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Abstract. The classical electron–ion Coulomb bremsstrahlung process is investi-
gated in a nonideal plasma. An effective pseudopotential model taking into account
plasma-screening and collective effects is applied to describe the electron–ion in-
teraction potential in a nonideal plasma. The screened hyperbolic-orbit trajectory
method is applied to the motion of the projectile electron in order to investigate
the bremsstrahlung radiation cross-section as a function of the scaled impact
parameter, eccentricity, nonideal-plasma parameter, Debye length, projectile
energy, and photon energy. It is found that the collective effect reduces the brems-
strahlung radiation cross-section on both the soft- and hard-photon cases. For small
impact parameters, the nonideal-plasma effect on the bremsstrahlung radiation
cross-section is found to be quite small. It is also found that the maximum posi-
tion of the bremsstrahlung radiation cross-section gets closer to the target ion with
increasing nonideal-plasma effect.

1. Introduction
Bremsstrahlung processes (Bethe and Salpeter 1957; Bekefi 1966; Gould 1970, 1980,
1990; Hutchinson 1987; Jung 1994, 1997; Tsytovich 1995) in a plasma have re-
ceived much attention, since these processes are widely used in plasma diagnostics
in laboratory and astrophysical plasmas. Recently, bremsstrahlung processes in a
weakly coupled plasma (Gould 1990; Jung 1997) have been investigated using the
Debye–Hückel model (Jung and Yang 1997; Padmanabhan 2001) potential with
the classical-trajectory method. The Debye–Hückel effective potential describes
the properties of a low-density plasma, and corresponds to a pair-correlation ap-
proximation. A plasma described by the Debye–Hückel model is known as an ideal
plasma, since the average energy of interaction between particles is small com-
pared with the average kinetic energy of a particle. However, multiparticle correla-
tion effects caused by simultaneous interaction of many particles should be taken
into account with increasing plasma density. It is necessary to take into account
not only short-range collective effects but also long-range effects in the case of
a plasma with a moderate density and temperature. In this case, the interaction
potential is different from the Debye–Hückel type because of the strong collective
effects of nonideal particle interaction. Then, the bremsstrahlung spectrum from
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the electron–ion Coulomb scatterings in a nonideal plasma must be quite differ-
ent from that in an ideal plasma because of the collective effect. Therefore, in this
paper, we investigate the classical bremsstrahlung process due to electron–ion col-
lisions in a nonideal plasma. A pseudopotential model including plasma-screening
and collective effects is applied to describe the interaction potential between the
projectile electron and target ion in a nonideal plasma. The hyperbolic-orbit tra-
jectory method (Landau and Lifshitz 1975; Jung and Yang 1997) is applied to
represent the motion of the projectile electron and to visualize the bremsstrahlung
radiation cross-section as a function of the scaled impact parameter, eccentricity,
nonideal-plasma parameter, Debye length, projectile energy, and radiation photon
energy.

In Sec. 2, we discuss the classical expression for the bremsstrahlung cross-section
in Coulomb scattering of the projectile electron with the target ion in a nonideal
plasma using the pseudopotential model. In Sec. 3, we obtain an analytical form
of the bremsstrahlung radiation cross-section using the screened hyperbolic-orbit
trajectory method for the motion of the projectile electron. We also investigate
the variation of the bremsstrahlung radiation cross-sections for both the soft- and
hard-photon radiation cases with changing impact parameter and nonideal-plasma
parameter. Finally, conclusions are given in Sec. 4.

2. Classical bremsstrahlung cross-section
The cross-section for the classical bremsstrahlung process (Gould 1970) is given by

dσb = 2π
∫
db b dwω(b), (1)

where b is the impact parameter and dwω is the differential probability of emitting
a photon of frequency ω within dω when the projectile electron changes its velocity
in collisions with a static target system. For all impact parameters, the radiation
probability dwω, can be obtained by the Larmor formula (Jackson 1999) for the
emission spectrum of a nonrelativistic accelerated electron:

dwω =
8πe2

3~c3 |aω|2
dω

ω
, (2)

where aω is the Fourier coefficient of the acceleration a(t) of the projectile electron:

aω =
1

2π

∫ ∞
−∞

dt eiωta(t). (3)

Here, we set up coordinate axes to compute aω so that the electron trajectory is in
the (x, y) plane; then

|aω|2 =
1
m2 (|Fxω|2 + |Fyω|2), (4)

where Fxω, and Fyω are, respectively, the x and y components of the Fourier co-
efficients of the force F(t) between the projectile electron and the target ion:

