k=0,...,IN(v, τ 0(v))−1 is used to compute
ρ3. Once they are calculated for every vertex, we update ρ
and ε, and repeat the steps until the log-likelihood logL
converges.

4) TIME COMPLEXITY OF EM-IPSI
For every node v in V , we compute xv,t,•’s in Eqn. (2) at
most T times and yv,•’s in Eqn. (3) at most once if v is an
infected user. Furthermore, zv,t,k ’s in Eqn. (4) is calculated
IN(v, τ 0(v)) times for every node. Thus, each iteration of
the EM-steps in Algorithm 1 (in lines 4–15) has the time
complexity of O(|V | · (T +maxv∈V IN(v, τ 0(v))).

C. IPSI+ MODEL: INDEPENDENT PROPAGATION MODEL
WITH TIME-LIMITED INFECTION BASED ON SI STATES
In IPSI model, we assumed that the users in SNSs read all
messages in their timelines and have a uniform chance to be
infected by any of the messages with a hashtag, no matter
how long ago they are posted. This is unrealistic, even with
the short period – a week or a month – of infection data
observed for our considered problem; considering the posting
rate in today’s SNSs, a user is not possibly exposed to all
the previous messages in his timeline. Thus, we improve the
model by assuming that only the messages posted recently
within a given time interval 1 can be found in users’ time-
lines; this model is named IPSI+model. In IPSI+, a message
disappears from the timeline after 1 days since it is posted,
and thus cannot infect the followers with its hashtags. Still,
as in IPSI model, the event of infection may happen only once
when a user first mentions the hashtag, because the infection
for the hashtag lasts indefinitely.

Under the above assumption, the only change from IPSI
model is to use INh(v, t,1) instead of INh(v, t) in line 7 of
Algorithm 1. As defined in Section II, INh(v, t,1) can be
computed as |{u ∈ V |(u, v) ∈ E ∧ ∃d ∈ τh(u) s.t. t − 1 <

d ≤ t}|.
Time complexity of EM-IPSI+: As we discussed above,

the time complexity of EM-IPSI+ is exactly the same
as that of EM-IPSI since the algorithm replaces INh(v, t)
with INh(v, t,1) both of which are constants given to the
models.
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Algorithm 2 EM-IPSI+S: EM Algorithm for IPSI+S
Input : G = (V ,E) and for a h ∈ H , τh(v) ∀v ∈ V
Output: ρ and ε

1 Randomly initialize ρ and ε;
2 while logL does not converge do
3 Set ρ1, ρ2, ρ3, ε1 and ε2 to 0;
4 for each vertex v ∈ V do
5 for each t from 1 to T do
6 if t /∈ τ (v) then
7 Compute xv,t,1 and xv,t,2 in Eqn. (2);
8 ε2← ε2 + xv,t,1,

ρ2← ρ2 + xv,t,2 · IN(v, t,1);
9 end

10 else
11 Compute yv,1 and yv,2 in Eqn. (3);
12 ε1← ε1 + yv,1, ρ1← ρ1 + yv,2;
13 Compute zv,t,k for

k=0,...,IN(v, τ 0(v),1)−1 in Eqn. (4);

14 ρ3← ρ3+yv,2 ·
∑IN(v,τ 0(v),1)−1

k=0 zv,t,k ·k;
15 end
16 end
17 ε ← ε1/(ε1 + ε2), ρ ← ρ1/(ρ1 + ρ2 + ρ3);
18 end
19 end

