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Abstract: In this study, scandia-stabilized zirconia (ScSZ) electrolyte thin-film layers were deposited
via chemical solution deposition (CSD). We selected 10ScSZ (10% Sc2O3, 90% ZrO2 molar ratio) as the
target material, and the precursor solution was prepared by precise calculations. The 10ScSZ solution
was deposited on Al2O3 substrate using a spin-coating method. Then, the substrate was sintered
using two methods: flash light irradiation and thermal. The characteristics of the thin films were
compared, including ionic conductivity, surface morphology, and chemical composition. Pulsed light
sintering was applied in the sintering step under a variety of energy density conditions from 80 to
130 J/cm2, irradiation on/off times of 10 ms and 10 ms/500 ms, number of pulses, and bottom heat
from 300 to 600 ◦C. The ionic conductivity of the ScSZ electrolyte layers fabricated by thermal or flash
light irradiation methods was tested and compared. The results show that the ScSZ electrolyte layer
sintered by flash light irradiation within a few seconds of process time had similar ionic conductivity
to the electrolyte layer that was thermal sintered for about 10 h including cooling process.

Keywords: solid oxide fuel cells; flash light irradiation; chemical solution deposition (CSD); thin-film
electrolyte; scandia-stabilized zirconia (ScSZ)

1. Introduction

Solid oxide fuel cells (SOFCs) have emerged as potential energy conversion devices for electricity
and heat generation due to their high energy conversion efficiency and eco-friendly characteristics.
However, a high operating temperature (800–1000 ◦C) is usually required for adequate performance
because the ionic transport of oxygen through ceramic electrolytes is sluggish. In addition, this high
operating temperature causes thermal degradation and component instability [1]. Thus, high operating
temperature is considered a potential hurdle in commercialization and widespread use of SOFC devices.
To overcome this challenge, many researchers have attempted to decrease the operating temperature
to an intermediate or low range (400–600 ◦C) while maintaining reasonable performance of SOFCs.
At low temperatures, oxide ion conduction through the electrolyte layer becomes more sluggish and
causes a significant increase in ionic transport resistance of the fuel cell. Two approaches have been
mainly used to solve this issue: one approach adopts an electrolyte material that has higher ionic
conductivity than conventional yttria-stabilized zirconia (YSZ) at low temperature ranges, whereas the
other approach minimizes the thickness of dense electrolytes [2,3].

Recently, doped ceria-based electrolyte materials, such as gadolinia-, yttria-, and scandia-doped
ceria, have been investigated as oxide ion-conducting electrolytes because of their high ionic conductivity
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at low temperature. However, cerium oxide-based electrolytes have chemical instability due to a
reduction of cerium ions from Ce4+ to Ce3+ when the electrochemical reaction occurs on the anode side
in a high-temperature reduction environment. This reduction of cerium causes electronic conduction
and results in loss of open-circuit voltage (OCV) of the SOFCs when it is used as an electrolyte by
itself. In addition, it causes lattice expansion of the cerium oxide electrolyte on the fuel side, which
leads to mechanical instability of the SOFC components [4,5]. To resolve these instability issues from
ceria-based thin electrolyte layers and the relatively low ionic conductivity of YSZ, scandia-stabilized
zirconia (ScSZ) was introduced. ScSZ is a zirconia-based oxide ion-conducting electrolyte material in
which the dopant of YSZ is replaced with scandium, which is from the same family in the periodic
table. The ionic radii of Zr4+ is 0.84 Å, whereas the dopant ions are 0.87 Å for Sc3+ and 0.94 Å for
Y3+. Sc3+ has an ionic radii similar to that of Zr4+, which reduces the steric-blocking effect during
oxygen ion transport. Therefore, ScSZ has higher ionic conductivity than YSZ due to the ionic radii
difference between the host (Zr4+) and dopant ions (Y3+, Sc3+). In addition, zirconia-based materials
have superior chemical stability compared to ceria-based materials [6–9].

