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Abstract: We shall prove the existence of the Wiener integral and the analytic Wiener and Feynman
integral and we obtain those relationships and later, we prove the change of scale formula for the
Wiener integral about the first variation of a function defined on the product abstract Wiener space.
Later, we obtain those relationships in the Fresnel class as it’s corollaries.
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1. Introduction

It has been known that Wiener measure and Wiener measurability behave badly under
the change of scale transformation [1] and under translation [2]. However, Cameron, R.H.
and Storvick, D.A. [3] proved that an analytic Feynman integral was expressed as a limit of
Wiener integrals for a rather larger class of functionals on the Wiener space. They found a
nice change of scale formula for Wiener integrals on the Wiener space [4]. Yoo, I. and Skoug,
D. and Yoon, G. J. extended those results to an abstract Wiener space and Yeh–Wiener space
in [5,6].

In [2,7,8], Cameron, R.H. and Martin, W.T. investigated the behavior of Wiener inte-
grals on transformations and translations in 1945 and in 1947. In [1], they developed the
behavior of measures and measurability under the change of scale on the Wiener space
in 1947. In [9], Cameron, R.H. and Storvick, D.A. introduced a Banach algebra S of func-
tionals on C0[0, T]. In [10–12], Kim, Y.S. proved the change of scale formula for the Wiener
integral on the abstract Wiener space about the cylinder functions and the unbounded
cylinder function and proved the relationship between the analytic Feynman integral and
the Wiener integral and the first variation. In [13], Kim, Ahn, Chang, and Yoo prove the
change of scale formula for the Wiener integral on the product abstract Wiener space in the
class F (Bν).

In this paper, we prove the existence of the analytic Feynman integral and prove
the change of scale formula about the first variation for functions in F (Bν) of the form

: G(~x) =
∫

H exp{i
ν

∑
j=1

(h, xj)
∼}dµ(h), µ ∈ M(H) on the product abstract Wiener space.

We show that the first variation of the analytic Wiener integral and the analytic Feynman
integral of G(~x) can be perfectly expressed as the limit of the sequence of Wiener integrals
of the first variation. Finally, we prove that for ν = 1, a change of scale formula for
the Wiener integral about the first variation of F(x) in the Fresnel class F (B) holds as
its corollaries.

2. Definitions and Preliminaries

Let H be a real separable infinite dimensional Hilbert space with inner product 〈·, ·〉
and norm | · | =

√
〈·, ·〉. Let || · ||0 be a measurable norm on H with respect to the Gauss

measure µ. Let B denote the completion of H with respect to || · ||0. Let i denote the
natural injection from H into B. The adjoint operator i∗ of i is one-to-one and maps B∗

continuously onto a dense subset of H∗, where H∗ and B∗ are topological duals of H and B,
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respectively. By identifying H with H∗ and B∗ with i∗B∗, we have a triplet (B∗, H, B) such
that B∗ ⊂ H∗ ≡ H ⊂ B and 〈h, x〉 = (h, x) for all h in B∗ and x in H, where (·, ·) denotes
the natural dual pairing between B∗ and B. By a well-known result of Gross [14], µ · i−1

has a unique countably additive extension m to the Borel σ-algebra B(B) on B. The triplet
(H, B, m) is called an abstract Wiener space and m is called a Wiener measure. We denote
the Wiener integral of a functional F by

∫
B F(x)dm(x). For more details, see [15–17]. Let

{ej}∞
j=1 denote a complete orthonormal system in H such that ejs are in B∗. For each h ∈ H

and x ∈ B, we define a stochastic inner product (·, ·)∼ between H and B as follows:

(h, x)∼ =

 limn→∞
n
∑

j=1
〈h, ej〉(ej, x) , if the limit exists,

0 otherwise.
(1)

It is known in [16] that for every h ∈ H, (h, x)∼ exists for m−a.e.x ∈ B in and it has a
Gaussian distribution with mean zero and variance |h|2. Furthermore, it is easy to show that
(h, x)∼ = 〈h, x〉 for m−a.e. x in B if h ∈ B∗, (h, x)∼ is essentially independent of the choice
of the complete orthonormal system used in its definition, and finally that if {h1, · · · , hk} is
an orthonormal set of elements in H, then (h1, x)∼, · · · , (hk, x)∼ are independent Gaussian
functionals with mean zero and variance one. Note that if both h and x are in H, then
(h, x)∼ = 〈h, x〉.

