
Received September 26, 2019, accepted October 10, 2019, date of publication October 14, 2019, date of current version October 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2947273

Design of FPGA-Based LZ77 Compressor With
Runtime Configurable Compression Ratio
and Throughput
SEUNGDO CHOI 1, YOUNGIL KIM1, DAEYONG LEE1, SANGJIN LEE1,
KIBIN PARK 1, (Student Member, IEEE), YUN HEUB SONG 1,
AND YONG HO SONG1,2, (Member, IEEE)
1Department of Electronics and Computer Engineering, Hanyang University, Seoul 04763, South Korea
2Samsung Electronics Company Ltd., Hwaseong 18448, South Korea

Corresponding author: Yong Ho Song (yhsong@hanyang.ac.kr)

This work was supported in part by the Ministry of Trade, Industry and Energy (MOTIE) under Grant 10080613, and in part by the Korea
Semiconductor Research Consortium (KSRC) support program for the development of the future semiconductor device.

ABSTRACT Data compression reduces the cost of data storage and transmission by decreasing the data size.
Previous studies have improved system performance by adaptively choosing the compression ratio (CR)
and throughput required for the system by using a trade-off between them in the compression algorithm.
Hardware accelerators are widely used to reduce the CPU load caused by compression operations. Several
existing compression accelerators have low flexibility in changing the CR and bandwidth. This study
proposes a hardware compression accelerator that can adjust the CR and throughput at runtime. The
proposed architecture accelerates the LZ77 compression algorithm and supports the throughput-first (TF)
and compression ratio-first (CF) modes by changing the degree of parallelism of comparison operations
performed during the compression process. In addition, we propose a technique to dynamically change the
degree of parallelism of the comparison operation to achieve a better throughput in CF mode and a better CR
in TF mode. Experimental results demonstrate that the TF mode provides a throughput higher by 11.39%,
and a CR lower by 0.07 than the CF mode. The value 0.07 accounts for 13.21% of the variation in the CR
provided by the software implementation of LZ77.

INDEX TERMS Accelerator architectures, data compression, field programmable gate arrays.

I. INTRODUCTION
Recently, the volume of digital data has been continuously
increasing owing to the development of information com-
munication technology [1], [2]. State-of-the-art technologies
such as the Internet of Things (IoT), social networks, and
artificial intelligence (AI) are further accelerating the data
growth. With the increase in the volume of digital data,
the cost of data storage and transmission has also increased.
To reduce these costs, several studies have researched data
compression [3]–[7]. Data compression reduces the data size,
helps improve storage efficiency, and reduces the bandwidth
required for transmission.

The associate editor coordinating the review of this manuscript and

approving it for publication was Junxiu Liu .

Compression algorithms can be evaluated on two major
indicators. The first is CR, which is calculated as original data
size divided by compressed data size. CR indicates howmuch
data size is reduced by the compression algorithm. The sec-
ond is throughput, which indicates how fast the original data
is compressed.

Generally, compression algorithms have a trade-off rela-
tionship between CR and throughput [8]–[11]. These
algorithms can achieve a higher CR if the time and space
complexities are increased. Conversely, sacrificing CR can
reduce the time and space complexities of these algorithms,
which results in an increase in throughput.

LZ77 is one of the compression algorithms that replaces
redundant string, i.e., a set of characters of arbitrary length
with short length code [9]. The algorithm performs a number
of comparison operations to search the repeated string, and

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 149583

https://orcid.org/0000-0002-6847-9498
https://orcid.org/0000-0001-7302-2874
https://orcid.org/0000-0001-5402-6765
https://orcid.org/0000-0002-9790-1571


S. Choi et al.: Design of FPGA-Based LZ77 Compressor With Runtime Configurable Compression Ratio and Throughput

the CR and throughput vary according to the number of
comparison operations.

Previous studies have pointed out that the appropriate CR
and throughput differ according to the context of the comput-
ing system [12]–[15]. These studies use a trade-off between
CR and throughput to adaptively select the appropriate CR
and throughput for the system context under consideration,
thereby increasing the service capacity of the web server or
reducing the I/O response time of the storage.

Similar to the other tasks performed on a computing sys-
tem, compression also requires computing resources such as
CPU and memory. Compression can be a system overhead if
the compression workload required by the system is consid-
erable or a high CR is required.

The hardware acceleration technique is a method used to
reduce the computational load of a system. This technique
migrates some or all of the tasks that the CPU has performed
to a hardware device such as a GPU [16], an ASIC [17], or an
FPGA [17]–[23]. Some previous researches studied compres-
sion acceleration techniques and achieved high bandwidth by
parallelizing frequently performed operations [20]–[22].

Previously proposed compression accelerators provide
higher bandwidth than a CPU. However, previous structures
have low flexibility in modifying CR and bandwidth. It may
be difficult to apply compression that is appropriate to the
system context or application characteristics.

This study proposes a hardware compression accelerator
that can appropriately prioritize CR and throughput. The pro-
posed architecture adjusts the CR and throughput by chang-
ing the degree of parallelism of the string search performed
during the compression process and the comparison operation
required for the string search. In other words, this architecture
increases the degree of parallelism of the string search and
decreases the degree of parallelism of the comparison opera-
tion to provide high throughput and low CR (throughput-first
mode; TF mode) or vice versa to provide high CR and low
throughput (compression ratio-first mode; CF mode). The
operation mode of the accelerator is selectable every time
a new compression input is assigned, and does not require
hardware change.

The proposed accelerator determines the degree of
parallelism of the comparison operation dynamically.
To determine the degree of parallelism during compression,
the proposed architecture uses a comparison validity deter-
mination technique [24] to determine the level of parallelism
that does not affect the CR. The necessity of additional adjust-
ment of the degree of parallelism is determined according to
the current operation mode of the compression accelerator
and whether the necessary comparison operation can be
performed in parallel within one cycle.

We evaluated the proposed architecture using FPGA. The
proposed accelerator provides throughput of 1.76 bytes/cycle
andCRof 2.48 in TFmode and throughput of 1.58 bytes/cycle
and CR of 2.55 in CFmode. Compared to the CFmode, in the
TF mode, the throughput increased by 11.39%; however,
the CR decreased by 0.07. This accounts for approximately

FIGURE 1. Example of LZ77 operation.

13.21% of the variation of the CR provided by the software
implementation of LZ77 library.

LZ77 is also used as part of a compression library (e.g.,
deflate [25]). We implemented and evaluated the deflate
accelerator using the proposed architecture. The deflate
accelerator achieved a throughput and CR of 3.16 GB/s and
3.42, respectively, in CF mode and a throughput and CR
of 3.52 GB/s and 3.37, respectively, in TF mode.