Many deposition methods have been used to fabricate thin-film electrolyte layers for SOFCs,
with an aim to minimize ionic transport resistance from the solid electrolyte. The methods can be
generally categorized into two groups: vacuum processes and non-vacuum processes. The vacuum
process deposition methods, such as physical vapor deposition (PVD) and chemical vapor deposition
(CVD), allow for precise control of film microstructure, stoichiometry, and growth rate during the
deposition [10,11]. In particular, sputtering and atomic layer deposition (ALD) have been used to
fabricate thin-film components for SOFCs [12–14]. However, these methods have several limitations,
such as strict deposition conditions, relatively slow process speed, and high cost. Non-vacuum
processes are relatively simple and can be categorized as powder-based or solution-based methods
for thin-film deposition. A wet chemical process, such as chemical solution deposition (CSD), has
advantages such as low fabrication cost, large deposition area, and easy stoichiometry control [15].
Many methods have been used for deposition, such as electrostatic deposition (ESD), spin coating,
screen printing, and dip coating [16–18]. Among the non-vacuum deposition methods, spin coating
has the advantages of a short process time and easily controlled deposition conditions, including
rotation speed and ramping rate, to improve the uniformity and thickness of the film surface [19].

Even with a relatively simple deposition process, post-heat treatment processes are essential for
almost all deposition methods to acquire proper material properties, including crystalline development
and densification of films. A conventional thermal furnace sintering method requires tens of hours,
including cooling time, and consumes a vast amount of energy during the process. These manufacturing
limitations are obstacles in the commercialization of many devices with oxide thin films requiring
high-temperature post-heat treatment processes. Thus, many alternative heat treatment methods have
been investigated, including excimer lasers, microwaves, and arc plasma methods, to overcome the
disadvantages of a conventional thermal sintering process. Selective laser sintering (SLS) is a technique
that uses a high-power laser to melt small particles of plastic, metal, or ceramic into a lump. However,
the small spot size and single wavelength of the light impede widespread application of the technique
especially for commercialization. Microwave sintering could expedite the sintering process time of
ceramic powders when surrounded by microwave susceptors, such as ferric oxide. In microwave
sintering for high-temperature applications, a thermal runaway develops in the sample and causes
thermal instability during the sintering process. An arc plasma sintering process can sinter material in
a few minutes using a superheated plasma gas. However, the plasma gas may be heated to a much
higher temperature than required, depending on furnace geometry, plasma input power, and load
density [20–24].

In this study, we adopted a novel sintering technique with high-power flash light irradiation
of a visible wavelength range from 380 to 980 nm. This innovative method considerably reduced
the post-heat treatment process time from hours to seconds. After deposition of a ScSZ thin-film
electrolyte by a spin-coating method, the films were rapidly annealed by controlling the flash light
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irradiation conditions. The electrical and material properties were compared for the ScSZ thin films
heat treated with a conventional halogen furnace for a long period of time. The results showed that
the film properties with flash light sintering were similar to those of thermal-sintered ScSZ thin films,
especially oxide ion conductivity in fuel cell electrolyte applications. The approach used in this study
may significantly reduce the heat treatment process time and cost for functional oxide film fabrication.
In addition, it may facilitate commercialization of devices using ceramic thin films.

2. Experimental

Chemical solution deposition of ScSZ thin films was conducted using 10ScSZ precursor solution
prepared by mixing precursors, solvents, and other chemical additives. The procedure used to
synthesize the solution is depicted in Figure 1. Scandium nitrate hydrate precursor [Sc(NO3)3·5H2O]
(STREM Chemicals Inc., Newburyport, MA, USA) and zirconium acetate solution [C8H12O8Zr]
(Sigma-Aldrich, St. Louis, MO, USA) were used as precursors and were blended with solvents of
deionized water and ethylene glycol [HOCH2CH2OH] (Sigma-Aldrich). This solution was stirred
for 30 h at 60 ◦C on a hotplate to remove excessive water and obtain the target molar concentration.
Methanol [CH3OH] and polyvinylpyrrolidone [C6H9NO]n (PVP, Mn = 10,000, Sigma-Aldrich) were
added as the wetting agent and dispersion agent, respectively [25–28].
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Figure 1. Procedure for (a) synthesizing scandia-stabilized zirconia (ScSZ) precursor solution; (b) ScSZ
thin-film deposition.

The ScSZ precursor solution was filtered with a 200 nm nylon mesh filter to separate the
contaminants from the solution and was deposited on 10 × 10 mm2 polycrystalline Al2O3 substrate
(MTI Corporation, Richmond, CA, USA). Before deposition, O2 plasma treatment was conducted at
40 W for 3 min on the cleaned alumina substrate to produce –OH termination on the surface, which
created a hydrophilic surface and facilitated the coating process [29].