Let ν be a positive integer and let mν denote ν-dimensional abstract Wiener measure
and let Bν = B × B × · · · × B(ν times). We denote the Wiener integral of a function F
defined on Bν by

∫
Bν F(~x)dmν(~x). A subset E of Bν is said to be scale-invariant measurable

if ρE is Wiener measurable for each ρ > 0 and a scale-invariant measurable set N is scale-
invariant null provided mν(ρN) = 0 for each ρ > 0. A property that holds except on a
scale-invariant null set is said to hold scale-invariant almost everywhere (s.a.e.). See [18]
for more about the scale-invariant measurability in abstract Wiener space.

Throughout this paper, let Rn denote the n-dimensional Euclidean space and let
C, C+, and C∼+ denote the complex numbers, the complex numbers with positive real
part, and the nonzero complex numbers with nonnegative real part, respectively. Let
Γ0 = {(z1, z2, · · · , zν) ∈ Cν : zj 6= 0, Re(zj) ≥ 0, 1 ≤ j ≤ ν} and let Γ = {(z1, z2, · · · , zν) ∈
Cν : zj 6= 0, Re(zj) > 0, 1 ≤ j ≤ ν}.

Definition 1. Let G be a complex-valued measurable function on Bν such that the integral

J(G;~λ) =
∫

Bν
G(λ

− 1
2

1 x1, λ
− 1

2
2 x2, · · · , λ

− 1
2

ν xν) dmν(~x) (2)

exists for all ~λ, with ~λ = (λ1, λ2, · · · , λν) ∈ Rν, λj > 0, 1 ≤ j ≤ ν. If there exists a function
J∗(G;~z) analytic on Ω such that J∗(G;~λ) = J(G;~λ) for all ~λ, with ~λ = (λ1, λ2, · · · , λν) ∈
Rν, λj > 0, 1 ≤ j ≤ ν, then we define J∗(G;~z) to be the analytic Wiener integral of G over Bν with
parameter~z, and for each~z ∈ Ω, we write∫ anw~z

Bν
G(~x) dmν(~x) = J∗(G;~z). (3)

Let~q = (q1, q2, · · · , qν) ∈ Rν, where qj, 1 ≤ j ≤ ν, is a nonzero real number and let G be a
function on Bν whose analytic Wiener integral exists for each~z in Γ. If the following limit exists,
then we call it the analytic Feynman integral of G over Bν with parameter~q, and we write

∫ an f~q

Bν
G(~x) dmν(~x) = lim

~z→−i~q

∫ anw~z

Bν
G(~x) dmν(~x), (4)

where~z approaches −i~q through Γ and i2 = −1.
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LetM(H) be the space of complex-valued countably additive measures defined on
B(H) , the Borel class of H. A complex-valued countably additive measure µ necessarily
has finite total variation ||µ||. Under the norm || · || and with convolution as multiplication,
M(H) is a commutative Banach algebra with identity.

Now, we will introduce F (Bν) in [13].

Definition 2. The class F (Bν) is defined as the class of functions G : Bν → C defined on Bν of
the form

G(~x) =
∫

H
exp

{
i

ν

∑
j=1

(h, xj)
∼
}

dµ(h) , (5)

where ~x = (x1, x2, · · · , xν) ∈ Bν, µ ∈ M(H).

Remark 1. For ν = 1, F (B) is a Fresnel class of functions F(x) =
∫

H exp
{

i (h, x)∼
}

dµ(h),

which is a stochastic Fourier transform of a measure µ ∈ M(H).

In [19], R.H. Cameron introduced the first variation theory of an indefinite Wiener
integral on the Wiener space. We define the first variation on F (Bν).

Definition 3. Let G be a function on F (Bν). Then, for ~u ∈ Bν, the function defined by

δG(~x|~u) = ∂

∂h
G(~x + h~u)|h=0 (6)

is called the first variation of G in the direction ~u (if it exists).