The rest of this paper is organized as follows. In section II,
we present background knowledge of this study and in
section III, we briefly introduce the related work. Section IV
provides an overview of the proposed architecture and
section V explains themethod tomake the CR and throughput
selectable in the accelerator. Section VI discusses the exper-
imental results of the architecture. Finally, we conclude this
paper in section VII.

II. BACKGROUND
A. LZ77 OVERVIEW
LZ77 is a lossless data compression algorithm. Lossless data
compression does not allow for data loss during compression;
thus, the decompression result is identical to the original data.
LZ77 reduces the data size by replacing redundant strings
with shorter length codes. It comprises four steps: target
string selection for searching, string search, substitution deci-
sion, and outputting results. These four steps are performed
sequentially in a circular manner. In this study, we refer to the
flow from the first to the last stage as unit operation.

Fig. 1 shows an example of the LZ77 operation. cIndex
refers to the starting position of the target string (or current
string), and it is an index that distinguishes between the part
of the data that was compressed (before cIndex) and the part
to be compressed (starting at cIndex). The cIndex moves each
time a unit operation is performed. LZ77 compares the cur-
rent stringwith previous strings to identify if the current string
is duplicated. In the example, the string ‘‘brow’’ starting from
cIndex appeared in duplicate. LZ77 replaces the current string
with a pair set (LD pair) comprising the matched length of
the two strings (len) and the distance between the two strings
(dist), and the cIndex shifts by the length of the substituted
string. If the current string is not duplicated, the character
indicated by cIndex (literal) is output. In this case, cIndex
moves to the next character. The unit operation of the LZ77 is
repeated until cIndex reaches the end of the data.

B. STRING SEARCH USING HASH TABLE
The zlib [8] is a compression library used by several
applications [26]. It is an abstraction of the deflate algo-
rithm and includes LZ77 and Huffman encoding [27].

149584 VOLUME 7, 2019



S. Choi et al.: Design of FPGA-Based LZ77 Compressor With Runtime Configurable Compression Ratio and Throughput

LZ77 implemented in zlib performs comparison operations
on strings of three-byte length. If a duplicate string exists,
the target and the previously appeared string are further
checked to see if they match more than three bytes, and
the matched string is then replaced with the LD pair. The
maximum length of a matched string in zlib is set to 258.

Comparing all three-byte strings with the target string con-
sumes considerable time. To reduce the search time, zlib uses
a hash table to manage the information of starting positions
of previous strings (history). zlib uses the target string as the
key of the hash table and stores the starting position of the
target string in the hash bucket. Further, using a target string
as key, zlib can obtain the starting position of the strings
with the same key value. Instead of comparing all strings
in the compressed part, zlib improves the time efficiency of
the search process by only comparing strings starting from
histories stored in the corresponding hash bucket.

C. REDUCING COMPARISON PROCESS WITH FALSE
HISTORY FILTERING
Hash table uses a hash function to obtain the access address
of a bucket. Hash collision is one of the characteristics of
a hash function, which implies that different inputs of the
hash function produce the same result. In zlib, histories of
different strings are stored as linked lists in the same bucket
when a hash collision occurs. As a result, even if histories
are stored in the same bucket, several strings starting from
some of these histories may be different from the target string.
Comparing different strings has no effect on the CR. It is
not necessary to perform meaningless, or unnecessary com-
parison operations. Especially in a hardware compression
accelerator, where the number of string comparators (SCs)
is limited, other meaningful comparisons are delayed con-
siderably if an unnecessary comparison process occupies the
comparator. Therefore, eliminating unnecessary comparisons
before they are assigned to the comparator helps to yield
higher performance.
False history filtering is a technique to detect unnecessary

comparison operations that occur during the LZ77 opera-
tion [24]. To determine whether histories from the hash table
affect CR, this technique stores a portion of the three-byte
string (filtering tag) used for the hash key with history. The
size of the filtering tag ranges from 0 to 24 bits. A size of 0
bits indicates that the hash table does not use the filtering tag,
whereas a size of 24 bits indicates that all the three bytes are
used for the filtering tag. A compressor using this technique
compares the filtering tag with a portion of the target string
before assigning the comparison operation to the SC. If the
comparison results do not match, the comparison operation is
judged not to affect the CR, and it is not assigned to the com-
parator. False history filtering can reduce the number of com-
parisons performed in the compression. In this paper, we shall
use the terms false history filtering and history filtering
interchangeably.

III. RELATED WORK
Some existing studies discuss improving the system
performance by using compression. Some researches use
compression and adaptively adjust the compression level in
consideration of idle CPU resources or network congestion
for file transfers via networks [13]–[15]. One study suggested
adaptive compression techniques to reduce storage response
time [12]. The proposed scheme determines whether to use a
compression algorithm with low CR and low time cost or one
with high CR and high time cost, depending on the expected
CR of the file or the number of I/O requests.

Other studies proposed hardware acceleration scheme for
compression. Fowers et al. proposed a hardware architecture
that accelerates LZ77 and Huffman encoding [27]. The accel-
erator improves the performance by reducing the number of
memory accesses. To reduce memory access time required
for linked list traversal in a hash table, the accelerator uses
multi-way memory structure such as CPU cache, and stores
histories in each way. Each way is divided into several banks
to allow multiple accesses to the memory. In the multi-way
architecture, all histories stored in the same bucket can be
loadedwith a singlememory access. This not only reduces the
number of memory accesses but also enables parallelization
of sequential string comparison processes, thereby reducing
execution time.

Several accelerator architectures including the abovemen-
tioned research: [20]–[22], select multiple strings as target
strings in one unit operation, and perform all the comparisons
generated in the unit operation in parallel to increase the
performance. If more strings are searched simultaneously,
more comparisonwork is required to be done; therefore, these
architectures perform parallel comparisons using many com-
parators. These accelerators achieve high bandwidth; how-
ever, users or applications cannot adjust the CR or throughput
that they provide.

Our accelerator allows the user to prioritize the CR and
throughput without changing the hardware. The architecture
changes the degree of parallelism of comparison operation
to adjust the CR and throughput. This structure omits some
of the comparison operations to change the degree of par-
allelism, and the number of omitted tasks is determined
dynamically.

IV. ARCHITECTURE OVERVIEW
In this section, we describe the proposed LZ77 accelera-
tion architecture. We designed the accelerator based on the
prototype of the LZ77 acceleration hardware proposed in
the previous study [24]. Unlike the previous structure that
searches only one string per unit operation, the proposed
architecture selects multiple target strings per one unit oper-
ation to improve the performance.