The fabrication procedure and structure of the ScSZ sample layer are described in Figure 2.
The ScSZ precursor solution was deposited on the substrate and spin-coated for 50 s at 3500 rpm.
After drying to remove organic compounds, the deposition step was repeated until the thickness of
the thin film approached 300 nm [30]. Then, the main sintering step was conducted using both a
conventional thermal method and flash light irradiation. The ScSZ sample was thermal sintered at
900–1200 ◦C for 2 h in a conventional halogen furnace (HANTECH, Ulsan, Korea) in the ambient air
condition. The custom-built flash light irradiation system consisted of a xenon lamp (PerkinElmer
Corp., Llantrisant, UK), which has wavelength range from 380 to 980 nm, beam guide reflector, pulse
controller, power supply, and bottom heater. The xenon lamp irradiated white visible light onto the
ScSZ sample, while the bottom heater maintained a substrate temperature of 300–600 ◦C. The flash



Coatings 2020, 10, 9 4 of 13

light emission power was controlled by the voltage of the power supply, while pulsation of the flash
light during the process was changed using a control software program. By varying the combination
of conditions, such as substrate-to-lamp distance (mm), light emission on-time and off-time (ms), and
power voltage (V), the flash light conditions irradiated on the sample were varied and normalized
as energy density units (J/cm2). The spectra of xenon lamp irradiation system and light irradiation
condition is depicted in Figure 3. Total energy density was measured by a power meter (Nova II,
People Laser Tech Inc., Seoul, Korea). The experimental conditions were as follows: 10 ms of on-time,
10 and 500 ms of off-time, six pulses in total, energy density range from 80 to 130 J/cm2, and a constant
temperature for the bottom heater for each irradiation condition.
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Figure 2. Schematic diagrams of the ScSZ thin-film fabrication process for each stage, (a) precursor
solution deposit by spin coating, (b) flash light irradiation treatment with a bottom heater. (c) The
structure of the ScSZ thin film for ionic-conductivity measurement deposited on an Al2O3 substrate
and a Pt electrode deposited by sputtering.
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The characteristics of the fabricated ScSZ thin film were determined by measuring the chemical
composition, surface morphology, crystalline development, and ionic conductivity. The chemical
composition of the ScSZ thin films was observed by X-ray photoelectron spectroscopy (XPS, Thermo
Fisher Scientific Co., Waltham, MA, USA, Theta probe system). The atomic ratio of each ScSZ thin-film
sample was observed three times after surface etching for 20 s each time to eliminate unwanted surface
contamination and ensure accurate measurements. The X-ray monochromator size was 400 µm and the
spectra and peak of the ScSZ thin film was investigated by using the Avantage software (Thermo Fisher
Scientific Co., Theta probe system). The surface and cross-sectional morphologies of the ScSZ thin films
were observed by field emission scanning electron microscopy (FE-SEM, JSM-6701F, JEOL LTD., Tokyo,
Japan). The oxygen ion transport performances of the ScSZ thin films were compared by measuring the
ionic conductivity. For in-plane ionic conductivity measurements, a dense stripe-patterned platinum
electrode was deposited on the top surface of the ScSZ layer through DC magnetron sputtering
under 7.5 mTorr of pressure with 40 sccm of argon gas flow. The in-plane ionic conductivity was
measured using a two-probe method on an in-house built tungsten heating stage while maintaining
a constant measurement temperature of 400–550 ◦C. Electrochemical impedance spectroscopy (EIS,
Gamry Potentiostat FAS2, Gamry Instruments Inc., Warminster, PA, USA) was used to measure the
impedance of ScSZ electrolytes under a frequency range from 1 MHz to 1 Hz with dc voltage conditions
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of 0–0.7 V. Then, the impedance of the ScSZ thin film was fitted to Nyquist plots by equivalent circuit
models using Gamry Echem Analyst software (Gamry Instruments, Inc.). The crystalline development
of the ScSZ thin film was identified by X-ray diffraction (XRD) with D9 Advance (Bruker Co., Billerica,
MA, USA) analysis using the conditions of Cu Kα X-ray at λ = 1.54 Å and a typical 2θ scan range of
20–80◦.