The next theorem, which is quoted from [14], is necessary for proving theorems in
F (B�) :

Theorem 1. Let U be an open subset of Ck, where CK = ×k
j=1C is the product of k-copies of

the complex plane C. Assume that f : U → C is continuous and analytic in each variable
separately. That is, for each j, 1 ≤ j ≤ k, and for each point (z1, z2, · · · , zj−1, zj+1, · · · , zk) ∈
Ck−1 such that Uj = {zj ∈ C : (z1, z2, · · · , zj, · · · , zk) ∈ U} is non-empty, the function h(zj) =
f (z1, z2, · · · , zj, · · · , zk) is analytic in U. Then h is analytic as a function of k complex variables
in U. If U is connected and contains the set U+ = {(z1, · · · , zk) ∈ Ck : Re(zj) > 0, 1 ≤ j ≤ k},
then h is uniquely determined by its restriction to U+.

In the next section, we will use the following well-known integration formula:

∫
R

exp
{
− cu2 + idu

}
du =

√
π

c
exp

{
− d2

4c

}
, (7)

where c is a complex number with Re(c) > 0, d is a real number, and i2 = −1.

3. Main Results

Let G ∈ F (Bν) be of the form (5). Let ~u = (u1, u2, · · · , uν) with uj ∈ H and |uj| < ∞,
1 ≤ j ≤ ν. Assume that

∫
H |h| d|µ|(h) < ∞ .

Lemma 1.

δG(~x|~u) =
∫

H

[
i

ν

∑
j=1

(h, uj)
∼
]

exp
{

i
ν

∑
j=1

(h, xj)
∼
}

dµ(h). (8)
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Proof. By Definition 3 of the first variation,

δG(~x|~u)
= ∂

∂l G(~x + l~u )|l=0

= ∂
∂l

∫
H exp

{
i

ν

∑
j=1

(h, xj + l uj)
∼
}

dµ(h) |l=0

=
∫

H
∂
∂l exp

{
i

ν

∑
j=1

(h, xj + l uj)
∼
}

dµ(h) |l=0

=
∫

H

[
i

ν

∑
j=1

(h, uj)
∼
]

exp
{

i
ν

∑
j=1

(h, xj)
∼
}

dµ(h).

(9)

For uj ∈ H, (h, uj)
∼ = 〈h, uj〉 and |〈h, uj〉| < |h| · |uj| for 1 ≤ j ≤ ν. Therefore,

| δG(~x|~u) |

=

∣∣∣∣ ∫H

[
i

ν

∑
j=1

(h, uj)
∼
]

exp{i
ν

∑
j=1

(h, xj)
∼
}

dµ(h)
∣∣∣∣

≤
ν

∑
j=1

∫
H

ν

∑
j=1

∣∣ (h, uj)
∼ ∣∣d|µ|(h)

≤
(

ν

∑
j=1
|uj|
) ∫

H |h| d|µ|(h) < ∞.

(10)

And so δG(~x|~u) exists.

We can deduce the following result in F (B) on the abstract Wiener space (H, B, m) :

Corollary 1. For G ∈ F (B) and for s.a.e. u ∈ B,

δG(x|u) =
∫

H

[
i (h, u)∼

]
exp

{
i (h, x)∼

}
dµ(h) (11)

Now, we have the analytic Wiener integral and the analytic Feynman integral for the
first variation of functions in F (Bν).

Theorem 2. (1). For every~z = (z1, z2, · · · , zν) ∈ Ω0,

∫ anw~z

Bν
δG(~x |~u) dmν(~x) =

∫
H

[
i

ν

∑
j=1

(h, uj)
∼
]

exp
{
− |h|2

ν

∑
j=1

1
2zj

}
dµ(h),

where Ω0 = {(z1, z2, · · · , zν) ∈ Cν : zj 6= 0 , Re(zj) ≥ 0 , 1 ≤ j ≤ ν}.
(2). ∫ an f~q

Bν
δG(~x |~u)dmν(~x) =

∫
H

[
i

ν

∑
j=1

(h, uj)
∼
]

exp
{
− |h|2

ν

∑
j=1

i
2qj

}
dµ(h), (12)

{zj,k}k → −i qj through Ω for each j = 1, 2, · · · , ν.

