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ABSTRACT We study an uplink multiuser multiple-input multiple-output (MU-MIMO) systemwith one-bit
analog-to-digital converters (ADCs) in which one base station (BS) with Nr receive antennas serve K users
with a single antenna. For this system, the soft-output (SO) detector was recently proposed where a soft-
metric (e.g., a log-likelihood ratio (LLR)) is computed from a hard-decision channel output by introducing
a novel distance measure in the binary Hamming space. This makes it possible to be naturally incorporated
into the state-of-the-art channel codes (e.g., low-density parity-check code or polar code). In this paper,
we further improve the performance of the SO detector by exploiting a priori information (e.g., the previously
decoded messages), which is called the one-bit successive-cancellation soft-output (OSS) detector. The key
idea of the proposed OSS detector is that each user k’s message is decoded sequentially via the associated
channel decoder k in ascending order and a refined search-space is constructed using the previously decoded
messages (i.e., the enhanced LLRs are generated). We then present a multiple OSS detector by taking into
account a more practical scenario where the BS is equipped with multiple channel decoders. In addition,
we propose an efficient way to determine a good decoding order by introducing a novel set-distance measure.
Finally, simulation results demonstrate that the proposed OSS detector can significantly improve the existing
SO detector for the coded MU-MIMO systems with one-bit ADCs.

INDEX TERMS Massive MIMO, multiuser MIMO detection, one-bit analog-to-digital converter (ADC),
soft-output decoding.

I. INTRODUCTION
A massive multiple-input-multiple-output (MIMO) is a
promising technique to cope with the predicted wireless data
traffic explosion [1]–[4]. In contrast, the massive MIMO
considerably increases the hardware cost and the radio-
frequency (RF) circuit consumption [5]. Among all the com-
ponents in the RF chain, a high-resolution analog-to-digital
converter (ADC) is particularly power-hungry as the power
consumption of an ADC is scaled exponentially with the
number of quantization bits and linearly with the baseband
bandwidth [6], [7]. To address this challenge, low-resolution
ADCs (e.g., 1∼3 bits) for massive MIMO systems have
been considered as a low-power solution over the past years.

The associate editor coordinating the review of this manuscript and
approving it for publication was Waleed Ejaz.

The one-bit ADC is particularly attractive due to its power
efficiency and lower hardware complexity.

In recent, there have been extensive researches on MIMO
detections and channel estimations for the uplinkMU-MIMO
systems with low-resolution ADCs [8]–[20]. In [8] and [9],
various channel estimation methods were developed such
as least-square (LS), maximum-likelihood (ML), zero-
forcing (ZF), and Bussgang decomposition based method.
Regarding MIMO detectors, the optimal ML detector was
introduced and the near-ML detector was also proposed
by converting the ML detection problem into a tractable
convex optimization problem [8]. Also, low-complexity
MIMO detectors were proposed in [10] and [11]. In [12],
Studer and Durisi investigated the quantized massive
MU-MIMO systems for wideband communications based on
orthogonal frequency-divisionmultiplexing (OFDM). A joint
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channel-and-data estimation method was presented in [13]
based on Bayes-optimal inference. In [14], an unified
framework to construct a family of MIMO detectors for the
mixed-ADC receiver architecture was proposed by exploit-
ing a probabilistic Bayesian inference. Also, for wireless
sensor networks (WSNs), the advantages of quantized mas-
sive MIMO systems were investigated for a decentralized
and distributed structure [15]–[18]. A supervised-learning
approach, called minimum-center-detection (MCD), was pre-
sented in [19]. In addition, by viewing the one-bit ADC
MIMO model as an equivalent coding problem, a novel
MIMO detector, referred to as weighted minimum dis-
tance (wMD) decoding, was proposed [20]. It is remark-
able that the above hard-decision output detectors cannot
generate soft outputs from one-bit quantized observations,
which considerably degrades the performance of a follow-
ing channel code (e.g., Turbo [21], low-density-parity-check
(LDPC) [22] or polar code [23]). This problem has been
addressed in [24] by efficiently computing soft log-likelihood
ratios (LLRs) from one-bit quantized (or hard-decision)
observations. Thus, it can be naturally incorporated into a
state-of-the-art soft channel decoder (e.g., belief-propagation
decoder [22]). Because of such difference, it was shown
in [24] that the soft-output (SO) detector can provide a sub-
stantial coded gain (about 10 dB) over the optimal (hard-
output) ML detector. Nevertheless, there is still a lot of room
to improve the performance of the SO detector since it does
not exploit a priori information.
In this paper, we propose one-bit successive-cancellation