Fµω =
1

2π

∫ ∞
−∞

dt eiωtFµ(t) (µ = x, y). (5)

An integro-differential equation for the effective potential of the particle inter-
action, taking into account the simultaneous correlations of N particles, has been
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obtained on the basis of a sequential solution of the chain of Bogolyubov equations
for the equilibrium distribution function of particles of a classical nonideal plasma,
and an analytical expression for the pseudopotential (Baimbetov et al. 1995) of
the particle interaction in a nonideal plasma has been obtained by application of
the spline approximation. Using the pseudopotential model, taking into account
plasma-screening and collective effects (Arkhipov et al. 2000a,b, 2001), the interac-
tion potential VNI (r) between the projectile electron and the target ion with charge
Z in a classical nonideal plasma can be written as

VNI (r) = −Ze
2

r
e−r/Λ 1 + 1

2γf (γ, r,Λ)
1 + c(γ)

, (6)

where r is the position vector of the projectile electron with respect to the target ion,
Λ is the Debye length, f (γ, r,Λ) = 1

5 (e−
√
γr/Λ − 1)(1− e−2r/Λ), and γ (≡ e2/ΛkTe)

is the nonideal-plasma parameter, c(γ) ≈ 0.465γ − 0.108γ2 + 0.009γ3 is the corre-
lation coefficient, and Te is the electron temperature. When γ → 0, i.e., in the case
of an ideal plasma, the pseudopotential goes over to the Debye–Hückel potential
VDH (r) = −Ze2e−r/Λ/r. The corresponding force for the pseudopotential VNI (r) is
then given by

F (r) = − Ze2r
1 + c(γ)

[(
1
r3 +

1
r2Λ

)
J(γ, r,Λ)− 1

r2Λ
K(γ, r,Λ)

]
, (7)

where the functions J(γ, r,Λ) and K(γ, r,Λ) are, respectively,

J(γ, r,Λ) = e−r/Λ +
γ

10
[−e(

√
γ+3)r/Λ + e−(

√
γ+1)r/Λ + e−3r/Λ − e−r/Λ], (8)

K(γ, r,Λ) =
γ

10
[(
√
γ + 2)e−(

√
γ+3)r/Λ −√γe−(

√
γ+1)r/Λ − 2e−3r/Λ]. (9)

For the case of electron–ion interactions, i.e., the attractive case, the convenient
parametric representation of the hyperbolic-orbit trajectory (Landau and Lifshitz
1975) for the projectile electron [r(t)] can be represented by

x = d(ε2 − 1)1/2 sinhw,

y = d(−coshw + ε),

r(t) ≡ |r(t)| = d(ε coshw − 1),

t =
d

v
(ε sinhw − w), −∞ < w <∞,


(10)

where d, ε (=
√

1 + b2/d2), and v are half the distance of closest approach in a
head-on collision, the eccentricity, and the initial velocity of the projectile elec-
tron, respectively. Since the above expression for the hyperbolic-orbit trajectory
describes the case of a pure Coulomb field, here we have to modify the parameter
d in order to include plasma-screening and collective effects. Including the plasma-
screening effect as well as the nonideal-plasma effect, the collision parameter d
can be obtained by the perturbation method (Bender and Orszag 1999) with the
pseudopotential (6):

d(γ,Λ) ≈ d0

1 + d0/Λ + c(γ)
+
d3

0

Λ2

1
2 − 1

5γ
3/2

[1 + d0/Λ + c(γ)]3 , (11)

where d0 ≡ Ze2/mv2. After some algebra, the Fourier coefficients of the force are
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found to be

Fµω = − Ze2

2πv̄a2
Z

F̄µω (µ = x, y), (12)

where aZ (≡ a0/Z = ~2/Zme2) is the first Bohr radius of the hydrogenic ion with
nuclear charge Z, m is the electron rest mass, and v̄ ≡ v/aZ . Here, the x and y
components of the scaled Fourier coefficient (F̄xω, F̄yω) are given by

F̄xω =
d̄2

1 + c(γ)

∫ ∞
−∞

dw (ε coshw − 1)(ε2 − 1)1/2 sinh w eiξ(ε sinh w−w)

×
{[

1
d̄3(ε coshw − 1)3

+
aΛ

d̄2(ε coshw − 1)2

]
J(γ, ε, d̄, aΛ)