Fig. 2 illustrates the proposed LZ77 accelerator. The oper-
ation of this architecture is as follows. First, the data to
be compressed is stored in the accelerator memory (data

VOLUME 7, 2019 149585



S. Choi et al.: Design of FPGA-Based LZ77 Compressor With Runtime Configurable Compression Ratio and Throughput

FIGURE 2. Block diagram of LZ77 accelerator.

memory, DM). The input stream buffer prefetches a portion
of the data stored in the DM and provides it as input to the
SC. Dictionary management unit (DMU) updates and outputs
the starting position of the string to be compared by the
SC. The starting position of the string is transmitted to the
history filter (HF), history buffer (HB), and DM. DM outputs
the data corresponding to the starting position. The string
comparator compares the data output from the DM with the
string received from the input stream buffer. The comparison
results are delivered to the match selector (MS), that selects
the result with the longest matched length (similar to the
case of zlib). Fig. 2 illustrates the data flow when one unit
operation is performed. The number of target strings in the
figure is set to one for readability.

Details of each module are as follows. Engine controller
controls the operation of the accelerator. It receives control
signals such as a compression request or an operation mode
setting from an external control device (e.g., a host device
driver or other controller device), shares it with internal
modules, and informs the external device of the comple-
tion of compression. DMU performs the same function as
that of the hash table of zlib. It records the starting posi-
tions of strings that appeared before cIndex. DMU has hash
memory with multi-way and multi-bank type [20]. HF is
used to reduce comparisons by detecting unnecessary string
comparisons [24]. DM stores the data to be compressed.
SC compares a string starting from cIndex with a string that
has appeared before, determines whether it is redundant, and
generates a literal or LD pair based on the result of compar-
ison. MS selects the LD pair with the largest length value
among the results generated by SCs. If none of the SCs have
generated an LD pair, the MS outputs the literal indicated by
cIndex. MS also supports the lazy matching scheme that is
implemented in zlib. HB controls the comparison operation
according to the operation mode. We describe the detail of
the HB in the next section. All modules in the architecture

FIGURE 3. Data flow of LZ77 engine.

are pipelined, and they can perform new LZ77 unit operations
per cycle.

Fig. 3 is a simplified diagram of the pipeline structure and
data flow of the proposed architecture, illustrating an example
of performing a single string search per unit operation. One
unit operation is performed through several stages constitut-
ing the accelerator. Each unit operation has the data (Dpx)
necessary to perform the compression, and this data changes
according to the logic (Lpx) in each stage. For example, Dpx
contains the address to access the dictionary when the unit
operation is in the DMU, andDpx includes the result of the SC
when the unit operation is in the MS. Each unit operation also
has the character pointed by cIndex, and the character is used
as the LZ77 output when target string is not replaced by the
LD pair in the unit operation. The valid bit indicates whether
the result of the unit operation is to be used as the output of the
accelerator. The engine controller receives the compression
result from the last stage of MS (last stage in the figure) at
every cycle, and it controls the valid bits of the other stages.
For example, if an LD pair with an including length value of
a is output at the last stage of the MS, the valid bit of the a−1
unit operation before the last stage is set to 0, which means
invalid. This is because the already compressed part does not
need to be output.

149586 VOLUME 7, 2019



S. Choi et al.: Design of FPGA-Based LZ77 Compressor With Runtime Configurable Compression Ratio and Throughput

FIGURE 4. Basic approach for adjusting compression ratio and
throughput.

V. DYNAMICALLY ADJUSTING THE DEGREE
OF PARALLELISM
This section explains how to adjust CR and throughput in
the proposed architecture. We adjust CR and throughput by
changing the degree of parallelism of the string search and
comparison operations. To determine the number of compar-
ison operations to be performed, the proposed architecture
dynamically determines how many comparison tasks to be
omitted to improve throughput and CR in each operation
mode.

A. FIRST STEP: LIMIT THE NUMBER OF COMPARISONS
zlib has 9 levels of compression; level 1 provides the fastest
performance and lowest CR, whereas level 9 provides the
lowest throughput and highest CR. One way to adjust the
CR in zlib is to limit the number of comparison operations
performed per target string search. For example, level 1 per-
forms a smaller number of comparison tasks than level 9 does.
A small number of comparison operations improves perfor-
mance; however, the probability of not finding a redundant
string increases, which can lead to a reduction in CR. On the
contrary, a large number of comparison tasks increases the
probability of finding duplicated strings and longer redundant
strings; however, it costs considerable time.

Fig. 4 shows an example of changing the performance by
limiting the number of comparison operations performed per
target string search. For the ease of explanation, we assume
that the architecture searches two target strings in one cycle,
and maximum n comparison operations are generated per one
target string. We also assume that the architecture has n com-
parators (n = 2k and k is a natural number). Ji(X ) in Fig. 4
represents the comparison process required for the target
string search. For example, Ji(A) is a comparison operation
that is generated by searching for the string starting from A
in the input data flow. As the value of i increases, it compares
a string that is more far from A. If the number of Ji(X ) is less

than the number of comparators, some comparators remain
idle to simplify the internal operation. Comparison tasks cre-
ated in one unit operation are grouped into rounded rectangles
drawn in dashed lines, and the comparison operations to be
performed in parallel are grouped into rounded rectangles
drawn in solid lines. gti indicates the time when the tasks are
created; gta+1 is the next cycle of gta. ati is the time when the
comparison operations are assigned to the comparators. atb+1
is the next cycle of atb, and the comparison tasks of atb are
assigned to the comparator ahead of atb+1.

Only few of the comparison operations generated at gti are
performed in TF mode. In Fig. 4, the number of comparison
operations that can be performed for one target string is
fixed to n/2, and distant comparison tasks from the target
string are omitted, e.g., the operation of zlib. In the atb of
TF mode, the number of Ji(A) and Ji(B) is n/2, and a total
of n comparison operations are simultaneously allocated to
the comparators (SC). In TF mode, all comparison operations
created in gti are processed concurrently in ati. The number of
comparison operations generated per cycle is higher than that
of the comparators; however, there is no bottleneck because
the number of comparison operations actually performed is
equal to the number of comparators.

On the contrary, all the comparison operations generated
at gti are performed without omission in CF mode. In the CF
mode example of the figure, all of the operations: Ji(A), Ji(B),
Ji(C), and Ji(D) are performed. The number of comparators
in the proposed architecture is less than the number of com-
parison operations generated at gta; therefore, the tasks of gta
should be performed over atb and atb+1. In CF mode, some
comparison operations wait until the comparators become
available, and the pipeline stages before the comparator are
stalled. Although CF mode yields less throughput than TF
mode owing to the pipeline stall, the CR can be increased
because it performs more comparison operations.