3. Results and Discussion

The film composition of scandium oxide (Sc2O3) and zirconium oxide (ZrO2) is an important
factor in oxygen ion conduction through the ScSZ layer. The layer will show poor stability if the amount
of scandium oxide in ScSZ is less than 10 mol %. However, 10ScSZ (10 mol% Sc2O3-doped ZrO2)
has shown the highest ionic conductivity and stability among the scandium-doped zirconias [8,32].
The target composition of the film was 10ScSZ; the XPS spectra and results are shown in Figure 4 and
Table 1. We confirm the decomposition of organic compounds and ScSZ thin film mainly composed
of Sc, Zr, and O. The main components of 10ScSZ thin film, which contained 10 mol% of Sc2O3 and
90 mol% of ZrO2, were Sc3+ and Zr4+; the theoretical ratio between these atoms was 2:9. XPS analysis
data indicated an actual atomic ratio of Sc3+ to Zr4+ of 5.32:24.11, which was close to the theoretical
value. Therefore, we confirmed that the 10ScSZ composition film was appropriately synthesized
through the precursor solution and film fabrication.Coatings 2019, 9, x FOR PEER REVIEW 6 of 14 
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Table 1. XPS data for the atomic percentages (At%) of scandium, zirconium, and oxygen and a
comparison of the theoretical and actual atomic ratios of the 10ScSZ thin-film layer.

Name Zr Sc O

At (%)
Theoretical 28.15 6.25 65.6

Actual 24.11 5.32 70.56

Theoretical Actual

Zr:Sc:O = 9:2:21 Zr:Sc:O = 24.11:5.32:70.56

The as-deposited ScSZ sample went through a post-heat treatment step. The post-heat treatment
step was composed of drying, pre-sintering, and the main sintering process. The drying and
pre-sintering of the sample was conducted in a halogen furnace to eliminate the solvent and organic
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compounds under uniform thermal conditions. The main sintering process was conducted with a
halogen furnace and flash light sintering for comparing heat treatment methods. In general, a crack on
the thin film can develop during the drying stage and the heat ramping rate during the drying stage
plays a crucial role in preventing cracking. If the heat ramping rate is too high, then a crack occurs
on the film surface due to rapid shrinkage caused by solvent evaporation, resulting in stress to the
thin-film surface [33]. Therefore, a low heating rate during solvent evaporation in the drying stage is
desirable to prevent cracking in the sol–gel deposition process. However, if the heat ramping rate is
too low, the overall process slows and takes a long time to complete. Additional thermal treatments
after drying stage at higher temperatures by pre-sintering and main sintering were conducted for
decomposition of organic residues, grain growth, and development of amorphous to crystallized
thin films.

The electrolyte layer of SOFCs requires a dense and crack-free morphology. The spin-coating
method provides uniform quality of the thin films and the ability to control deposition thickness by
changing the spin-coating conditions. Through this process, ScSZ thin films approximately 300 nm
thick with uniform morphology were obtained. Figure 5 shows the FE-SEM images of the surface
morphology of ScSZ films that underwent thermal sintering at different temperature ranges for 2 h.
The film in Figure 5a was sintered at 900 ◦C and showed a porous surface morphology. At 1000 ◦C,
as shown in Figure 5b, the surface morphology was still porous but showed more grain growth than
that sintered at 900 ◦C. As the temperature increased to 1100 ◦C, the surface morphology became
highly dense, as shown in Figure 5c. At 1200 ◦C, as shown in Figure 5d, there was denser surface
morphology and larger grain sizes compared with the film sintered at 1100 ◦C. As the thermal sintering
temperature increased, we observed a densification of the surface morphology due to grain growth.
However, the surface morphology remained porous until the sintering temperature was 1000 ◦C. As the
sintering temperature increased, the grain size of the thin film also increased; from 1100 ◦C, the surface
morphology became very dense [34].
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sintering conditions: (a) 900 ◦C for 2 h, (b) 1000 ◦C for 2 h, (c) 1100 ◦C for 2 h, and (d) 1200 ◦C for 2 h.