Proof. For~λ = (λ1, λ1, · · · , λν) ∈ Rν with λj > 0 , 1 ≤ j ≤ ν,
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∫ anw~λ
Bν δG(~x |~u) dmν(~x)

=
∫

Bν δG(λ1
− 1

2 x1 + y1, · · · , λν
− 1

2 xν|~u) dmν(~x)

=
∫

Bν

[∫
H

[
i

ν

∑
j=1

(h, uj)
∼
]

exp
{

i
ν

∑
j=1

(h, λj
− 1

2 xj)
∼
}

dµ(h)
]

dmν(~x)

=
∫

H

[
i

ν

∑
j=1

(h, uj)
∼
] [ ∫

Bν exp
{

i
ν

∑
j=1

(h, λj
− 1

2 xj)
∼
}

dmν(~x)
]

dµ(h)

=
∫

H

[
i

ν

∑
j=1

(h, uj)
∼
]

exp
{
− |h|2

ν

∑
j=1

1
2λj

}
dµ(h).

(13)

By analytic continuation in~z = (z1, z2, · · · , zν) ∈ Ω0 to Ω = {(z1, z2, · · · , zν) ∈ Cν :
zj 6= 0, Re(zj) > 0, 1 ≤ j ≤ ν}, we obtain (12).

Now let {zj,k}k be the sequence in Ω, with {zj,k}k → −i qj whenever k→ ∞ for each
j = 1, 2, · · · , ν. Then ∫ an f~q

Bν δG(~x |~u) dmν(~x)
= limk→∞

∫ anw~zk
Bν δG(~x |~u) dmν(~x)

= limk→∞
∫

H

[
i

ν

∑
j=1

(h, uj)
∼
]

exp
{
− |h|2

ν

∑
j=1

1
2zj,k

}
dµ(h)

=
∫

H

[
i

ν

∑
j=1

(h, uj)
∼
]

exp
{
− |h|2

ν

∑
j=1

i
2qj

}
dµ(h),

(14)

whenever {zj,k}k → −i qj through Ω for each j = 1, 2, · · · , ν.

We can deduce the following result in F (B) on the abstract Wiener space (H, B, m) :

Corollary 2. (1). For G ∈ F (B) and for z ∈ C+ and for s.a.e. u ∈ B,∫ anwz

B
δG(x|u)dm(x) =

∫
H

[
i (h, u)∼

]
exp

{
− 1

2z
|h|2

}
dµ(h), (15)

where C+ = {z ∈ C : Re(z) > 0}.
(2). ∫ an fq

B
δG(x|u)dm(x) =

∫
H

[
i (h, u)∼

]
exp

{
− i

2q
|h|2

}
dµ(h) (16)

To expand the main result, let {ej}, j = 1, 2, · · · , n, be an orthonormal set in H and let
h ∈ H.

We need the following Lemma in [5] to prove properties in the next set of results.

Lemma 2 ([5]). Let z ∈ C with Re(z) > 0. Then,

∫
B exp

{
1−z

2

n
∑

j=1
(ej, x)2 + i(h, x)∼

}
dm(x)

= z−
n
2 exp

{
z−1
2z

n
∑

j=1
[〈ej, h〉]2 − 1

2 |h|2
}

.
(17)

Theorem 3. For every~z ∈ Ω,

exp
{ ν

∑
j=1

[
(1− zj)

2

n

∑
k=1

(ek, xj)
2
]}

δG(~x |~u)
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is a Wiener integrable function of ~x ∈ Bν and

∫
Bν exp

{
ν

∑
j=1

[
(1−zj)

2

n
∑

k=1
(ek, xj)

2
]}

δG(~x|~u)dmν(~x)

= ∏ν
j=1(zj)

− n
2
∫

H

[
i

ν

∑
j=1

(h, uj)
∼
]

exp
{

ν

∑
j=1

[
zj−1
2zj

n
∑

k=1
|〈ek, h〉|2

]
− ν

2 |h|2
}

dµ(h).
(18)