D. IPSI+S MODEL: INDEPENDENT PROPAGATION MODEL
WITH TIME-LIMITED INFECTION AND
SUSCEPTIBLE-INFECTED-SUSCEPTIBLE STATES
Lastly in our IPSI+S model, we drop the assumption that a
user is considered to be infected once and for all, and never
be uninfected after he mentions the hashtag the first time.
In IPSI+S model, we assume that users infected with a hash-
tag may forget it after some time (hence uninfected with the
hashtag) and may be infected again to post a message with
the hashtag, when he is reminded by their followees who have
used the hashtag recently within 1 days.
By the new assumption, in our E-step, xv,t,·’s are computed

for every t at which v does not mention a hashtag h (i.e., t /∈
τh(v)) even after he mentions the hashtag the first time, which
was not calculated again once he mentions it the first time in
IPSI and IPSI+ models. Furthermore, we compute yv,t,· and
zv,t,· for every day when vmentions the hashtag h in messages
(i.e., for all t’s in τh(v)) while we compute them once when
v mentions h for the first time in the previous models. The
equations of xv,t,·, yv,t,· and zv,t,· is similar to Eqns. (2)–(4)
except we put INh(v, t,1) instead of INh(v, t).
In M-step, ε and ρ is calculated as

ε =

∑
v∈V : τ (v) 6=∅

∑
t∈τh(v) yv,t,1∑

v∈V :
τ (v) 6=∅

∑
t∈τh(v) yv,1 +

∑
v∈V

∑
t /∈τh(v) xv,t,1

, (9)

ρ =

∑
v∈V : τ (v) 6=∅

∑
t∈τh(v) yv,t,2(∑

v∈V :
τ (v)6=∅

∑
t∈τh(v)

yv,t,2+
∑

v∈V
∑

t /∈τh(v)
xv,t,2·IN(v,t,1)

+
∑

v∈V : τ (v) 6=∅
∑

t∈τh(v)
∑IN(v,t,1)−1

k=0 yv,t,2·zv,t,k ·k

) (10)

Algorithm 3 Distributed EM-IPSI on Pregel

1 Function vertex-compute (u, messages)
2 if terminate then
3 voteToHalt();
4 end
5 for each neighbor v of u do
6 send(v, τ 0(u));
7 end
8 for each t from 1 to min(τ 0(u)− 1,T ) do
9 IN(u, t)← IN(u, t − 1) + count of t in messages

10 end
11 ρ1, ρ2, ρ3, ε1 and ε2 are defined as aggregate

variables;
12 (the same as lines 4–15 in Algorithm 1)
13 Function global-aggregate ()
14 ε ← ε1/(ε1 + ε2), ρ ← ρ1/(ρ1 + ρ2 + ρ3);
15 if logL converged then
16 terminate← True
17 end

The changes in the pseudocode of EM-IPSI+S from that of
EM-IPSI are presented in Algorithm 2. The difference to EM-
IPSI is that for each user v, not only ε2 and ρ2 are updatedwith
all day t /∈ τh(v) in lines 3–6, but also ε1 and ρ1 are updated
for every day t ∈ τh(v) in lines 7–12.
Time complexity of EM-IPSI+S: For every node v in V ,

xv,t,•’s are computed at most T times and at most once if v is
an infected user. Furthermore, yv,t,•’s and zv,t,k ’s with every
k=1, . . . , IN(v, t,1) may be calculated at most T times.
Thus, each iteration of the EM-steps in Algorithm 2 (in lines
4–18) runs in O(|V | · T ·maxv∈V , t∈[1,T ] IN(v, t)) time.

IV. DISTRIBUTED EM ALGORITHM WITH PREGEL
The EM algorithms proposed in the previous section com-
pute xv,t,·, yv,· and zv,· independently for each vertex v, and
aggregate those values to update the model parameters ε
and ρ. Thus it can be simply and efficiently parallelized using
Pregel, a parallel framework for large-scale graph processing
system supporting a vertex-centric computatio model [10].