The surface morphology images of the flash light–sintered ScSZ thin films under different energy
density conditions from 80 to 130 J/cm2 for six pulses with a bottom heat of 300 ◦C are depicted in
Figure 6. Flash light–sintered thin films also showed dense surface morphology; however, there was
no discernable change in nano-grain size or grain growth behavior. As expected, the grain size of the
flash light–sintered thin film was smaller than that of the thermal-sintered sample. This result may
have occurred because the short time of the flash light sintering process did not allow grain growth.
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300 ◦C. Irradiation energy of 130 J/cm2 with a bottom heat of (d) 400 ◦C, (e) 500 ◦C, (f) 600 ◦C with 10
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The cross-sectional SEM images of the thermally and flash light–sintered ScSZ thin films are shown
in Figure 7. All samples had thicknesses ranging from approximately 250 to 300 nm. The thickness
of the thermal-sintered thin film was thinner than that of the flash light–sintered thin film. This
phenomenon occurred because of the short process time of flash light sintering (milliseconds). We
assume that the thickness difference of the thin film resulted from the process time difference. The
longer process time of the thermal sintering process induced more volume shrinkage and greater
densification, leading to a reduction in the thickness of the thin films. In addition, as the thermal
sintering temperature increased, the thickness of the thin film decreased, as shown in Figure 7c,d [35].
To assess and compare the characteristics of the thermal and flash light sintering methods for ScSZ thin
film, XRD and ionic conductivity measurements were conducted.
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The XRD patterns of the ScSZ thin film with a bottom heater for flash light sintering with different
irradiation off-times (10 and 500 ms) and thermal-sintered thin films are presented in Figures 8 and 9.
The obtained XRD patterns showed all cubic fluorite peaks at (111), (200), (220), and (311). As the flash
light sintering energy density increased from 80 to 130 J/cm2 with bottom heat of 300 ◦C and irradiation
off-time of 10 ms, the intensity of the XRD pattern developed as shown in Figure 8. In addition,
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an increasing intensity of the XRD pattern was observed as the bottom heat temperature increased
from 300 to 600 ◦C with an off-time of 10 ms. Thus, introduction of a bottom heater may induce
additional energy to the film. The XRD spectra were fitted with a pseudo-Voigt peak profile for grain
size evaluation. The grain size was calculated using the Scherrer equation as follows:

D =
0.9λ

Bcosθ
.

1 
 

 

 

 

 

 

 

 

 

 

Figure 8. X-ray diffraction (XRD) patterns of the ScSZ thin film deposited on an SiO2 substrate according
to the sintering conditions (thermal sintering at 1100 and 1200 ◦C; flash light sintering at 80–130 J/cm2;
bottom heat: 300–600 ◦C; irradiation off-time: 10 ms). 

2 

 

Figure 9. The X-ray diffraction (XRD) patterns of ScSZ thin film deposited on SiO2 substrate according
to sintering conditions (thermal sintering at 1100 and 1200 ◦C; flash light sintering at 130 J/cm2; bottom
heat of 300–600 ◦C; irradiation off-time of 500 ms).
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Here, λ is the wavelength of Cu Kα radiation (1.5418 Å), B is the full width at half maximum
(FWHM) of the XRD pattern extracted from fitted spectra, and θ is the Bragg diffraction angle of the
line. The grain size was estimated to be 8.8, 9.1, and 10.2 nm for the flash light sintering conditions
with 80, 110, and 130 J/cm2 for the ScSZ thin films, respectively. For the thermal-sintered ScSZ thin
film, the grain size was calculated to be 19.1 and 21.5 nm at 1100 and 1200 ◦C, respectively.

The irradiation off-time was increased from 10 to 500 ms for further development of the crystallinity
in the flash light–sintered thin film. Increasing the irradiation off-time was expected to increase the
irradiation energy and provide time for further development of the crystallinity of the ScSZ thin
film while maintaining the temperature. In the 500 ms condition, the XRD pattern of the ScSZ thin
film also showed cubic fluorite peaks of (111), (200), (220), and (311), as shown in Figure 9. As the
bottom heat temperature increased from 300 to 600 ◦C, the peak intensity and sharpness increased.
In short, as the thermal or flash light energy increased during the sintering process, the crystallinity
of the thin film developed. These results are well matched with the results for ionic conductivity
presented in Figures 10 and 11 and previous research [36]. In addition, the intensity and sharpness of
the XRD pattern were further developed with increases to the flash light irradiation energy compared
with increases to the bottom heater temperature. As a cubic fluorite peak developed with flash light
irradiation or a temperature increase, we expected the ionic conductivity to increase. Therefore,
introduction of more intensive energy into flash light sintering could help to develop the cubic peak
and ionic conductivity of the ScSZ thin film. Nevertheless, when the flash light sintering process was
assisted by bottom heat and increased irradiation off-time, the crystallinity of the thin film was more
developed with the conventional thermal sintering method. This is because the flash light sintering
process went through a process that maintained the highest temperature for a short time during the
sintering. If the temperature increased rapidly in this sintering process, the crystallinity development
of the thin film was not fully completed [37].
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Figure 11. Arrhenius plot of in-plane ionic conductivity (lnσT) of ScSZ thin film deposited on
polycrystalline Al2O3 substrate under different sintering conditions and an irradiation off-time of 500
ms with reference lines.