Proof. By (17),

∫
Bν exp

{
ν

∑
j=1

[
(1−zj)

2

n
∑

k=1
(ek, xj)

2
]}

δG(~x|~u)dmν(~x)

=
∫

H

[ ∫
Bν

[
i

ν

∑
j=1

(h, uj)
∼
]

exp
{

ν

∑
j=1

[
(1−zj)

2

n
∑

k=1
(ek, xj)

2 + i(h, xj)
∼]

}
dmν(~x)

]
dµ(h)

= ∏ν
j=1(zj)

− n
2
∫

H

[
i ∑ν

j=1(h, uj)
∼
]

exp
{

ν

∑
j=1

[
zj−1
2zj

n
∑

k=1
|〈ek, h〉|2

]
− ν

2 |h|2
}

dµ(h).

(19)

The last formula in (19) has a finite value for~z ∈ Ω.

Corollary 3. For G ∈ F (B) and for s.a.e. u ∈ B,

exp{1− z
2

n

∑
j=1

[(ej, x)∼]2}δG(x|u)

is a Wiener integrable function of x ∈ B, and

∫
B exp

{
1−z

2

n
∑

j=1
[(ej, x)∼]2

}
δG(x|u)dm(x)

= z−
n
2
∫

H

[
i(h, u)∼

]
exp

{[
z−1
2z

n
∑

k=1
|〈ek, h〉|2

]
− 1

2 |h|2
}

dµ(h).
(20)

Now, we prove that the analytic Wiener integral of the first variation in F (Bν) can be
perfectly expressed as the limit of Wiener integrals on (H, Bν, m).

Theorem 4. For every~z ∈ Ω,∫ anw~z
Bν δG(~x|~u)dmν(~x)

= limn→∞

(
∏ν

j=1 zj

) n
2 ∫

Bν exp
{

ν

∑
j=1

(1−zj)
2

n
∑

k=1
(ek, xj)

2
}

δG(~x|~u)dmν(~x).
(21)

Proof. By the bounded convergence theorem and Parseval’s relation, we have

limn→∞

(
∏ν

j=1 zj

) n
2 ∫

Bν exp
{

ν

∑
j=1

(1−zj)
2

n
∑

k=1
(ek, xj)

2
}

δG(~x|~u)dmν(~x)

= limn→∞
∫

H

[
i

ν

∑
j=1

(h, uj)
∼
]

exp
{

ν

∑
j=1

[
(zj−1)

2zj

n
∑

k=1
|〈ek, h〉|2

]
− ν

2 |h|2
}

dµ(h)

=
∫

H

[
i

ν

∑
j=1

(h, uj)
∼
]

exp
{

ν

∑
j=1

[
(zj−1)

2zj

∞
∑

k=1
|〈ek, h〉|2

]
− ν

2 |h|2
}

dµ(h)

=
∫

H

[
i

ν

∑
j=1

(h, uj)
∼
]

exp
{[

ν

∑
j=1

(zj−1)
2zj
|h|2

]
− ν

2 |h|2
}

dµ(h)

=
∫

H

[
i

ν

∑
j=1

(h, uj)
∼
]

exp
{
− 1

2

ν

∑
j=1

1
zj
|h|2

}
dµ(h)

=
∫ anw~z

Bν δG(~x|~u)dmν(~x).

(22)
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Corollary 4. For G ∈ F (B) and for z ∈ C+ and for s.a.e.u ∈ B,

∫ anwz

B
δF(x|u)dm(x) = lim

n→∞
z

n
2

∫
B

exp
{

1− z
2

n

∑
j=1

[
(ej, x)∼

]2}
δG(x|u)dm(x), (23)

whenever z→ −i q through C+.

Now, we prove the change of scale formula for Wiener integrals under the first
variation of G ∈ F (Bν).

Theorem 5. For real ρj > 0, j = 1, 2, · · · , ν,∫
Bν δG(ρ1x1, · · · , ρνxν|~u)dmν(~x)

= limn→∞

(
∏ν

j=1 ρ−n
j

) ∫
Bν exp

{
ν

∑
j=1

[
ρ2

j−1

2ρ2
j

n
∑

k=1
(ek, xj)

2
]}

δG(~x|~u)dmν(~x), (24)

where dmν(~x) = dm(x1)dm(x2) · · · dm(xν).