soft-output (OSS) detectors which can exploit the previously
decoded messages (i.e., a priori information) conveyed by
channel decoders to improve the LLRs. In the SO detec-
tor [24], the LLRs are computed via the relative distances
among the current observation and all possible noiseless
channel outputs (say, codewords). Throughout the paper,
the set of such codewords is referred to as a code C (or search-
space). The underlying idea of the proposed OSS detector
is that the code C is refined by eliminating unnecessary
codewords (having lower probability to be corrected one)
with a priori information. Specifically, the OSS detector
computes the LLRs in a successive fashion: each user k’s
message is sequentially decoded from a channel decoder k for
k = 1, . . . ,K in that order, and the soft inputs (e.g., LLRs)
of the channel decoder k are computed from the refined code
(which is constructed by eliminating some unnecessary code-
words from C using the previously decoded messages). Since
the codewords in the refined code can create larger distances
than those in C, the detection ambiguity can be reduced,
thus achieving a better performance. Moreover, we develop
a multiple OSS (M-OSS) detector by taking into account a
more practical scenario where the BS is capable of operat-
ing plural channel decoders simultaneously. The proposed
M-OSS detector can remove more unnecessary codewords as
the plenty of the decoded messages can be conveyed from the
multiple channel decoders concurrently. We further enhance
the M-OSS detector by optimizing the decoding order of the

channel decoders. It is remarkable that, due to the use of
one-bit ADCs, the conventional ordering based on signal-to-
noise ratio (SNR) (e.g., V-BLAST [26]) is not applicable. The
proposed ordering method is developed so that the resulting
subcodes have a better structure, meaning that the distances
of the remaining codewords are as far as possible. Finally,
simulation results demonstrate that the proposed ordered
M-OSS detector attains 2.5 dB coded gain over the existing
SO detector [24] for the polar-coded MU-MIMO systems
with one-bit ADCs.

The outline of this paper is as follows. In Section II,
we describe the system model and briefly review the exist-
ing SO detector. In Section III, we propose the OSS detec-
tor which can enhance the SO detector by leveraging
a priori knowledge on the previously decoded messages.
In Section IV, focusing on more practical scenarios where the
BS is equipped withmultiple channel decoders, we present an
ordered multiple OSS (M-OSS) detector. Simulation results
are provided in Section V. Section VI concludes the paper.
Notation: Lower and upper boldface letters represent the

column vectors and matrices, respectively. Let 〈a : b〉 1
=

{a, a + 1, . . . , b} for any integers a and b > a, and when
a = 1, it can be further shortened as 〈b〉. For any vectors
x and a, we let xa = [xa1 , xa2 , . . . , xaN ]. For any ` =
b0m0

+ · · · + bL−1mL−1, let gm(`) = [b0, b1, . . . , bL−1]T

denote the m-ary expansion of ` where bi ∈ 〈0 : L − 1〉 .
We also let g−1m (·) denote its inverse function. For a vector,
gm(·) is applied in an element-wise manner. 1{A} represents
an indicator function that equals one if an event A is true and
zero otherwise, and d·e denotes the ceiling function.

II. PRELIMINARIES
In this section we describe an uplinkMU-MIMO systemwith
one-bit ADCs and review the SO detector proposed in [24].

A. SYSTEM MODEL
We consider a single-cell uplinkMU-MIMO system in which
there are K users with single-antenna and one base station
(BS) that accommodates an array of Nr � K antennas. Let
wk [t] ∈ W = 〈0 : m− 1〉 denotes an user k’s message
at time slot t for k ∈ 〈K 〉, each of which includes logm
information bits. We also denote m-ary constellation set by
S = {s0, . . . , sm−1}. For the ease of expression, it is assumed
that m = 2p for some positive integer p. However, the pro-
posed detectors can be apparently extended to an arbitrary m.
At time slot t , the user k transmits the symbol x̃k (wk [t]) which
is obtained by a modulation function f (·) as

x̃k (wk [t]) = f (wk [t]) ∈ S. (1)

Let x̃(w[t]) =
[
x̃1(w1[t]), . . . , x̃K (wK [t])

]
denote the trans-

mit vector of all the K users at time slot t . Then, the discrete-
time complex-valued baseband received signal at the BS is
given by

r̃[t] = H̃x̃(w[t])+ z̃[t] ∈ CNr , (2)
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FIGURE 1. Description of an uplink MU-MIMO system with one-bit ADCs.

where H̃ ∈ CNr×K denotes the (complex-valued) chan-
nel matrix between the BS and the K users, i.e., hT

i ∈

C1×K represents the channel vector between the K users
and the i-th receiver antenna at the BS. Also, z̃[t] =[
z̃0[t], . . . , z̃Nr [t]

]T
∈ CNr denotes the noise vector

whose elements are distributed as circularly symmetric com-
plex Gaussian random variables with zero-mean and unit-
variance, i.e., z̃i[t] ∼ CN (0, 1).

In theMU-MIMO systemwith one-bit ADCs, each receive
antenna of the BS is equippedwith RF chain consisting of two
one-bit ADCs that separately applied to real and imaginary
part (see Fig. 1). Let sign(·) : R→ {0, 1} denote the one-bit
ADC quantizer function with

sign(r̃[t]) =

{
1 if r̃[t] ≥ 0
−1 if r̃[t] < 0.