In each iteration of Pregel programs, each vertex processes
messages from other vertices with a user-defined vertex func-
tion, updates its status, and sends messages to other vertices.
The iterations are separated by a global synchronization,
when all messages in the previous iteration are communi-
cated. Pregel provides aggregators that, with user-defined
reduction operators, globally aggregate values from vertices
after each iteration.
Parallel EM-IPSI Using Pregel: For brevity we only

describe the inference algorithm for IPSI model, but it can
be simply extended for IPSI+S and IPSI+ model. In actual
systems monitoring hashtags, every message posted by a
user u is input to the vertex function for u, which processes
all hashtags in the message and timestamps in a certain time
window (e.g., T days) – typically a week or a month for our
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considered problem. Pregel EM-IPSI then runs periodically
and detects the top-k hashtags that have been propagated in
the recent T days with the k largest infection rates.
When distributing the calculation of EM-IPSI algorithm

to run vertex-by-vertex separately, the greatest obstacle in
scaling for large graphs is to, for each vertex, compute and
maintain INh(v, t)’s with all candidate hashtags and days in
the time window; we need to know all timestamps when h is
mentioned by v’ followees to compute INh(v, t). In our Pregel
version of the EM algorithms, each vertex stores timestamped
hashtags of its own only; the EM algorithms are implemented
in the two user-defined functions as follows:

• Vertex function: Each vertex v receives hashtags
with their timestamp from its followee vertices and
computes INh(v, t) (or INh(v, t,1) for EM-IPSI+
and EM-IPSI+S) for each hashtag h and day t
with 1≤t≤min(τ 0h (v)−1,T ) (or every 1≤t≤T for EM-
IPSI+S). With the INh(v,t), we calculate xv,t,·, yv,· and
zv,· in Equations (2), (3) and (4) respectively, which are
then sent to the aggregator assigned to h.

• Aggregator: The aggregator incrementally aggregates
the values for each vertex and calculates the maximum
likelihood estimations of ρh and εh for the given hidden
parameters.

The pseudocode of distributed EM-IPSI is shown in
Algorithm 3. The code is written to estimate ρ and ε for
a single hashtag, but it can be simply extended to work for
multiple hashtags.

Because the infection information of a vertex needs to be
sent to all of its neighbor vertices, our distributed algorithm
may have large volume of communication for extremely
large-scale networks. For such cases, we make it possible
to reduce the communication volume by dividing the overall
days in the time window into N sub-ranges, so that N Pregel
iterations correspond to a single iteration in our algorithm.
In the ith Pregel iteration, infection information of a vertex
is sent as a message only if the corresponding infection time
is within T

N (i mod N ) and T
N (i mod N + 1). This requires

each vertex u to additionally store INh(v, t) – the number of
infected followee for h in the previous time range.

V. EXPERIMENTS
We empirically demonstrated the accuracy of the proposed
algorithms in detecting rapidly spreading hashtags. The
experiments are done on a commodity machine with Intel(R)
Core(TM)2 Duo CPU 2.66GHz and 8GB of main memory.
All the tests are completed in a reasonable amount of time –
less than 0.5 hour at maximum.

A. QUANTITATIVE QUALITY EVALUATION
To evaluate the accuracy of the estimated infection rate,
we need to have ground truth infection rates of hashtags or the
rankings of highly infectious hashtags in real social networks.
However, such information is not available even in social
network services because there have been no technique to

calculate infection rates of hashtags yet. Thus, we performed
two types of experiments for quantitative quality evaluation;
1) we run user studies to evaluate the agreement between
the infection rates estimated by real social network users
and those by our inference algorithms, and 2) we simulate
the diffusion process to generate synthetic data with known
infection rates; with the synthetic data we evaluate the accu-
racy of estimations by our inference algorithms. Furthermore,
we utilize the nDCG measure [11] for the quality measure
because it is impossible to predict the exact infection rates,
and finding relatively rankings of highly infectious hash tags
is our goal.

We describe the details of two strategies for quantitative
evaluation in the following.