Proof. In Theorem 4, we have that for real zj > 0, j = 1, 2, · · · , ν,∫
Bν δG(z1

− 1
2 x1, · · · , zν

− 1
2 xν|~u)dmν(~x)

= limn→∞

(
∏ν

j=1 zj

) n
2 ∫

Bν exp
{

ν

∑
j=1

[
(1−zj)

2

n
∑

k=1
(ek, xj)

2
]}

δG(~x|~u)dmν(~x).
(25)

Taking zj = ρ−2
j , j = 1, 2, · · · , ν in (25), we have (24).

Now, we have a change of scale formula for Wiener integrals under the first variation
in F (Bν).

Corollary 5. For real ρ > 0 and for ~u ∈ Bν,∫
Bν δG(ρx1, · · · , , ρxν|~u)dmν(~x)

= limn→∞ ρ−νn ∫
Bν exp

{
ν

∑
j=1

[
ρ2−1
2ρ2

n
∑

k=1
(ek, xj)

2
]}

δG(~x|~u)dmν(~x). (26)

Proof. Taking zj = s−2 for all j = 1, 2, · · · , ν in (26), we have the result.

Using (27) for ν = 1, we have the the change of scale formula for Wiener integrals
under the first variation in F (B):

Corollary 6. For G ∈ F (B) and for real ρ > 0 and for s.a.e.u ∈ B,

∫
B

δG(ρx|u)dm(x) = ρ−n
∫

B
exp

{
ρ2 − 1

2ρ2

n

∑
j=1

[
(ej, x)∼

]2}
δG(x|u)dm(x). (27)

Finally, we show that the analytic Feynman integral of the first variation in F (Bν) can
be successfully expressed as the limit of a sequence of Wiener integrals of the first variation
on (H, Bν, m).

Theorem 6. Let {zk,m}m be a sequence of complex numbers from Ω such that {zk,m}m →
−i qk (qk 6= 0) through Ω as m → ∞ for k = 1, 2, · · · , ν, where ~q = (q1, q2, · · · , qν) ∈ Cν.
Then,
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∫ an fq
Bν δG(~x |~u) dmν(~x)

= limm→∞

[
limn→∞

(
∏ν

j=1 zj,m

) n
2 ∫

Bν exp
{

ν

∑
j=1

(1−zj,m)
2

n
∑

k=1

[
(ek, xj)

∼
]2}

δG(~x|~u)dmν(~x)
] (28)

where ∏ν
j=1 zj,m = z1,m z2,m · · · zν,m and dmν(~x) = dm(x1)dm(x2) · · · dm(xν).

Proof. By Definition 1,∫ an fq
Bν δG(~x|~u)dmν(~x)

= limm→∞
∫ anw~zm

Bν δG(~x|~u)dmν(~x)
= limm→∞

∫
Bν δG((z1,m)

− 1
2 x1, · · · , (zν,m)

− 1
2 xν|~u)dmν(~x)

= limm→∞

[
limn→∞(∏ν

j=1 zj,m)
n
2
∫

Bν exp
{

ν

∑
j=1

(1−zj,m)
2

n
∑

k=1

[
(ek, xj)

∼
]2}

δG(~x|~u)dmν(~x)
] (29)

whenever {zk,m}m → −iqk(qk 6= 0) through Ω as m→ ∞ for k = 1, 2, · · · , ν.

Corollary 7. Let {zn} be the sequence of complex numbers from C+ such that {zn} → −iq(q 6= 0)
through C+. Then for G ∈ F (B) and for s.a.e.u ∈ B,

∫ an fq

B
δG(x|u)dm(x) = lim

n→∞
zn

n
2

∫
B

exp
{

1− zn

2

n

∑
j=1

[
(ej, x)∼

]2}
δG(x|u)dm(x), (30)

whenever {zn} → −iq through C+.

Remark 2. In future works, we will try to prove rather nice formulas than the change of scale
formula for the Wiener integral on the Wiener space and the abstract Wiener space and the product
abstract Wiener space.
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