(3)

Then, the BS observes the quantized received output vector
as

r̂R[t] = sign(Re(r̃[t])) ∈ {1,−1}Nr

r̂I [t] = sign(Im(r̃[t])) ∈ {1,−1}Nr . (4)

To make an explanation clear, we represent the complex-
valued input-output relationship in (2) into the equivalent
real-valued one as

r[t] = sign(Hx(w[t])+ z[t]) ∈ {1,−1}2Nr , (5)

where
H =

[
Re(H̃) −Im(H̃)
Im(H̃) Re(H̃)

]
∈ R2Nr×2K

r[t] = [r̂R[t]T, r̂I [t]T]T

x(w[t]) = [Re(x̃(w[t]))T, Im(x̃(w[t]))T]T

z[t] = [Re(z̃)T, Im(z̃)T].

(6)

FIGURE 2. The equivalent N parallel B-DMCs.

This real system representation will be used in the sequel.
A block fading channel is assumed where a channel matrixH
remains flat during n time slots (i.e., coded block length)
and changes independently across coded blocks. Also, it is
assumed that the channel matrix H is perfectly known to
the BS. It is remarkable that the proposed SO detector can be
also performed with an estimated channel matrix Ĥ by simply
replacing H with Ĥ in the following sections.

B. EQUIVALENT N PARALLEL B-DMCS
In [20], it was shown that a real system representation
in (5) can be transformed into an equivalent N = 2Nr par-
allel binary discrete memoryless channels (B-DMCs). In this
section, we define the channel input/output and channel tran-
sition probabilities of the N parallel B-DMCs (see Fig. 2).
Due to the equivalence, the channel output is clearly equal
to r[t].

1) CHANNEL INPUT
Given H, we construct a spatial-domain code C =

{c0, . . . , cmK−1} where each codeword c` is determined as a
function of H as

c` = [sign(hT
1x(gm(`)), . . . ,h

T
Nx(gm(`))]

T
∈ C, (7)
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FIGURE 3. Description of the proposed soft-output MIMO detectors for uplink MU-MIMO systems with one-bit ADCs for 4-QAM.

and it can be considered as a perfect channel output without
additive noises in (5). Then, in Fig. 2, the output of auto-
encoding function E is obtained as

q = E(w,H) = c`, (8)

where ` = g−1(w) ∈
〈
0 : mK − 1

〉
.

2) TRANSITION PROBABILITY
As shown in Fig. 2, the effective channel consists of
N unequal parallel BSCs with input q and output r. Also, for
the i-th subchannel, the transition probabilities, depending on
user’s messagew = g(`) and corresponding codeword c`, are
defined as

P(ri[t] | qi = c`,i) =

{
ε`,i if ri[t] 6= c`,i
1− ε`,i if ri[t] = c`,i,

(9)

where the error probability of the i-th channel is computed as

ε`,i = Q(‖hT
i x(g(`))‖), (10)

and where

Q(x) =
1
2π

∫
∞

x
exp

(
−u2/2

)
du. (11)

C. OVERVIEW OF THE SO DETECTOR
We review the SO detector proposed in [24]. The wMD
decoding in [20] produces the hard-decision outputs and thus,
it is not appropriate to be used with state-of-the-art channel
codes (e.g., Turbo, LDPC, and Polar codes). This problem
was addressed in [24] by generating soft LLRs from one-
bit quantized measurements. We first define a new distance
measure that will be used throughout the paper.
Definition 1 (Distance Measure): For any two vectors x

and y of the same length N , we define a weighted Hamming
distance dwh(x, y; {αi}) with the non-negative weights {αi}Ni=1
as

dwh(x, y; {αi}) ,
N∑
i=1

αi1{xi 6=yi}. (12)

We remark that the conventional Hamming distance is the
special case with αi = 1 for all i.

�
In [20], the wMDdecoding finds a decodedmessage ˆ̀ such

that

ˆ̀ = argmin
`∈〈0:mK−1〉

dwh(r, c`; {α`,i}), (13)

where α`,i = −log(ε`,i).
Assuming the above wMD decoding, we will explain how

to compute the soft outputs (e.g., LLRs). For the simplicity of
explanation, we focus on a 2p-QAM constellation (e.g.,W =
〈0 : 2p − 1〉) for some positive p. However, the extension
to an arbitrary m-ary constellation is straightforward. Fig. 3
describes the proposed coded system for p = 2 (i.e., 4-QAM)
where the blue and red lines represent the code-refinement
processes for the OSS and M-OSS detectors, respectively.
For the OSS detector, one blue-line is only used at a time
regardless of the CRC-check. For the M-OSS detector, due
to the usage of multiple decoders at the BS, at most ND lines
are used simultaneously. As seen from the second decoder,
a message declined by CRC-check is not handled in refin-
ing the code-space (see the second channel decoder). The
process contains an iteration loop based on a message that
passes the CRC-check and should be halted at the stopping
condition. Let (uk [1], . . . , uk [M ]) denote theM -bit informa-
tion sequence of the user k and let (τk [1], . . . , τk [n]) denote
the corresponding coded output. To simplify the notation,
we define the