B. IMPLEMENTED ALGORITHMS & DATA SETS
We implemented EM-IPSI, EM-IPSI+ and EM-IPSI+S
proposed in the previous section. Furthermore, we imple-
mented the following baseline algorithms for accuracy per-
formance study:

• CM: This denotes the estimation method which com-
putes the weighted average of infection rate β using the
deterministic compartmental SI model [12]. It models
the infected (I) and susceptible (S) populations using the
differential equations dS/dt = −β(t)SI/N and dI/dt =
β(t)SI/N , where β(t) is the infection rate at time t .
For an overall infection rate, we averaged β(t) over all
days t from the first day of infection, weighted by 0.5t−1

since it has been shown that the infection rate generally
decreases rapidly over time according to their models.

• NV: This is a naive heuristic inference algorithm. In NV,
we compute the infection ratio ρv for each node v by
solving the equation 1 − (1 − ρv)# of infected neighbors =
r where r is the observed ratio of the number of v’s
infected neighboring nodes to the number of nodes with
the same number of infected neighbors. Then, the infec-
tion ratio of a hashtag is inferred to be the harmonic
average of ρv for all v’s. The external infectiousness ε is
estimated as the ratio of infected nodes among the nodes
without any previously infected neighbors.

Datasets used for experiments include both synthetically
generated graphs as well as real social networks, and both
simulated and real hashtag diffusion data.

1) SOCIAL GRAPHS
For evaluating the prediction accuracy of detected hashtags,
we use the online social network of students at the University
of California, Irvine, originally collected in [13] including
1, 899 nodes and 20, 296 directed edges. It is calledUC-NET.
For a larger graph, a social graph sampled from Epinions.com
provided by [14], with 75, 879 vertices and 508, 837
directed edges, is utilized and we call it EPINION. Because
UC-NET and EPINION are social graphs among users with-
out messages, we synthetically simulate the hashtag diffusion
based on them.
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To assess the accuracy with real hashtag diffusion, we
collected a social graph from Twitter using its developer API
for 4 months from Oct. 2016 to Jan. 2017 posted in Seoul,
Korea. We call the dataset TWT. It contains 45, 161 users
and 317, 032 follow relationships as well as 6, 821, 168 men-
tions of 1, 000 hashtags. The hashtags are randomly selected
among all hashtags that appeared in TWT at least 50 times.

2) HASHTAG DIFFUSION
We simulated the diffusion process in three different scenar-
ios. For each virtual hashtag h, we first randomly select an
infection rate ρh and a set of starting nodes of random size (at
most 10) and the infection date of each starting node, which is
also randomly chosen between 1 to 50. With growing t from
1 to 50, an infected vertex transmits h to each follower v with
probability ρh, and if infection occurs then we append the pair
(v, t) into the data set. The three scenarios differs with respect
to each other concerning the behavior of users after the first
mention of h as following.

• SIMUL-SI: A vertex may mention h at most once.
Amention of hmay infect the followers at any time after
it is mentioned, i.e., infinitely.

• SIMUL-SI+:A vertex infected with hmentions it once a
day with probability 0.5. A mention of h older than1 is
not infectious; only a recent mention of h within1 time
may infect the followers.

• SIMUL-SIS: A vertex infected with h becomes suscep-
tible again after one day. The condition for the infection
is the same as SIMUL-SI+.

We repeat the diffusion simulation for a given number of
virtual hashtags. To make the problem challenging, we addi-
tionally generate 4 times more noise hashtags mentioned by
each vertex with a randomly chosen probability. Note that
such simulation has been widely used in many studies of
information diffusion [15], [16].

3) QUALITY MEASURES
To measure the quality of estimated infection reates com-
pared to pseudo-ground truth data, we use Precision and
Normalized Discounted Gain (nDCG) [11], widely accepted
metrics for measuring the quality of ranking. Precision@k
is simply the ratio of infectious hashtags correctly found
among the top-k hashtags retrieved by an algorithm. Using
the ground-truth relevance of hashtags, nDCG measures the
accuracy of estimated rank of hashtags sorted in the decreas-
ing order of their ground-truth ρh. Because we are interested
in highly infectious hashtags and their rankings, we use
nDCG@k that measures the accuracy of top-k item’s rank-
ing. The value of nDCG@k is computed in the following
way. Let R(h) be the known relevance score of a hashtag h.
It may denote either the score rated through user study or the
infection rate used for the simulation in the synthetic data
test. For top-k hashtags with the k largest ρhs, the hashtag
at the ith position is denoted by hi. DCG@k is calculated as∑k

i=1 R(hi)/log(i + 1) and then, normalized by dividing the

FIGURE 1. Agreement between user rates and estimated infectiousness.

value by the ranking of the known relevance scores, which is
the the upper bound of DCG@k.