B. SECOND STEP: DYNAMICALLY DETERMINE THE
NUMBER OF COMPARISONS TO BE SKIPPED FOR HIGHER
COMPRESSION RATIO AND THROUGHPUT
In the previous section, we discussed the basic method for
adjusting the CR and throughput in the proposed architec-
ture. This section describes a technique for improving the
performance in CF mode and increasing the CR in TF mode.
We further describe the structure and operation of the HB
for adjusting the degree of the parallelism of comparison
operations.

To improve CR and throughput in each mode, we focus
on unnecessary comparisons. Unnecessary comparisons may
cause two problems. First, they can limit the CR. In the
example of Fig. 4, TF mode omits some comparison oper-
ations and performs only some comparison tasks. However,
the comparison results may not affect the CR; moreover,
the omitted comparisons may lead to a higher CR. Better
CR can be expected in TF mode if unnecessary comparisons
are detected and not performed before being assigned to the
comparator.

VOLUME 7, 2019 149587



S. Choi et al.: Design of FPGA-Based LZ77 Compressor With Runtime Configurable Compression Ratio and Throughput

FIGURE 5. Difference of comparison workload and execution time according to each operation mode with dynamic skip.

Second, unnecessary comparisons may limit performance
improvement. We show an example in which the comparison
operations generated at gti are performed over ati and ati+1
in CF mode of Fig. 4. If half of the comparison operations
created at gti are unnecessary, and they can be filtered out
before being allocated to comparator, the remaining compar-
ison operations can be performed in parallel at ati.

We use a two-step comparison omission technique that we
call dynamic skip. The first step in dynamic skip omits unnec-
essary comparisons using the history filtering scheme [24].
The operation of the second stage is determined according
to the current operation mode of the compressor and the
number of remaining comparison operations. In TF mode,
it is determined whether additional omissions are required,
whereas in CF mode it is decided whether to perform the
remaining comparison operations in single or multiple cycles.
The first step is performed in the HF and the second step in
the HB.

Fig. 5 illustrates the operation of each mode in the archi-
tecture using dynamic skip. The notations such as gti and ati
and the operating assumption in this figure are the same as
in Fig. 4. The comparison operations on the gray background
are omitted after history filtering.

Both the modes perform history filtering before perform-
ing comparison tasks. We assume that J1(A) generated at
gta is removed by history filtering. We also suppose that
operations from J2(C) to Jn(C) created at gta+1 would be
omitted, and those from J1(E) to Jk (E) and J1(F) to Jk (F)
generated at gta+2 would be discarded after history filter-
ing. TF mode omits unnecessary comparisons and deter-
mines whether additional omission is required, depending on

the number of remaining comparison operations. Basically,
TF mode with dynamic skip limits the number of Ji(X ) to be
performed to n/2, which is similar to the example in Fig. 4.
However, if the number of remaining Ji(X ) is less than n/2
after discarding unnecessary comparisons, the comparison
operations for other strings are allowed to be executed.

In the case of atb in Fig. 5, Ji(A) is performed, where i
takes values from 2 to k + 1, which is a total of k . This is
owing to the reason that the number of Ji(A) after history fil-
tering is higher than n/2. However, Jk+1(A), which is omitted
in Fig. 4 can be performed instead of J1(A) because J1(A)
is removed by history filtering. In the case of gta+1, only
one Ji(C) remained. As aforementioned, the dynamic skip
allows performing a comparison operation of other strings
according to the number of remaining Ji(X ). Therefore, Ji(D)
at atb+1 can be performed by n− 1, which is more than n/2.
Some of Ji(D) cannot be performed if we fix the number
of comparisons to be performed to n/2, which is similar to
that shown in Fig. 4. For gta+2, unnecessary comparisons are
removed, and Ji(E) and Ji(F) remain as n/2. In this case,
the remaining comparison operations are performed without
additional omission. In summary, atb and atb+2 are expected
to improve the CR by performing comparisons that may affect
the CR instead of unnecessary comparisons. Further, atb+1
is expected to improve the CR by omitting less comparison
tasks of some target strings.

CF mode does not perform additional omission after fil-
tering to avoid dropping the CR. Instead, it checks whether
the remaining compression operations are performed in par-
allel to increase the throughput. In this mode, comparison
operations Ji(X ) for one string are processed in the same

149588 VOLUME 7, 2019



S. Choi et al.: Design of FPGA-Based LZ77 Compressor With Runtime Configurable Compression Ratio and Throughput

FIGURE 6. hFIFO and its entry.

cycle to simplify the control of the architecture. In case of gta
and gta+1, the number of remaining tasks is larger than the
number of comparators. Therefore, the remaining operations
created at gta are performed over atc and atc+1. Similarly,
the remaining operations created at gta+1 are performed at
atc+2 and atc+3. However, in case of gta+2, the number of
comparison operations remaining after filtering is equal to
the number of comparators. The comparison tasks generated
at gta+2 had to be performed in multiple cycles if the unnec-
essary comparisons were not omitted; however, these tasks
could be run in parallel on the same cycle atc+4 owing to the
dynamic skip. In summary, the application of dynamic skip is
expected to make the CF mode in Fig. 5 to be faster than CF
mode in Fig. 4, in which the number of omissions is fixed to
zero. The number of unnecessary comparisons may vary for
every cycle, and it is necessary to determine whether parallel
processing is possible for each cycle.

HB module either skips comparison operations or checks
whether they can be performed in parallel according to the
operating mode. This module also stores the information
related to the comparison operations for the pipeline control
of the situation, where the number of comparison operations
to be performed is larger than the number of comparators in
CF mode.

Figs. 6 and 7 are concept diagrams of the role and operation
of HB. HB comprises history FIFO (hFIFO) that is a FIFO
data structure, andDMaddress selector (DMAS) that controls
the inputs of SC and DM. Fig. 6 shows the hFIFO and the data
stored in it. This example assumes that two string searches are
performed in one cycle.

The number of read pointers (RPs) and write point-
ers (WPs) in the hFIFO is equal to the number of strings to
be checked in one cycle. HB stores the information related
to the comparison operation filtered in the HF at the position
pointed by the WP and reads the data at the point indicated
by the RP at every cycle and transfers it to the DM and the
SC. If there is zero available space in the hFIFO, it outputs
a ‘full’ signal, thereby stalling the operation of the pipeline
stages located before HB, and waits until the SC completes
the comparison operation.

The information stored in hFIFO is as follows. isValid indi-
cates whether the result of the comparison operation stored
in the current entry is to be used as the output of LZ77; it
is the same as the valid bit in Fig. 3. cIndex represents the

FIGURE 7. Example of address selection.

starting position of the target string. nHist is the number of
comparison operations remaining after filtering, and hIndex
indicates the starting position (history) of a string that had
appeared previously.