[b]p
1
=

p∑
i=1

bi2p−i, (14)

where b = (b1, . . . , bp). Then, the user k’s channel input
message at time slot t is obtained as

wk [t] = [(τk [pt], τk [pt − 1], . . . , τk [pt − p+ 1])]p ∈W
(15)
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for t ∈ 〈n/p〉, where n is assumed to be a multiple of p. Each
user k transmits the {wk [t] : t ∈ 〈n/p〉} to the BS over the
n/p time slots.
Definition 2 (Subcode): For any fixed {wk [t] = j},

the subcode of C = {c = E(w,H) : w ∈ WK
} is defined

as

C|{wk [t]=j}
1
= {c = E(w,H) : w ∈WK ,wk [t] = j}.

�
With the above definition, we can efficiently compute the

LLRs from the channel observation {r[t] : t ∈ 〈n/p〉} as

Lkpt−(i−1)(r[t]) = min
c`∈Bk

(i,1)

dwh(r[t], c`; {log ε−1`,i })

− min
c`∈Bk

(i,0)

dwh(r[t], c`; {log ε−1`,i }) (16)

for i ∈ 〈p〉 and t ∈ 〈n/p〉, where ε`,i is given in (10) and

Bk(i,j) =
⋃

b∈{0,1}p:bi=j

C|{wk [t]=[b]p}, (17)

for j ∈ {0, 1}. During the n/p time slots, the BS collects
the LLRs {Lkpt−(i−1)(r[t]) : i ∈ [p], t ∈ [n/p]} for k =
1, . . . ,K and they are embedded into the corresponding chan-
nel decoder k , for k = 1, . . . ,K .

III. THE PROPOSED OSS DETECTOR
In this section, we enhance the performance of the existing
SO detector by presenting an one-bit successive-cancellation
soft-output (OSS) detector. The overall structure of the
OSS detector is illustrated in Fig. 3. As explained before,
in the SO detector [24], LLRs are computed by searching
all the codewords in the code C separately for each user.
Whereas, in the proposed OSS detector, LLRs are computed
from the so-called refined code Cr ⊆ C where the refined
code (or subcode) is constructed by exploiting the previously
decoded messages (see Fig. 4). In this way, the detection
ambiguity can be alleviated since the distances among the
remaining codewords tend to be larger. As a consequence,
the OSS detector can generate more reliable LLRs than the
SO detector in [24].

In the rest of this section, we will explain the OSS detec-
tor by focusing on the LLR computations for the channel
decoder k , based on the 〈k − 1〉 users’ decoded messages
ŵ〈k−1〉[t] = {ŵ1[t], . . . , ŵk−1[t]}:
• From the decodedmessages ŵ〈k−1〉[t], we can obtain the
refined subcode of the C as

C
|{w〈k−1〉[t]=ŵ〈k−1〉}

1
== {c = E(w,H) : w ∈W,

w〈k−1〉[t] = ŵ〈k−1〉[t]}, (18)

where |C
|{w〈k−1〉[t]=ŵ〈k−1〉}| = |C|/2

k−1. Since the dis-
tances among the remaining codewords in the subcode
can be larger as k grows, the OSS detector can generate
more reliable LLRs as the cancellation step proceeds.
Fig. 4 describes the LLR comparisons of the SO, OSS,
and M-OSS detectors for the detection of the second

FIGURE 4. The LLR comparisons of the SO, OSS, and M-OSS detectors.

user. For the OSS detector, because of using the previ-
ously detected message ŵ1[t], some codewords (repre-
sented by grey circles) are eliminated from the C, and
the LLR is computed by subtracting distances to each
subcode: one is associated with bi = 1 and the other
is bi = 0. For theM-OSS detector, we assume the second
iteration, and the messages of user 1 and 4 are concur-
rently employed in refining the C. Then, the magnitude
of the LLR becomes even larger thus leading to more
reliable decoding.

• Using the above refined subcode and from (16),
the enhanced LLRs are computed as

L̃kpt−(i−1)(r[t], ŵ〈k−1〉[t])

= min
c`∈Bk

(i,1|ŵ〈k−1〉[t])
dwh(r[t], c`; {log ε−1`,i })

− min
c`∈Bk

(i,0|ŵ〈k−1〉[t])
dwh(r[t], c`; {log ε−1`,i }), (19)

where

Bk
(i,j|ŵ〈k−1〉[t])

=

⋃
b∈{0,1}p:bi=j

C
|{wk [t]=[b]p,w〈k−1〉[t]=ŵ〈k−1〉[t]}. (20)

• By embedding the above LLRs {L̃kpt−1(r[t], ŵ
k−1
1 [t]) :

i ∈ 〈p〉 , t ∈ 〈n/p〉} into the channel decoder, the user
k’s message is decoded as the bit-stream ûk . Also,
the {ŵk [t] : t ∈ 〈n/p〉} are obtained from ûk , using the
channel encoder and modulation function.