C. PERFORMANCE TEST AND USER STUDY WITH TWT
To obtain ground-truth relevance scores for hashtags’ conta-
giousness, we employed 5 active Twitter users to grade hash-
tags for their contagiousness. We randomly selected 1, 000
hashtags in TWT and asked them to grade each hashtag in
a 5-point scale; higher points are given to more infectious
(rapidly spreading in Twitter) hashtags. We asked the human
annotators to carefully grade the contagiousness by examin-
ing the messages of infected users for each hashtag, as well
as those posted by his/her followers.

1) PERFORMANCE TEST
Using the contagiousness scores collected from the Twitter
users, we plotted nDCG@k of the top-100 infectious hash-
tags detected by the algorithms with varying k in Figure 1.
With growing k , the figure demonstrates that our proposed
algorithms E-IPSI, EM-IPSI+ and EM-IPSI+S steadily yield
high accuracy with EM-IPSI+S being the best performer
among them. For this test, the default value of probability δ,
with which a user accesses the social media each day, was
empirically set to 0.7. The time period for a day was set to 6
hours.

2) USER STUDY
To further verify the detected hashtags for their infectious-
ness, we investigated 47 common hashtags included in all
the top-100 results by the three algorithms; we discovered
that most of them can be grouped into 7 categories as shown
in Figure 2. Group 1 has the hashtags used for games between
Twitter users such as #followme and #1RT (Users share their
wishlist tagged with #1RT, #2RT, . . .) which is observed to
be highly infectious. Group 2 is about the political scandal in
South Korea that began in late Oct. 2016. Group 3 consists
of hashtags for the feminist issue raised in the communities
of Korean artists during the period as a Korean #MeToo
movement. Group 4 and Group 5 are the hashtags used for the
promotion of celebrities and adult entertainment respectively.
Since Halloween was in the middle of our data collection,
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FIGURE 2. Analysis on the top-47 hashtags.

we observed a few spreading hashtags for Halloween
(Group 6).

In Group 2, about the political scandal in Korea that
resulted in the impeachment of the former president, our algo-
rithm did successfully discover some hashtags that became
viral primarily because of the network effect – i.e., with little
influence from the external media. For instance, the hashtag
#by_the_way_Choi (Choi is the person at the center of
the political scandal) is used jokingly in the messages of
unrelated topics to draw people’s attention to the political
scandal. The SNS users found it fun to use the hashtag and
other similar ones in unrelated messages, thus those hashtags
became viral and widely used. These examples show that our
algorithm effectively captures the user’s behavior of using
hashtags in SNSs and discovers viral hashtags that primarily
spread via the networks.

The hashtags in Groups 3 and 6 also support the virtue of
our model since those hashtags went viral primarily in SNSs
without being highlighted by mass media; Korean #MeToo
movement was rarely handled in such media and Halloween
was not popular event in Korea either. Moreover, the hashtags
of Group 1 are definitely ones became viral only in SNSs.