Fig. 7 shows an example of the operation of HB in each
operation mode. In this figure, we assume that the architec-
ture has four SCs, two string searches are performed in one
cycle, and up to four comparison operations are generated per
string. Each example presents a situation in which the entry
pointed by RP1 and RP2 is output. We refer the nHistory from
RP1 and RP2 as RP1(nH ) and RP2(nH ), respectively.

Fig. 7 (A) shows the process of omitting comparison oper-
ations in TF mode. In 7 (A), the DMAS of HB identifies
RP1(nH ) = 1 and RP2(nH ) = 4; therefore, the DMAS skips
the comparison operation of the last history ofRP2 and selects
one history from RP1 and three histories from RP2 as output.
RP1 and RP2 move to current position + 2.

Fig. 7 (B) is an example, in which RP1(nH ) = 4 and
RP2(nH ) = 4 in CF mode. The number of total comparison
operations is greater than that of the comparators. In this case,
the DMAS only selects histories of RP1 as output. RP1 and
RP2 move to current position + 1.

Fig. 7 (C) also shows an example of CF mode; however,
the number of total comparison operations is equal to that
of the comparators (RP1(nH ) = 2 and RP2(nH ) = 2). All
comparison operations can be processed in parallel; therefore,
the DMAS outputs four histories from RP1 and RP2. RP1 and
RP2 move to current position + 2.

VI. EXPERIMENTS AND RESULTS
We used Verilog HDL to evaluate the proposed architecture.
We implemented the architecture on Xilinx xcku-095 and
measured the CR, throughput, and hardware resource usage.

VOLUME 7, 2019 149589



S. Choi et al.: Design of FPGA-Based LZ77 Compressor With Runtime Configurable Compression Ratio and Throughput

FIGURE 8. Throughput according to operation mode.

We used chunk-based compression that is widely adopted
in systems using compression [28], [29]. Chunk-based
compression allows hardware accelerators to be imple-
mented with less memory than file-based compression [28].
We also used the Canterbury corpus benchmark suite for
evaluation [30].

The size of the hash memory and the DM and the number
of bits of filtering tag are from [24]. We organize the hash
memory with four ways and 4096 entries per way. By having
four ways, we can load up to four histories with one access
to the hash memory. This indicates that n (see Fig. 5) is set to
four in our experiment. The chunk size is set to 32 KB, which
is the same as the size of the zlib internal buffer. The DM has
the samememory size as the chunk.We use 7-bit filtering tag,
and the HB is set to store 32 entries.

A. THROUGHPUT OF EACH MODE
Throughput indicates the amount of data that can be com-
pressed per cycle. This architecture performs a new unit
operation per cycle and reads a certain amount of data per unit
operation. If no stall occurs from internal or external module,
this architecture can read up to two bytes per cycle.

Fig. 8 shows the throughput according to the operation
mode. The x-axis of the graph represents the benchmark files
and average, whereas the y-axis represents the throughput
of each item. On average, the proposed architecture yields
1.58 bytes/cycle in CF mode and 1.76 bytes/cycle in TF
mode. TF mode outperforms CF mode by 11.39%. The aver-
age throughput of both modes is slower than two bytes per
cycle because of the bank conflict that occurs when the DMU
updates the hash memory. If multiple update requests occur
on the same bank, they cannot be processed concurrently
owing to the lack of memory ports, and must be processed
over several cycles. This degrades the throughput of the CF
and TF modes.

The ptt5 benchmark shows higher throughput than two
bytes per cycle. This is because the lengths of strings that
are replaced with LD pair in ptt5 are more. As described in
the LZ77 overview, cIndex moves backward by the length of
the substituted string, i.e., it does not check for compress-
ibility for the replaced string. The proposed architecture also
does not check compressibility for the substituted strings,

and consequently reduces the cycle required to compress the
data. The average length of the strings replaced by the LD
pair in ptt5 was approximately 35, which is higher than the
other files.

Throughput of CF mode increases in accordance with the
number of times when comparison operations generated in
the unit operation are performed within a single cycle, which
is affected by the data pattern. As a result, CF mode shows
lower throughput than TF mode. In the worst case, the CF
mode provides a throughput of approximately 1 byte/cycle;
however, the average throughput is higher than that for the
benchmark file used in the experiment.

To verify that our proposed design is as meaningful as
an accelerator is, we compared the LZ77 throughput of our
architecture and that of the CPU. The execution time of
LZ77 equals the difference between the time consumed by the
deflate function and the time required by Huffman encoding.
We compressed the benchmark file with the fastest (zlib
level 1) option and measured the execution time of LZ77.
The experiment was conducted on Intel Xeon E5-2660 CPU
running at 2.6GHz. The version of zlib usedwas 1.2.11, and it
was compiledwithGCC4.8.5. The average zlib throughput in
our experiment was 37.39MB/s, which approximately equals
0.02 bytes/cycle in terms of throughput per cycle. Exper-
imental results show that the throughput of the proposed
accelerator is higher than that of the CPU.

B. COMPRESSION RATIO OF EACH MODE
We measured the LZ77 CR of the proposed architecture.
We also measured the LZ77 CR of zlib level 9 to assess the
difference between the CR of the proposed structure and the
best CR of the software library. We obtain the CR by dividing
the size of the original data by the size of the compressed
result. In other words, higher CR indicates smaller size of the
compressed result.

Table 1 is a summary of CR of zlib and the proposed
architecture. The left column lists the benchmark files and
average. The following columns represent the size of the
original file, the LZ77 CR at zlib level 9, the CR of TF
mode, the CR of CF mode, and increment of CR of CF mode
compared to TF mode.

The hash memory size of the architecture is lower than that
of zlib. As a result, the strings to be compared can be different
even in the comparison process for the same target string,
and the CR can be reduced [20], [24]. In addition, the CR
of chunk-based compression may be lower than that of file-
based compression because one chunk does not refer to the
dictionary of another chunk. CR of the proposed architecture
is lower for most benchmark files when compared to the
LZ77 CR of zlib level 9. The CR of TF mode is slightly lower
than the LZ77 CR of zlib level 3 (2.49), and the CR of CF
mode is equal to the CR of zlib level 4 (2.55).

However, files: grammar.lsp and xargs.1 have higher CR of
hardware than zlib, which is owing to the gain of representing
the dist of LD pair with fewer bits compared to zlib. The hash
memory used can store a total of 16384 histories.We assumed

149590 VOLUME 7, 2019



S. Choi et al.: Design of FPGA-Based LZ77 Compressor With Runtime Configurable Compression Ratio and Throughput

TABLE 1. Summary of LZ77 CR.