• Then, leveraging the decoded messages ŵk−1
1 [t] and

ŵk [t], the enhanced LLRs for the channel decoder k+ 1
are computed.

The above process is repeatedly applied until all the K users’
messages are decoded (see Algorithm 1 below). It is notice-
able that the size of code-space for a next user is reduced to
half of the current size.

IV. THE PROPOSED ORDERED M-OSS DETECTOR
In this section, the proposed OSS detector is further improved
by developing a multiple OSS (M-OSS) and by optimizing a
decoding order. As in conventional successive cancellation
detector, the decoding order plays a crucial role in the perfor-
mance of the OSS detector. Unfortunately, it is too complex
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Algorithm 1 The Proposed OSS Detector
BChoose K and Nr for MU-MIMO system
BChoose p for m(= 2p)-QAM constellation
BChoose blocklength n and code rate R for channel coding

Define the code C = {c` : ` = 0, . . . ,mK − 1} in (7)
One-bit quantized observation r[t] for t ∈ 〈n/p〉
for k = 1, . . . ,K do

if k = 1 then F No previous message
Compute LLRs for the first user using (16)-(17)

and the code C
else F Using previously detected message

Compute LLRs for the i-th user using (19)-(20) and
the refined code C

|{w〈k−1〉[t]=ŵ〈k−1〉[t]}
end if
Decode the bit-stream ûk [t] using the above LLRs
Re-encode the decoded bit-stream to get ŵk [t]
Define the refined code C

|{w〈k〉[t]=ŵ〈k〉[t]}
end for

to find an optimal decoding order with respect to a perfor-
mance. Instead, we develop an efficient method to designate
a good decoding order by introducing a novel set-distance
measure among the sets of high-dimensional binary vectors.
We remark that the proposed ordering is completely different
from the conventional SNR-based ordering and is more suit-
able for the proposed LLR computations. Next, focusing on
a more practical scenario having multiple channel decoders
at the BS, we propose the M-OSS detector where the plenty
of (correctly) decoded messages are used simultaneously to
build a refined search-space (see Fig. 3).

A. THE PROPOSED DECODING ORDER
We propose an effective advance ordering method which
can further ameliorate the computations of LLRs with con-
siderably lower overhead compared with our priori work
in [27]. In the proposed method, a decoding order is cho-
sen by evaluating the set-distance between two disjoint sets
(e.g., subcodes) where one is associated with τk [t] = 0 and
the other is τk [t] = 1. This is motivated by the fact that the
LLRs with higher reliability are more likely to be attained
from far-off subcodes. Based on this, the proposed decoding
order is determined as follows.

Given a channel matrix H, we construct a search-space
(e.g., the set of noiseless outputs (or codewords)) from (7) and
divide them into subcodes on the basis of each user’s message
wk [t] with respect to a single-bit location. In the example of
the user 1’s first-bit location, we obtain the following two
disjoint subcodes from (17) as

B1
(1,0) =

⋃
b∈{0,1}p:b1=0

C
|wk [t]=[b]p

B1
(1,1) =

⋃
b∈{0,1}p:b1=1

C
|wk [t]=[b]p . (21)

In order to evaluate the distance of the above two sets,
it is required to define a set-distance measure such as
ds(B1

(1,0),B
1
(1,1)). We remark that it is not obvious to find

an optimal set-distance measure ds(·, ·). Instead, we resort
to using the mean distance (i.e., the distance between the
centroids of the two sets) such as

ds(A,B)
1
=

∣∣∣∣∣∣ 1
|A|

∑
a∈A

a−
1
|B|

∑
b∈B

b

∣∣∣∣∣∣
2

. (22)

Using this distance measure, we can compute the distance
of each i-th bit location for i ∈ 〈p〉 and then define the
representative distance for the user 1 as

d1 =
∑
i∈〈p〉

ds(B1
(i,0),B

1
(i,1)). (23)

Likewise, we can compute the representative distance for the
user k as

dk =
∑
i∈〈p〉

ds(Bk(i,0),B
k
(i,1)), (24)

for k ∈ 〈K 〉. Now, we are ready to determine the decoding
order such as the user index ki for the i-th decoding is deter-
mined as

ki = argmax
k∈〈K 〉\{k1,...,ki−1}

dk . (25)

B. THE PROPOSED M-OSS DETECTOR
We present a multiple OSS (M-OSS) detector in which the
plenty of decoded messages (provided by multiple chan-
nel decoders) are exploited simultaneously in the subcode
refinement stage. Also, this process is repeated until there
is no newly decoded message (called stopping condition).
Before stating the proposed detector, we briefly explain how
the multiple channel decoders together with CRC codes are
performed.