− aΛ

d̄2(ε coshw − 1)2
K(γ, ε, d̄, aΛ)

}
, (13)

F̄yω =
d̄2

1 + c(γ)

∫ ∞
−∞

dw (ε coshw − 1)(−coshw + ε)eiξ(ε sinh w−w)

×
{[

1
d̄3(ε coshw − 1)3

+
aΛ

d̄2(ε coshw − 1)2

]
J(γ, ε, d̄, aΛ)

− aΛ

d̄2(ε coshw − 1)2
K(γ, ε, d̄, aΛ)

}
, (14)

respectively, where d̄ (≡ d/aZ) is the scaled collision parameter, ξ ≡ ωd/v, aΛ

(≡ aZ/Λ) is the reciprocal scaled Debye length, and b̄(≡ b/aZ) is the scaled impact
parameter. Here, the functions J(γ, ε, d̄, aΛ) and K(γ, ε, d̄, aΛ) are, respectively,

J(γ, ε, d̄, aΛ) = e−aΛd̄(ε coshw−1) + 1
10γ[−e−aΛ(

√
γ+3)d̄(ε coshw−1)

+e−aΛ(
√
γ+1)d̄(ε coshw−1) + e−3aΛd̄(ε coshw−1) − e−aΛd̄(ε coshw−1)], (15)

K(γ, ε, d̄, aΛ) = 1
10γ[(

√
γ + 2)e−aΛ(

√
γ+3)d̄(ε coshw−1) −√γe−aΛ(

√
γ+1)d̄(ε coshw−1)

−2e−3aΛd̄(ε coshw−1)]. (16)

In the nonrelativistic limit, the classical bremsstrahlung cross-section is found to
be

dσb =
4
3
α3a2

0

Ēe

dω

ω

∫ b̄max

b̄min

db̄ b̄(|F̄xω|2 + |F̄yω|2), (17)

where α (= e2/~c ≈ 1
137 ) is the fine-structure constant, Ēe (≡ mv2/2Z2Ry) is the

scaled kinetic energy of the projectile electron, andRy (= me4/2~2 ≈ 13.6 eV) is the
Rydberg constant. Here, the minimum scaled impact parameter b̄min corresponds
to the closest distance of approach at which the electrostatic potential energy of
interaction is equal to the maximum possible energy transfer:

2mv2 =
Ze2

b
e−b/Λ 1 + 1

2γf (γ, b,Λ)
1 + c(γ)

. (18)

The maximum scaled impact parameter b̄max is determined by the screening length
for the plasma: b̄max ≈ a−1

Λ .
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3. Bremsstrahlung radiation cross-section
Using (17), the differential bremsstrahlung radiation cross-section (Jackson 1999)
is defined by

dχb
dEp

≡ dσb
~dω

~ω, (19)

=
4
3
α3a2

0

Ēe

∫ b̄max

b̄min

db̄ b̄(|F̄xω|2 + |F̄yω|2), (20)

where Ep (≡ ~ω) is the energy of the radiation photon. In the nonrelativistic limit,
the parameter ξ can be expressed as ξ = Ēpd̄/2

√
Ēe where Ēp(≡ ~ω/Z2Ry) is

the scaled radiation photon energy. Using the screened hyperbolic-orbit trajectory
method, the scaled doubly differential bremsstrahlung radiation (SDDBR) cross-
section, i.e., the scaled differential bremsstrahlung radiation cross-section per scaled
impact parameter, is found to be

d2χb
dĒp db̄

/
πa2

0 =
4
3
α3

πĒe
b̄[|F̄xω(γ, b̄, aΛ, Ēp, Ēe)|2 + |F̄yω(γ, b̄, aΛ, Ēp, Ēe)|2],

where the Fourier coefficients F̄xω and F̄yω are given in (13) and (14). The depen-
dences of the SDDBR cross-section on the plasma-screening and collective effects
have been explicitly indicated through the scaled reciprocal Debye length aΛ and
the nonideal-plasma parameter γ.