TABLE 2. Effect of dynamic skip.

that recent history with a distance of less than 16384 from the
target string is stored in the hash memory. Distance between
the target string and the history stored in the hash memory is
expressed using 14 bits. The maximum number that can be
represented by 14 bits is 16383; therefore, the current string
is not replaced by the LD pair if the distance between the
current string and history is 16384 or more. On the contrary,
zlib allows distance that can be expressed in 15 bits; however,
it actually stores the distance using an unsigned short, which
is a 16 bit data type. zlib and the proposed architecture
both use 8 bits to represent length. Therefore, the proposed
architecture uses less bits to represent the LD pair compared
to zlib.

In most files, loss of CR owing to smaller hash mem-
ory hides the gain from shortened LD pair. However, files:
grammar.lsp and xargs.1 show higher CR. If the LD pair is
expressed by the same bit-size as in zlib, the CR of the two
files in CF mode is reduced to 2.14 and 1.71, respectively,
which is lower than that in case of zlib.

Average CR of TF mode is 2.48, whereas that of CF
mode is 2.55, which is 0.07 higher than TF mode. The aver-
age LZ77 CR of the benchmark in zlib shows a variation
of 0.53 from zlib level 1 to level 9, and 0.07 is 13.21% of
the variation. TFmode omits comparison operations that may
affect the CR, thereby showing a lower CR than CF mode.
In ptt5, the number of consecutive appearances of the same
character is high; therefore, the length of the string replaced
with the LD pair is more. Consequently, its CR is higher than
other files.

C. EFFECT OF DYNAMIC SKIP
To verify the effect of dynamic skip, we measured the
throughput and CR in each mode without dynamic skip.
Table 2 summarizes the effect of dynamic skip. The through-
put in TF mode without dynamic skip is 1.76 bytes/cycle,

which is the same as the case when dynamic skip is applied.
There is no throughput difference because TF mode per-
forms the same number of comparison operations as the
number of comparators even if dynamic skip is not applied.
However, when dynamic skip is not applied, the CR
decreases from 2.48 to 2.42. This is because the filtering in
dynamic skip increases the probability of performing com-
parisons that affect the CR instead of performing unnecessary
comparisons.

In CF mode, dynamic skip increased the throughput from
1.24 bytes/cycle to 1.58 bytes/cycle because it causes the
comparison operations generated in some unit operations to
be processed in a single cycle rather than multiple cycles.
Without dynamic skip, the proposed architecture ran approx-
imately at 1 byte/cycle owing to the pipeline stall; however,
in practice, higher bandwidth was measured owing to the gain
in replacing long strings. The CR when the dynamic skip was
not used was 2.56, which showed an increase of 0.01.

History filtering only omits the comparison process that
does not affect the CR. The CR changes in the architecture
that uses dynamic skip because histories stored in the hash
memory may change owing to the throughput difference and
not because of history filtering. If dynamic skip changes
throughput of the accelerator, the amount of data read by the
accelerator varies until a certain point in time. When a long
string is substituted, and if the throughput is high, the history
of the data portion to be replaced may already have been
updated in the hash memory. On the contrary, if the through-
put is low, the history of the data portion to be replaced may
not be updated in the hash memory. As a result, even if a
string starting from the same cIndex is searched, the history
from the dictionary may vary depending on whether dynamic
skip is applied or not, which may affect the CR. In summary,
the architecture using the dynamic skip when compared to
that without dynamic skip improves performance in the CF
mode, and CR in the TF mode.

VOLUME 7, 2019 149591



S. Choi et al.: Design of FPGA-Based LZ77 Compressor With Runtime Configurable Compression Ratio and Throughput

D. HARDWARE RESOURCE USAGE
Table 3 summarizes the implementation result of the pro-
posed architecture with Xilinx Vivado 2016.4. Row total
represents the total logic elements (LE) [31] and memory
units (MU) [32] used in the architecture. Row HF indicates
the logic element andmemory usage used for history filtering,
and row HB represents the logic element and memory usage
used for the HB. Each row also shows the proportion of the
two resources in the target FPGA.

TABLE 3. Hardware resource usage of proposed architecture.

The proposed architecture uses 11379 logic elements and
60 memory units. In terms of the proportion in the target
FPGA, the accelerator consumes approximately 2.12% of the
total logic element (537600) and approximately 1.79% of the
total memory unit (3360). HF consumes 460 logic elements
and 8 memory units. The additional memory to store the
filtering tag adopts memory banking, which induces more
memory usage than the number mentioned in [24]. HB uses
1426 logic elements and 4 memory units.

E. COMPARISON WITH PREVIOUS STUDIES
To compare our accelerator with other compression accel-
erators, we implemented a deflate accelerator comprising
16 proposed LZ77 accelerators, 4 Huffman encoders, and
4 bit-packing modules in the target FPGA. Our accelerator
is designed to be compatible with the zlib software library,
and the output of the deflate accelerator can be decom-
pressed with the library. This accelerator is synthesized with-
out timing violation at 125 MHz and achieves throughput
of 3.16GB/s and 3.52GB/s in CF and TFmodes, respectively.

Table 4 compares the throughput and CR of our accelerator
with previous researches. CR (D) and CR (S) denote the CR
to which the dynamic and static Huffman encoding is applied,
respectively.

TABLE 4. Comparison of throughput and compression ratio with previous
studies

Compared to the accelerator proposed in [21], our archi-
tecture provides higher throughput and CR. Research [21]
focuses on reducing design time and implementation com-
plexity using high level synthesis (HLS), sacrificing CR and
prioritizing the performance. Although this architecture pro-
vides higher throughput than the CPU, the values of CR and
throughput are not adjustable.

Fowers et al. proposed an accelerator that provides
scalability for bandwidth [20]. The proposed accelerator
achieves maximum bandwidth of 5.60 GB/s and yields CR
of 2.70 using static Huffman encoding. This CR is lower than
2.73, which is the CF mode result of our architecture, which
is estimated to the effect of limiting the maximum length of
the string replacement.

Lee et al. proposed a hardware architecture for accelerat-
ing the LZ4 compression algorithm [17]. They achieved a
throughput of 0.5 GB/s and a CR of 2.69 using their own
test files. Lee et al. stated that their proposed architecture can
improve the CR by increasing the amount of input data per
cycle; however, this leads to a reduction in the scalability of
the hardware.

The performance of the accelerator proposed in [20] is
superior to that of ours. However, there is no trade-off
between CR and throughput in it. Moreover, architectures
proposed in [17] and [20] require a hardware reimplementing
process to adjust the performance and CR. Reimplementation
and hardware changes may cause system suspension. This
makes it difficult to reflect the changes of the system context
occurring during runtime and may degrade the performance
of the system.