1) MULTIPLE CHANNEL DECODERS
In the OSS detector, we assume the scenario that a single
channel decoder is performed K times in a sequential way.
However, in practical systems, BS is able to be equipped with
multiple channel decoders (say,ND channel decoders). In this
section, we assume that the ND channel decoders operate
simultaneously and then the decoded messages from those
decoders are provided to the OSS detector at the same time
(see Fig. 3).

2) SC DECODING WITH CRC-CHECK
In the OSS detector, the decoded messages are used regard-
less of their correctness and thus an unsatisfactory per-
formance can be made especially at lower SNR regimes.
This drawback can be addressed by only using CRC-pass
decoded messages, namely, a search-space refinement is
performed only when the decoded messages pass the
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FIGURE 5. The mean-distance comparison for two disjoint subcodes.

CRC-check. We first define a CRC-appended information
sequence as

uCRCk = (uk , a`(uk ))

= (uk [1], . . . , uk [M−`], ak [M−`+1], . . . , ak [M ]) ,

(26)

where uk denotes the information bits of the user k and
a`(uk ) denotes the redundant CRC bits computed using uk
and a polynomial for `-length CRC sequence (e.g., x16 +
x12 + x5 + 1 and ` = 17 for CRC-16). Note that M -bit
information sequence before channel encoding is composed
of (M − `) information bits and an `-bit CRC sequence.
As in Section III, the information sequence is subsequently
encoded as (τk [1], . . . , τk [n]) and then, the corresponding
modulated symbols are transmitted as wk [t] for t ∈ 〈n/p〉.
Also, the enhanced LLRs can be computed from (19).
By embedding the LLRs into the channel decoder, the user k’s
information sequence is decoded as ûCRCk . In the OSS detec-
tor, the previously decoded messages of all the 〈k − 1〉 users
are used to compute the enhanced LLRs without any excep-
tion. Since the CRC-failed decodedmessages can degrade the
performances of the subsequent decodings, it would be better
to use the CRC-pass decoded messages only for the refine-
ment of the search-space. Let s = [s1, . . . , sS ]T be the CRC-
check vector where si stores the index of user who succeeds in
CRC-check among 〈k − 1〉 users. Then, the enhanced LLRs
are computed only using the CRC-pass decoded messages as

L̄kpt−(i−1)(r[t], ŵs[t])

= min
c`∈Bk(

i,1|ŵs[t]
) dwh

(
r[t], c`;

{
log ε−1`,i

})
− min
c`∈Bk(

i,0|ŵs[t]
) dwh

(
r[t], c`;

{
log ε−1`,i

})
, (27)

where ŵs[t] is the collection of the decoded message of the
CRC-pass users and the refined subcodes are obtained as

Bk(
i,j|ŵs[t]

) = ⋃
b∈{0,1}p:bi=j

C
|{wk [t]=[b]p,ws[t]=ŵs[t]}. (28)

M-OSS detector: Suppose that the BS is equipped with
themultiple channel decoders (say,ND channel decoders) and
CRC-check. Based on this, we present an iterative algorithm
to exert the best-effort for a given channel observation. The
overall procedures of the M-OSS detector are provided in
Algorithm 2. We first describe the procedures at the first
iteration (e.g., T = 1):

• Before starting the detection procedure, the advance
ordering in (25) is determined by considering an aver-
age strength of each subcode, which is to say k =
[k1, k2, . . . , kK ]. As an initialization, s = [ ] denotes
an indicator vector that contains the indices of correctly
decoded users’ messages.

• A cluster of channel decoders performs for dKT
max/NDe

steps, where KT
max is the number of undetected users at

the first step of T -th iteration and K 1
max = K , in general

it is same as the number of elements in k \ s.
• At the first step of the first iteration (T = 1), the
BS defines the undetermined users as k1 = k, and
then computes the LLRs of k1

〈1:ND〉 via (16) as there are
no previously detected messages. Then, the LLRs are
embedded to the corresponding channel decoders.
Thereafter, the BS extracts the indices of the users who
successfully pass the CRC-check among k1

〈1:ND〉, and
then adds them to s.

• Likewise, until dK 1
max/NDe − 1 step, all channel

decoders concurrently compute the enhanced LLRs of
k1
〈(i−1)ND+1:iND〉, where i ∈ {1, 2, . . . , dK

1
max/NDe − 1},

and s is updated afterward.
• At the last step of the first iteration, i.e., dK 1

max/NDe
step, the number of remaining users can be less than
ND. In this case, the corresponding number of channel
decoders is only used.