3) INTERNAL AND EXTERNAL INFECTION RATES
In Figure 2a, we plotted those 47 hashtags with respect to
their ρh and εh computed by EM-IPSI+S. The size of the
symbol represents the score by Twitter users. We discover
that the hashtags in Group 2 show high contagiousness (ρ)

as well as high external infection rates (ε); this is probably
because people are exposed to the news about the political
scandal from external media, but they also discuss the matter
actively among their friends in Twitter. In contrast, Group 4
achieves high internal infection rates with low ε’s since those
hashtags are primarily propagated between small fan com-
munities without much influence from external media. In
the table in Figure 2b, we also provide some statistics of
the hashtags in each group. Clearly, the vertices mention-
ing the hashtags in Group 4 use them more frequently (P4)
and they are also highly connected to each other compared
to other groups (P7). This implies that the propagation of
hashtags in Group 4 may be due to intentional promotion of
celebrities by their fans. Similarly, we can conjecture that the
hashtags in Group 5 are also being shared on purpose among
the business owners of adult entertainment to advertise their
business.

D. PERFORMANCE TESTS WITH SIMULATION
Wenext present the accuracy of our inference algorithmswith
simulated diffusion on UC-NET using SIMUL-SI, SIMUL-
SI+ and SIMUL-SIS in Figures 3(a)-(c). Each dataset includes
20 infectious hashtags and 80 noise hashtags. SIMUL-SI
generates the infections with a simple assumption that each
vertex mentions a hashtag only once, which may infect the
followers infinitely after the mention.

All our algorithms detect infectious hashtags in almost
exact order of their true ranking. With SIMUL-SI+,
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FIGURE 3. Accuracy test by the simulation with UC-NET and EPINION.

EM-IPSI and EM-IPSI+ give high accuracy, but EM-IPSI+S
does not. It is because while SIMUL-SIS considers the influ-
ence of all the mentions of the hashtag by followees for
infection, SIMUL-SI+ randomly generates hashtag mentions
after being infected without considering the influence from
the followees. For SIMUL-SIS, EM-IPSI+S achieves the best
accuracy as is expected. We also obtain a similar trend in
the accuracy test with EPINION for all algorithms as shown
in Figures 3(d)-(f). When applied to the diffusion data gen-
erated by SIMUL-SIS, the performance of all our inference
algorithms degraded. In our analysis, it is because SIMUL-SIS
generates too many infected vertices due to the dense connec-
tions in EPINION network, which makes the algorithms hard
to distinguish infectious hashtags from noises.

Furthermore, in Figures 4a∼4c, we present the accuracy
of the implemented algorithms in terms of Precision@k with
varying k from 1 to 20 for the three simulation models.
The result shows the similar trend to the graphs in Figure 3
measuring the performance in terms of nDCG@k and our
algorithms are the best performers.We also find that our algo-
rithms achieve a score 1 for Precision@k with k in the range
from 1 to 15 with simulations SIMUL-SI and SIMUL-SI+,
which means that they can find top-15 influential hashtags
exactly in their correct ranking order among the 20 ground
truths.

1) COMPARISON TO GROUND-TRUTH INFECTION RATES
In Figure 5, using UC-NET and EPINION, we plotted the
influential hashtags found by the implemented algorithms in
the coordinate plane where x and y axises are ground-truth

and estimate infection rates respectively. The graphs show
that EM-IPSI algorithm calculates the infection rates of hash-
tags the most similar to the real rates used in the genera-
tion of synthetic data sets. However, the other algorithms
EM-IPSI+ and EM-IPSI+S also show the linear trends of
plots. Considering the discovery that those algorithms detect
the top-k hashtags in the exact order of their infection rates in
the previous discussion about Precision@k, the plots confirm
that our algorithms can assess infection rates proportionally
to the real infection rates well even if they may not calculate
the rates exactly.

2) EXTERNAL INFECTION RATES
We also tested the accuracy of the estimated external infection
rates by our proposed algorithm and show the performance
in terms of Precision@k in Figures 4d∼4f with our three
simulation models. Note that the goal of our models is to
find infectious hashtags that spread over networks rapidly
and we don’t aim to find the hashtags becoming popular by
solely being infected from outside of social networks. Thus,
we computed the accuracy of hashtags of top-k external infec-
tion rates among the 20 ground truth internally infectious
hashtags. The graphs show that our models also reasonably
distinguish the hashtags, which are not only external infec-
tious but also internally influential, by about 70% of precision
up to top-10 results.