On the other hand, our architecture can adjust the CR and
throughput by changing the operation mode at runtime. The
accelerator receives a mode-selection signal from the external
control device and operates in the mode that corresponds to
this signal. This architecture receives the compression start
signal and the mode-selection signal at the same time; thus,
there is no timing overhead for mode switching. It is expected
that the conventional trade-off-based adaptive compression
scheme can be adopted even if a hardware compression accel-
erator is used, thereby improving system performance.

VII. CONCLUSION
In this work, we propose a LZ77 compression accelerator that
can adjust the CR and throughput without changing hardware.
This architecture operates in CF mode or TF mode by adjust-
ing the degree of parallelism of comparison operations.

We also propose a dynamic skip scheme, which dynami-
cally adjusts the degree of parallelism of comparison oper-
ations. Dynamic skip omits unnecessary comparisons in the
first step. The operation of the second step depends on the
compression mode of the accelerator. When operating in
TF mode, it is determined whether additional omission is
required for the comparison operation. In CF mode, it is
decided whether to operate the remaining comparison oper-
ation in single or multiple cycles. The proposed architecture
using dynamic skip achieves better throughput in CF mode
and higher CR in TF mode compared to the architecture
without dynamic skip.

Experimental results using FPGA implementation show
that TF mode operates at 1.76 bytes/cycle that is 11.39%
faster than CF mode. CR of TF mode is 0.07 lower than CF
mode, and is about 13.21% of the maximum variation range
provided by software implementation of LZ77.

149592 VOLUME 7, 2019



S. Choi et al.: Design of FPGA-Based LZ77 Compressor With Runtime Configurable Compression Ratio and Throughput

The deflate accelerator using the proposed architecture
yields throughput of 3.16 GB/s and CR of 3.42 CR in CF
mode, and throughput of 3.52 GB/s and CR of 3.37 CR in TF
mode.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for
their valuable feedback and comments.

REFERENCES
[1] J. Gantz and D. Reinsel, ‘‘The digital universe in 2020: Big data, bigger

digital shadows, and biggest growth in the far east,’’ Int. Data Corp.,
Framingham, MA, USA, Tech. Rep., Dec. 2012, pp. 1–16.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
‘‘Internet of Things: A survey on enabling technologies, protocols, and
applications,’’ IEEECommun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376,
4th Quart., 2015.

[3] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning trained quantization and Huffman coding,’’
in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–14.

[4] A. Zuck, S. Toledo, D. Sotnikov, and D. Harnik, ‘‘Compression and
SSDs: Where and How?’’ in Proc. INFLOW, Bloomfield, CO, USA, 2014,
pp. 1–10.

[5] M. Poess and D. Potapov, ‘‘Data compression in Oracle,’’ in Proc. VLDB,
Berlin, Germany, 2013, pp. 937–947.

[6] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, ‘‘Base-delta-immediate compression: Practical data
compression for on-chip caches,’’ in Proc. PACT, Minneapolis, MN, USA,
2012, pp. 377–388.

[7] B. Nicolae, ‘‘High throughput data-compression for cloud storage,’’ in
Proc. 3rd Int. Conf. Data Manage. Grid P2P Syst., Bilbao, Spain, 2010,
pp. 1–12.

[8] Zlib. Accessed: Jul. 12, 2019. [Online]. Available: http://zlib.net
[9] J. Ziv and A. Lempel, ‘‘A universal algorithm for sequential data compres-

sion,’’ IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337–343, May 1977.
[10] Brotli Compression Format. Accessed: Jul. 12, 2019. [Online]. Available:

https://github.com/google/brotli
[11] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, ‘‘Overview of the

high efficiency video coding (HEVC) standard,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[12] B. Mao, S. Wu, H. Jiang, Y. Yang, and Z. Xi, ‘‘EDC: Improving the
performance and space efficiency of flash-based storage systems with
elastic data compression,’’ IEEE Trans. Parallel Distrib. Syst., vol. 29,
no. 6, pp. 1261–1274, Jun. 2018.

[13] E. Zohar and Y. Cassuto, ‘‘Automatic and dynamic configuration of data
compression for Web servers,’’ in Proc. LISA, Seattle, WA, USA, 2014,
pp. 106–117.

[14] C. Krintz and S. Sucu, ‘‘Adaptive on-the-fly compression,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 17, no. 1, pp. 15–24, Jan. 2006.

[15] E. Jeannot, B. Knutsson, and M. Bjorkman, ‘‘Adaptive online data com-
pression,’’ in Proc. HPDC, Edinburgh, U.K., Jul. 2002, pp. 371–380.

[16] N. Jacob and C. Brodley, ‘‘Offloading IDS computation to the GPU,’’ in
Proc. ACSAC, Miami Beach, FL, USA, Dec. 2006, pp. 371–380.

[17] S. M. Lee, J. H. Jang, J. H. Oh, J. K. Kim, and S. E. Lee, ‘‘Design
of hardware accelerator for Lempel-Ziv 4 (LZ4) compression,’’ IEICE
Electron. Express, vol. 15, no. 11, pp. 1–6, Jun. 2017.

[18] A. Ebrahimi and M. Zandsalimy, ‘‘Evaluation of FPGA hardware as a new
approach for accelerating the numerical solution of CFD problems,’’ IEEE
Access, vol. 5, pp. 9717–9727, 2017.

[19] A. Shawahna, S. M. Sait, and A. El-Maleh, ‘‘FPGA-based accelerators of
deep learning networks for learning and classification: A review,’’ IEEE
Access, vol. 7, pp. 7823–7859, 2019.

[20] J. Fowers, J.-Y. Kim, D. Burger, and S. Hauck, ‘‘A scalable high-bandwidth
architecture for lossless compression on FPGAs,’’ in Proc. FCCM,
Vancouver, BC, Canada, May 2015, pp. 52–59.

[21] M. S. Abdelfattah, A. Hagiescu, and D. Singh, ‘‘Gzip on a chip: High
performance lossless data compression on FPGAs using OpenCL,’’ in
Proc. IWOCL, Bristol, U.K., 2014, Art. no. 4.

[22] A. Martin, D. Jamsek, and K. Agarwal, ‘‘FPGA-based application accel-
eration: Case study with GZIP compression/decompression streaming
engine,’’ presented at the Special Section 7C ICCAD, 2013.

[23] R. Kobayashi and K. Kise, ‘‘A high performance FPGA-based sorting
accelerator with a data compression mechanism,’’ IEICE Trans. Inf. Syst.,
vol. E100.D, no. 5, pp. 1003–1015, May 2017.

[24] S. Choi, Y. Kim, and Y. H. Song, ‘‘False history filtering for reducing
hardware overhead of FPGA-based LZ77 compressor,’’ J. Syst. Archit.,
vol. 88, pp. 110–119, Aug. 2018.