Example 1: Consider the case of Nr = 16 and K = 8.
Suppose that the ordered user index is denoted as k =
k1 = [k1, k2, . . . , k8] and the BS is equipped with 5 channel
decoders (i.e., ND = 5). In this case, the M-OSS detector
performs by dK/NDe = 2 times. At the first step, the BS
decodes the messages of k1

〈1:5〉 such as wk1
〈1:5〉

, each of which

is followed by CRC-check. We assume that the messages
of user 2 and 3 are correctly decoded (i.e., s = [k1, k2]).
In the second step, the previously decoded messages of user
k1 = 2 and k2 = 3 are used to reduce the search-space.
Then, using the refined search-space, the BS can recover
the messages of k1

〈6:8〉. If the user 4’s message passes the
CRC-check, then s is updated as s = [k1, k2, k4]. �

We next focus on the second iteration (e.g., T = 2),
the BS has the knowledge on the correctly decoded messages
from s and thus, it can exclude s from k1 = k, i.e, we have
k2 = k1 \ s. Before proceeding to the detection, the BS first
checks the stopping criterion−whether the cardinality of k2

decreases over k1− on the ground that there is no means for
the BS to further enhance the computation of LLRs if no
message is detected at the previous iteration. If the stopping
criterion is not satisfied, the second iteration proceeds, which
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almost follows the procedures at the first iteration, with minor
changes: i) K 2

max is clarified as the cardinality of k2 and
used to designate how many times the BS works; ii) because
of s, the BS computes the enhanced LLRs at the first step
using (27) instead of (16). Similarly, the T -th iteration can
proceed until the stopping criterion is satisfied.
Example 2: Following the Example 1, we focus on the sec-

ond iteration. In the first iteration (stated at the Example 1),
themessages of users whose indices belong to s = [k1, k2, k4]
are stored as the indices of correctly detected messages. The
BS can get the reduced user set as k2 = k1 \ s = [k3, k5, k6].
Then, the BS is able to compute the enhanced LLRs for the
users in k2

〈1:3〉 by searching the search-space refined by s. �

Algorithm 2 The Proposed M-OSS Detector
BChoose K and Nr for MU-MIMO system
BChoose p for 2p(= m) QAM constellation
BChoose blocklength n and code rate R for channel coding
BChoose the number of decoder ND, CRC length ` and
polynomial for the M-OSS

Define the code C = {c` : ` = 0, . . . ,mK − 1} in (7)
Design the order as k = k1 = [k1, k2, . . . , kK ] using (25)
Each user generates CRC-added information sequence
uCRCk = (uk , a`(uk )) in (26)
One-bit quantized observation r[t]
T = 0
while Newly detected information exists do

T = T + 1
for i = 1, . . . , dKT

max/NDe do
if No message is detected then

Compute LLRs using (16)-(17) and the code C
else F Using a previously detected message

Compute LLRs using (27)-(28) and the refined
code C

|{ws=ŵs}
end if
Decode the bit-stream uCRC

kT〈i(ND−1)+1:iND〉
[t] the LLRs

Perform the CRC-check of uCRC
kT〈i(ND−1)+1:iND〉

[t]

Store successful indices in the s
Re-encode the decoded sequence to get ws[t]
Define the refined code as C

|{ws=ŵs}
kT+1 = kT \ s

end for
end while

C. COMPUTATIONAL COMPLEXITY
For the OS, OSS and M-OSS detectors, the complexities
of LLR computations are proportional to the size of an
associated search-space (or subcode) as shown in (16), (19),
and (27). Since the SO detector in [24] examines all the code-
words for each user independently, it requires the K |C| num-
ber of comparisons with |C| = MK . In contrast, the proposed
OSS detector can reduce the size of subcodes by half as the

TABLE 1. Computational Complexity.

decoding proceeds. Thus, the total number of comparisons is
computed as

K∑
i=1

|C|/2i−1, (29)

which is well-approximated as≈ 2|C| for a largeK . The com-
plexity ratio of the OSS and SO detectors is equal to 2/K and
thus, the relative complexity decreases asK grows. Regarding
the M-OSS detector, it runs Imax times where Imax stands for
the number of iterations such that the stopping condition is
satisfied. In addition, each iteration performs at most d KND e
times to complete a cycle. Thus, the number of comparisons
is proportional to d KND eImax . Table 1 shows the summary
of computational complexities and the trend of Imax of the
M-OSS detector is depicted in Fig 8. We can see that
due to the subcode refinement step, the complexity of the
OSS detector is in general smaller than the other detec-
tors. We would like to point out that their complexities can
be further reduced by using the idea of sphere decoding
in [29] and [30].