3) SELECTION OF δ
To find a reasonable value of δ, a constant probability which
is used when a user determines to access social media or
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FIGURE 4. Accuracy test for ρh and εh by the simulation with UC-NET.

FIGURE 5. Plotting estimated and ground truth values of ρh in the simulation with UC-NET and EPINION.

any external media for news, we tested EM-IPSI, EM-IPSI+
and EM-IPSI+S with varying δ from 0.1 to 0.9. Figure 6
shows the average nDCG@k over k from 1 to 20with datasets

UC-NET and EPINION. We found that the performance
changes slightly with all algorithms. It means that our algo-
rithm can find a hashtag spreading over a social network
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FIGURE 6. Accuracy test with varying δ.

mainly though the network very well regardless of δ and
its external infection rate. Based on this results, we set the
default δ to 0.7 in our experments.
We also evaluated the performance with varying the length

of a day. The performance was not affected when we tested
with wide ranges of values for the two parameters. However,
if a day is too lengthy, such as 3 times of the length of a day
used in synthetic generation, the accuracy of the inference
outcome dropped suddenly.

E. SCALABILITY TESTS
To evaluate the scalability of our distributed EM algorithm,
we perform two sets of experiments – strong-scaling test and
weak-scaling test, both of which are commonly used to eval-
uate the performance of distributed applications. Because the
inference algorithms show similar distributed characteristics,
we only report the result of EM-IPSI. In the experiment,
we fix the number of iterations of EM-IPSI to be ten, because
we evaluate the scalability of the algorithm.

In the strong-scaling test, the infection data is generated
with SIMUL-SI based on LJ-NET; the data contains about 39
millionmentions of 100 hashtags in total.With this input data,
we run our distributed EM algorithm on 1, 2, 4, 8 machines;
we run the test ten times on each machine and show the
average execution times in Figure 7a (the variances of the
execution times are less than 1–2% of the execution times,
thus we do not show them in the figure). The figure demon-
strates that the algorithm scales very well; as we increase the
number of machines for the computation, the execution times
drop accordingly. Notice that on eight machines, it takes less
than 300 seconds for the algorithm to finish. In Figure 7b,
we plotted the relative speed-up which is the ratio of the exe-
cution time to that with 1 machine. The performance scales
super-linearly from 2 machines to 4 machines; this is because
with less than two machines, there is not enough memory to
store messages sent between vertices. The messages sent to a
vertex must be all delivered so that its vertex function (the
costly part of the algorithm) can be run. With insufficient
memory, delivering messages becomes the bottle neck rather
than executing the vertex function, which prevents it from
fully exploiting the available parallelism.

For the weak-scaling test, using the three types of syn-
thetically generated graphs, the infection data is generated
with SIMUL-SI to have 100 hashtags; the sizes of generated

FIGURE 7. Scalability of our distributed EM-IPSI algorithm.

infection data are from 23 million to 340 million mentions.
Note that the size of the infection data is not proportional
to the graph size because of the random nature of the gen-
eration model. We run our distributed EM algorithm on 1,
2, 4, 8 machines with graphs of 1M, 2M, 4M, 8M vertices
respectively. Figure 7a shows the average execution times
for three types of input graphs. Since we increase the num-
ber of machines in proportion to the graph size, the ideal
speed-up should be one for all settings. Still the execution
times decrease in weak-scaling test from 2 to 4 machines
because of the similar reason that we obtain super-linear
speed-up in strong-scaling test.

Overall, the two sets of evaluations demonstrate that
our distributed algorithm scales well and runs in practical
time. While the cluster size for our evaluation is not large,
the evaluation result suggests that our distributed algorithm
is CPU-bounded rather than network bounded, hence the
algorithm would easily scale to larger clusters.