[25] DEFLATE Compressed Data Format Specification Version 1.3. Accessed:
Jul. 12, 2019. [Online]. Available: https://tools.ietf.org/html/rfc1951

[26] Zlib Applications. Accessed: Jul. 12, 2019. [Online]. Available:
http://zlib.net/apps.html

[27] D. A. Huffman, ‘‘A method for the construction of minimum-redundancy
codes,’’ Proc. Inst. Radio Eng., vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

[28] S. Lee, J. Park, K. Fleming, Arvind, and J. Kim, ‘‘Improving
performance and lifetime of solid-state drives using hardware-
accelerated compression,’’ IEEE Trans. Consum. Electron., vol. 57, no. 4,
pp. 1732–1739, Nov. 2011.

[29] X. Zhang, J. Li, H. Wang, D. Xiong, J. Qu, H. Shin, J. P. Kim,
and T. Zhang, ‘‘Realizing transparent OS/Apps compression in mobile
devices at zero latency overhead,’’ IEEE Trans. Comput., vol. 66, no. 7,
pp. 1188–1199, Jul. 2017.

[30] The Canterbury Corpus. Accessed: Jul. 12, 2019. [Online]. Available:
http://corpus.canterbury.ac.nz/descriptions/#cantrbry

[31] 7 Series FPGAs Configurable Logic Block. Accessed: Jul. 12, 2019.
[Online]. Available: https://www.xilinx.com/support/documentation/
user_guides/ug474_7Series_CLB.pdf

[32] Block Memory Generator V8.3—LogiCORE IP Product Guide.
Accessed: Jul. 12, 2019. [Online]. Available: https://www.xilinx.com/
support/documentation/ip_documentation/blk_mem_gen/v8_3/pg058-
blk-mem-gen.pdf

SEUNGDO CHOI received the bachelor’s and
master’s degrees in electronics and computer engi-
neering from Hanyang University, Seoul, South
Korea, in 2012 and 2014, respectively, where he is
currently pursuing the Ph.D. degree in electronics
and computer engineering.

His research interests include high-performance
computing, computer architecture, and low-power
systems.

YOUNGIL KIM received the bachelor’s degree in
media communication engineering from Hanyang
University, Seoul, South Korea, in 2012, where he
is currently pursuing the Ph.D. degree in electron-
ics and computer engineering.

His research interests include high-performance
computing, lossless data compression, and 3D
integrated circuit.

DAEYONG LEE received the B.S. degree from the
School of Electronic Engineering, Soongsil Uni-
versity, Seoul, South Korea, in 2014, and the mas-
ter’s degree with the Department of Electronics
and Computer Engineering from Hanyang Univer-
sity, Seoul, in 2017, where he is currently pursuing
the Ph.D. degree with the Department of Electron-
ical Engineering.

His research interests include embedded sys-
tems and NAND flash memories.

VOLUME 7, 2019 149593



S. Choi et al.: Design of FPGA-Based LZ77 Compressor With Runtime Configurable Compression Ratio and Throughput

SANGJIN LEE received the bachelor’s degree
in electronics and computer engineering from
Hanyang University, South Korea, in 2014, where
he is currently pursuing the Ph.D. degree with the
Department of Electronic and Computer Engineer-
ing.

His research interests include storage systems
based on non-volatile memory, system architec-
ture, and host interface.

KIBIN PARK received the bachelor’s degree from
the Department of Computer Science and Engi-
neering from Hanyang University, in 2015, where
he is currently pursuing the Ph.D. degree with the
Department of Electronics and Computer Engi-
neering.

His research interests include non-volatile
memories, embedded systems, and hardware
acceleration.

YUN HEUB SONG received the M.S. degree in
electronic engineering from Hanyang University,
Seoul, South Korea, in 1992, and the Ph.D. degree
in intelligent mechanical engineering fromTohoku
University, Sendai, Japan, in 1999.

He is currently a Professor of Electronic
Engineering with Hanyang University. He has
researched semiconductor devices and circuit
design for over 30 years in the Semiconductor
Research andDevelopment Center, Samsung Elec-

tronics Company, and Hanyang University. When he was working with
Samsung, he was responsible for the device and product development of
flash memory as the Vice-President, and developed 256 Mb and 512 Mb
NORflashmemory, from 2000 to 2003. After moving to Hanyang University
in 2008, where he served as the Vice Dean of the College of Engineering,
involving in extensive international collaboration research and planning on
industrial projects, from 2011 to 2013.

His research interests include device reliability modeling, device charac-
terization, novel device structures and architectures for memory and logic
applications, circuit design and algorithms for low-power, high-speed pro-
cessing, and sensor systems based on semiconductor technology.

YONG HO SONG received the bachelor’s and
master’s degrees in computer engineering from
Seoul National University, Seoul, South Korea,
and the Ph.D. degree in computer engineering
from the University of Southern California, Los
Angeles, CA, USA, in 1989, 1991, and 2002,
respectively.

He is currently a Professor with the Department
of Electronic Engineering, Hanyang University,
Seoul, and a Senior Vice President of Samsung

Electronics Company Ltd. His current research interests include system
architecture and software systems of mobile embedded systems that further
include SoC, NoC,multimedia onmulticore parallel architecture, andNAND
flash-based storage systems.

Prof. Song has served as a Program Committee Member of several presti-
gious conferences, including the IEEE International Parallel and Distributed
Processing Symposium, the IEEE International Conference on Parallel and
Distributed Systems, and the IEEE International Conference on Computing,
Communication, and Networks.

149594 VOLUME 7, 2019


	INTRODUCTION
	BACKGROUND
	LZ77 OVERVIEW
	STRING SEARCH USING HASH TABLE
	REDUCING COMPARISON PROCESS WITH FALSE HISTORY FILTERING

	RELATED WORK
	ARCHITECTURE OVERVIEW
	DYNAMICALLY ADJUSTING THE DEGREE OF PARALLELISM
	FIRST STEP: LIMIT THE NUMBER OF COMPARISONS
	SECOND STEP: DYNAMICALLY DETERMINE THE NUMBER OF COMPARISONS TO BE SKIPPED FOR HIGHER COMPRESSION RATIO AND THROUGHPUT

	EXPERIMENTS AND RESULTS
	THROUGHPUT OF EACH MODE
	COMPRESSION RATIO OF EACH MODE
	EFFECT OF DYNAMIC SKIP
	HARDWARE RESOURCE USAGE
	COMPARISON WITH PREVIOUS STUDIES

	CONCLUSION
	REFERENCES
	Biographies
	SEUNGDO CHOI
	YOUNGIL KIM
	DAEYONG LEE
	SANGJIN LEE
	KIBIN PARK
	YUN HEUB SONG
	YONG HO SONG