V. NUMERICAL RESULTS
We evaluate the performances of the proposed detectors for
the polar-coded MU-MIMO systems with one-bit ADCs. For
simulations, a Rayleigh fading channel is assumed where
each element of a channel matrix H is drawn from an inde-
pendent and identically distributed (i.i.d.) circularly sym-
metric complex Gaussian random variable with zero mean
and unit variance. Also, we consider both a perfect channel
state information (CSI) and an imperfect CSI with a channel
estimation error variance σ 2

h = 0.1.We adopt a rate-1/2 polar
code of length 128 (e.g., n = 128) proposed in [23]. Also,
SC-list (SCL) decoding with list-size 4 in [28] is used for
the decoding method of the polar code. The soft inputs
(e.g., LLRs) of the polar decoder are computed from (16),
(19) and (27) for the SO, OSS and M-OSS detectors,
respectively.

Fig. 6 shows the FER comparisons of the SO, OSS, and
M-OSS detectors for the polar-coded MU-MIMO system
with one-bit ADCs where K = 6. We observe that the
proposed OSS detector can outperform the SO detector by
producing more reliable LLRs. Also, the performance gap
becomes larger as Nr decreases for a fixed K . This is
because, whenNr is smaller, the codewords tend to be located
more densely and thus, eliminating some codewords in the
OSS detector has more effect on the improvements of LLRs.

Fig. 7 shows the coded FER performances for various
soft-output MIMO detectors such as ZF-type detector [8],
SO detector [24], and proposed ordered OSS detector, where
K = 6 and Nr = 12. Here, the solid lines are simulated under
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FIGURE 6. Performance comparisons of various MIMO detectors as a function of Nr for the polar-coded
MU-MIMO system with one-bit ADCs.

FIGURE 7. FER comparisons of various MIMO detectors for imperfect channel estimations.

perfect CSI, and the dotted lines are experimented under
imperfect CSI with σ 2

h = 0.1. Note that ML detector [8],
near-ML detector [8], and supervised-learning detector [19]

are excluded in the comparison because they cannot generate
soft outputs. As already shown in [24], their performances
are much worse than that of the SO detector. We observe that
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FIGURE 8. Imax versus wide range of SNR for K = 6 and Nr = 12.

the proposed detector significantly outperforms the ZF-type
detector and the gap becomes larger as SNR increases. Fur-
thermore, it can provide the additional coding gain over the
SO detector in [24]. Fig. 7 shows that the proposed M-OSS
detector has a remarkable performance gain over both the
SO and OSS detectors. In the M-OSS detector, it is assumed
that BS is equipped with 3 channel decoders (e.g., ND = 3),
and CRC-16-CCITT (with the generator polynomial of x16+
x15 + x5 + 1) and ` = 17 are used. At FER = 10−2, the
OSS detector attains the 1.0dB gain over the existing
SO detector, mainly due to the use of enhanced LLRs. More-
over, the M-OSS detector can obtain additional 1.5dB gain
over the OSS detector. We emphasize that such improvement
is non-trivial in the coded systems.

Fig. 8 shows the average number of iterations for the
M-OSS detector where it is computed using the 2,000 sam-
ples for each SNR. It is noticeable that at both low-SNR
and high-SNR regimes, Imax is very close to 1. In the
low-SNR regime, it is more likely that no message is
decoded correctly at the first iteration, which implies that the
M-OSS detector cannot proceed to the next iteration due to
the stopping condition. In this regime, thus, it is hard to have
an additional gain over the OSS detector. In contrast, at the
high-SNR range, the M-OSS detector can yield an excellent
performance since all the messages are fully detected at the
first iteration, namely, the M-OSS detector does not have to
proceed to the next iteration. In the medium-SNR regime,
the iterative operation actively works since some part of users
are correctly decoded (i.e., Imax > 1). Also, it is noticeable
that Imax is approximately peaked at 2.3, i.e., the iterative
algorithm operates at most 2.3 times on average.

VI. CONCLUSION
We proposed the one-bit successive-cancellation soft-output
(OSS) detector for the coded MU-MIMO systems with one-
bit ADCs. The underlying idea of the proposed detector
is that the previously decoded messages (provided by the
channel decoders) are exploited to increase the magnitude of
the soft outputs (e.g., log-likelihood ratios) for a subsequent

channel decoder, and it leads to much more reliable detection
performance. In addition, we presented the multiple OSS
(M-OSS) detector which can further improve the OSS detec-
tor by leveraging the capability of multiple channel decoders,
and the proper ordering method has added up an additional
advantage as well. Simulation results demonstrated that the
proposed detector provides a non-trivial coded gain over the
existing SO detector for the polar-coded MU-MIMO systems
with one-bit ADCs.

Despite its superior performance, the computational com-
plexities of the proposed detectors are quite expensive espe-
cially when the number of user K is large. One important
future work, thus, is to develop a proper method which can
reduce the size of search-space (i.e., code-space) with an
acceptable performance loss. Toward this, it would be an
attractive to combine the sphere decoding methods (called
one-bit sphere decodings) in [29] and [30] with the proposed
detectors. Another interesting future work is to consider a
frequency-selective channel, which can improve the practical
deployments of the proposed methods.
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