Ionic conductivity values were measured as a function of temperature from 550 to 400 ◦C using a
two-probe method. The ionic conductivity of the 10ScSZ thin film differed for each sintering condition.
Arrhenius plots of the 10ScSZ thin-film coated on a polycrystalline Al2O3 substrate for each sintering
condition are presented in Figures 10 and 11. The ionic conductivity measurements show that the
performance of the ScSZ electrolyte layer improved as sintering temperature increased. In the case of
thermal-sintered ScSZ thin film, the sample sintered at 1200 ◦C showed greater ionic conductivity than
the sample sintered at 1100 ◦C. Both thermal-sintered thin films showed greater ionic conductivity
than the ScSZ thin film [38]. A similar trend was observed for ScSZ thin film sintered by flash light. As
the irradiation energy in flash light sintering increased from 80 to 130 J/cm2 with a bottom heat of
300 ◦C, the ionic conductivity of the ScSZ electrolyte improved. In addition, the ionic conductivity
increased as the temperature of the bottom heater increased from 300 to 600 ◦C with irradiation of 130
J/cm2 energy density. Furthermore, as the flash light irradiation off-time changed to 500 ms (Figure 11),
the ionic conductivity was greater compared with when it was 10 ms (Figure 10) when the bottom
heat temperature was constant. The increased off-time may have provided an opportunity for grain
development. Furthermore, in a comparison of the two results with controlled flash light irradiation
energy and bottom heater temperature, the increased flash light irradiation energy was associated with
better ionic conductivity compared with the bottom heater temperature. This phenomenon may be
explained by the amount of thermal energy input. According to the sintering condition, the thermal
sintering process occurred for 2 h. However, the thermal energy added by the bottom heater during
flash light sintering occurred for milliseconds; thus, the amount of thermal energy was not sufficient to
improve the ionic conductivity. Nonetheless, the bottom heater may add more thermal energy and
prevent thermal shock during the flash light irradiation process.

The ionic conductivity of the flash light–sintered ScSZ thin film with energy density of 130 J/cm2,
bottom heater temperature of 600 ◦C, and off-time of 10 or 500 ms was similar but slightly less than the
thermal-sintered ionic conductivity (Figures 10 and 11). Therefore, we assumed that the nanoscale
grains were well developed as the flash light irradiation intensity increased with changes to the voltage,
bottom heat temperature, and irradiation time in sintering the ScSZ thin film, which contributed to
improvements in ionic conductivity [39]. In addition, the ionic conductivity of the flash light–sintered
ScSZ thin film with a 130 J/cm2 energy density, 600 ◦C bottom heater temperature, and 500 ms of
off-time was similar to that of the thermal-sintered ScSZ thin film. However, if the irradiation energy is
too high for flash light equipment, it could cause damage to the thin-film surface. Introducing a bottom
heater seemed to resolve the issue by buffering the thermal shock induced by flash light irradiation.
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XRD analysis and ionic conductivity measurement results indicate that ScSZ thin film is properly
fabricated by the flash light sintering method in a short period of time.

4. Conclusions

In this study, we demonstrated a novel flash light sintering method to fabricate scandia-stabilized
zirconia thin film. The flash light sintering method was used to overcome the drawbacks of conventional
thermal sintering, which requires vast amounts of time and energy during the thin-film manufacturing
process. Our results demonstrate the feasibility of a flash light sintering method for fabrication of
scandia-stabilized zirconia (ScSZ) thin films. ScSZ thin films were deposited using a chemical solution
deposition (CSD) method, then sintered by thermal sintering or flash light sintering with a bottom
heater. The surface morphology, chemical composition, ionic conductivity, and crystallinity were
measured by FE-SEM, XPS, a two-probe method, and XRD, respectively, to compare the characteristics
of differently sintered ScSZ thin films. Flash light sintering was applied in the sintering step under a
variety of energy density conditions. By testing and comparing the ionic conductivity performance of
the ScSZ electrolyte layer fabricated by thermal and flash light sintering methods, we found that flash
light sintering can replace thermal sintering in the fabrication process. Flash light sintering may be
used to overcome the disadvantages of conventional thermal sintering.
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