In order to investigate the plasma-screening effects as well as the nonideal-plasma
effects on the bremsstrahlung radiation cross-section, we consider two cases of the
ratio of the radiation photon energy to the kinetic energy of the projectile elec-
tron, namely, Ep/Ee (= 2~ω/mv2) = 0.1 (i.e., a soft-photon case) and 0.9 (i.e., a
hard-photon case), and we consider three cases of the nonideal-plasma parameter,
namely, γ = 1, 0.1, and 0. Here, we choose aΛ = 0.1 and Ēe = 0.9, since the
classical-trajectory approximation is known to be reliable for low projectile ener-
gies (v < Zαc) (Melia 2001). Figure 1 shows the SDDBR cross-sections (21) for
electron–ion Coulomb collisions in ideal (γ = 0) and nonideal (γ � 0) plasmas.
As we can see from this figure, the bremsstrahlung radiation cross-section in an
ideal plasma described by the Debye–Hückel potential is found to be greater than
that in a nonideal plasma, i.e., the collective effects reduce the bremssstrahlung ra-
diation cross-sections in both the soft- and hard-photon cases. However, for small
impact parameters, the nonideal-plasma effect on the bremsstrahlung cross-section
is found to be quite small. Table 1 shows the maximum values of the differential
bremsstrahlung cross-sections for γ = 1, 0.1, and 0. It should be noted that the
nonideal-plasma effect on the electron–ion bremsstrahlung process is more signifi-
cant in the hard-photon radiation case (≈ 14.8%) than that in the soft-photon
radiation case (≈ 8.8%). The maximum positions are also indicated in the table
in parentheses. It is also found that the maximum position of the bremsstrahlung
cross-section gets closer to the target ion with increasing nonideal-plasma effect.

4. Conclusions
We have investigated plasma-screening and collective effects on the electron–ion
Coulomb bremsstrahlung process in a classical nonideal plasma. An effective pseudo-
potential model has been applied to describe the electron–ion interaction potential,
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Table 1. The maximum values of the scaled doubly differential bremsstrahlung radiation
cross-sections d2χb/dĒp db̄ in units of πa2

0 for both the soft- and hard-photon radiation cases
when aΛ = 0.1 and Ēe = 0.9. (The maximum positions are indicated in parentheses.)

d2χb/dĒp db̄ d2χb/dĒpdb̄
(Ep/Ee = 0.1: soft-photon) (Ep/Ee = 0.9: hard-photon)

γ = 1 7.160× 10−7 9.494× 10−7

(b̄ = 0.41) (b̄ = 0.44)

γ = 0.1 7.629× 10−7 1.074× 10−6

(b̄ = 0.51) (b̄ = 0.54)

γ = 0 7.847× 10−7 1.114× 10−6

(b̄ = 0.52) (b̄ = 0.56)

8×10–7

6×10–7

4×10–7

2×10–7

0 1 2 3 4
Scaled impact parameter

(a)

S
D

D
B

R
 c

ro
ss

-s
ec

ti
on

1×10–6

8×10–7

6×10–7

4×10–7

0 1 2 3 4
Scaled impact parameter

(b)

S
D

D
B

R
 c

ro
ss

-s
ec

ti
on

0

2×10–7

Figure 1. The scaled doubly differential bremsstrahlung radiation cross-section d2χb/dĒp db̄
in units of πa2

0 as a function of the scaled impact parameter (b̄ = b/aZ ) for aΛ = 0.1
and Ēe = 0.9: (a) Ep/Ee = 0.1 (soft-photon); (b) Ep/Ee = 0.9 (hard-photon); ——, γ = 1;
· · · · · ·, γ = 0.1; – – –, γ = 0.

including plasma-screening as well as collective effects in a nonideal plasma. The
screened hyperbolic-orbit trajectory method has been applied to describe the mo-
tion of the projectile electron in a nonideal plasma and to visualize the variation of
the differential bremsstrahlung radiation cross-section as a function of the scaled
impact parameter b, eccentricity ε, nonideal-plasma parameter γ, Debye length
Λ, kinetic energy of the projectile electron Ee, and radiation-photon energy Ep.
The results show that the bremsstrahlung radiation cross-section for electron–ion
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Coulomb collisions in an ideal plasma described by the Debye–Hückel model is
always greater than that in a nonideal plasma, i.e., the collective effect (γ � 0)
suppresses the bremsstrahlung radiation cross-sections for both the soft- and hard-
photon radiation cases. It is also found that the nonideal-plasma effect on the
bremsstrahlung process in the hard-photon radiation case is more significant than
in the soft-photon radiation case. For small impact parameters, it is found that
the nonideal-plasma effect on the bremsstrahlung cross-section is quite small. The
maximum position of the bremsstrahlung radiation cross-section gets closer to the
target ion with increasing nonideal-plasma parameter. These results provide useful
information on the Coulomb bremsstrahlung process in a classical nonideal plasma.
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