VI. RELATED WORK
Early work in information diffusion was studied in the con-
text of spreading diseases. In epidemiology, compartmental
models group population into compartments that represent
infection status of the population and observe changes of
the compartment size to estimate the infection rate [12].
We have tested the performance of a simple modification
of compartmental model (CM) compared to our proposed
algorithms in this paper. In [19] and [20], the approach in
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TABLE 3. Comparison of closely related work in six dimensions (A1 – A6).

epidemiology, that describes the change of population with
differential equations and observes the change of diffusion
rate by elapsed time from the first infection, is applied to
study information diffusion process in online social networks.
But since the goal of these techniques is not to measure the
diffusion rate of individual propagations but to compute the
overall speed of information flows in a network, it is hard
to obtain accurate infection rate of each hashtag using these
techniques.

In modeling diffusion over network, the Independent Cas-
cade (IC) model is one of widely-studied models, initially
proposed in the context of marketing [7], [21]. In the
IC model, a newly infected node u has a single chance to
infect its neighbor node v; the infection succeeds with prob-
ability pu,v that is given for every edge. The IC model is gen-
eralized in network SIR (Susceptible-Infectious-Recovered)
model, where an infected node remains infectious until it
gets recovered. However, these IC models are based on tradi-
tional problem setting whose purpose is to analyze the trend
of information propagation, and where the diffusion occurs
depending on the networks only.

We compare the IC models in six dimensions, A1 – A6.
A1 is whether the models work on networks with explicit
links or implicit ones. The models for implicit links gen-
erally aim to infer the hidden connections from the inves-
tigation of epidemiological data. A2 is whether the models
allow repeated exposure to infections; most of the models
assume that a node in a network has a single chance to be
infected. A3 is whether the models consider the temporal
decay of infection (i.e., an infected node has a decaying
influence on its neighbors). A4 is whether the models con-
sider external infections – that is, a node may be infected
not from its neighbors but from external influence. A5 is
whether a node can be recovered and be infected repeatedly.
Most importantly, A6 compares the inference result of the
models.

The column for A6 in the table shows that none of the
existing IC models compute the internal (network) infection
rate. The most closely related work [5] focuses on estimating
the temporal trend of probability that a node is infected
from external source; they assume that the internal (net-
work) infection probability (and its change over time) is
given.

The problem of inferring latent social networks from
observed diffusion data is studied in [15] and [16]; espe-
cially [16] adopted the SI model and formulated the problem
of finding a latent social network as a maximum likelihood
problem. While their approach may look similar to ours in
the problem formulation, they studied a different problem of
finding latent networks and influence probabilities.

Topic-aware IC (TIC) model is proposed in [18] for
the estimation of infection probability and they provide an
EM algorithm for inference. The TIC model is then adopted
and extended in many influence maximization techniques
such as [22]–[24]. These models focus on finding a chance of
maximizing influence and assume that a vertex has a single
chance to infect its neighbors while our model assumes the
multiple trials of infection through time.

The IC models extended in [2], [4], [18] define the likeli-
hood functions that are similar to ours. However, their goal
is to compute the tendency of each node for adopting infor-
mation from its neighbors; those models do not estimate the
diffusion rates of certain information in a network. Conse-
quently the resulting EM algorithms shown in our paper are
significantly different to these work.

Furthermore, the rumor propagation dynamics model pro-
posed in [25] considers the anti-rumor information and user’s
psychological factors together. Although the model’s goal is
not to estimate the infection rate of individual hashtags as we
do in this paper, the model successfully detects the trend of
rumor’s propagation. In [26] and [27], interesting influence
models are developed to capture the behavior of hot topics
evolving and spreading over social networks.

VII. CONCLUSION
We introduced realistic information diffusion models that
suit well for the propagation of hashtags on social networks.
Based on the diffusion models, we proposed inference algo-
rithms to estimate the internal and external infection rates
of individual hashtags. By extensive experiments using both
real-life and synthetic data, we validated the effectiveness of
the proposed algorithms.
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