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Abstract. Computer-aided process planning for energy-efficient machining is essential as 

energy consumption becomes a major environmental metric in the metal cutting industry. This 

paper introduces a process planning approach that enables energy prediction in the process 

planning phase through incorporating Generative Process Planning (GPP) and Variant Process 

Planning (VPP), called Hybrid Process Planning. GPP is used to provide decision making 

algorithms in computers by generating energy prediction models specific for machining 

conditions. VPP is adopted to reuse existing process plans with inclusion of such prediction 

models so that process planners can anticipate the energy values to be consumed in machine 

tools. Particularly, the present approach builds upon predictive analytics to efficiently handle 

sensor-level data collected from real machining operations, and create energy prediction 

models by using a machine-learning technique.  

1. Introduction 

In metal cutting processes, process planning is mandatory to determine individual machining 

operations and strategies needed to fabricate a part [1]. Due to the multi-functionality of machine tools 

and the complexity of process planning, Computer-Aided Process Planning (CAPP), which uses 

computers for process planning, becomes essential to gain better speed, cost and time [1]. Recently, 

environmentally conscious (eco-) manufacturing receives much attention to enhance environmental 

performance [2] and energy consumption particularly becomes an important environmental metric [3]. 

Thus, eco-CAPP systems considering the energy aspect are vital for realizing energy-efficient 

machining.  

However, few studies have been made for providing eco-CAPP systems. The previous studies 

including [3] [4] [5] and [6] have contributed to embody energy-efficient machining through providing 

logical procedures in the domain of CAPP. The methods introduced in those studies are mainly based 

on Generative Process Planning (GPP). As GPP uses the algorithms implemented in computers to 

create process plans automatically without human intervention [7], it requires algorithm coding to 

decide their process parameters using energy prediction models. However, GPP has not been much 

propagated to industries because it serves the algorithms restricted under limited experimental 

conditions [8]. Unless such algorithms dynamically calibrate their models into changes in machining 

conditions, they lack in providing predictive results accurately for a huge number of machining 

conditions.  

Meanwhile, Variant Process Planning (VPP) is based on Group Technology (GT), which 

identifies part families and their standard plans with regard to their classification attributes [7]. If an 
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inputted part can be classified with a code number and its relevant standard plan exists in a standard 

process plan database, this standard plan would be retrieved through similarity search. If a part doesn’t 

have relevant standard plans, the most-similar plan would be retrieved. Due to this simplicity, VPP is 

more usable in industries; however, it also has a drawback [8]. VPP hardly provides predictive 

algorithms for improving performance because it only reuses existing standard plans.  

This paper introduces a CAPP approach for energy-efficient machining based on Hybrid Process 

Planning (HPP), which integrates advantages of GPP and VPP. This paper also contains a case study 

to demonstrate the feasibility of the proposed approach. The proposed approach: 1) uses sensor-level 

machine-monitoring data collected from previous machining executions for creating energy models, 2) 

applies GPP to create machine-specific energy models that can predict energy up to the level of tool 

paths, and 3) advances traditional VPP to enable model-based process planning through providing 

standard process plans together with such energy models. Therefore, the proposed approach makes 

CAPP systems feasible so that process planners proactively forecast energy consumption during 

process planning. The present work is an attempt of predictive analytics in that it aims at 

implementing a data-driven prediction environment to learn the past knowledge from sensor-level data.  

Section 2 introduces the concept of the proposed approach. Sections 3 and 4, respectively, 

explain the methods of energy predictive modelling and model-based process planning. Section 5 

shows a case study, and Section 6 concludes the remark. Note that the concept of HPP has been 

introduced like [8]. It is also noted that STEP-compliant data interface for Numerical Controller 

(STEP-NC) [9] is chosen as the data interface for process planning and MTConnect [10] as the data 

interface for machine-monitoring. 

2. Proposed approach  

Figure 1 shows the concept of the proposed approach. It comprises the two stages: preparatory and 

operation (these are the generic stages in VPP). The preparatory stage pre-identifies standard process 

plans with generating energy models before their use in the operation stage. This stage adopts the 

concept of GPP. On the other hand, as the operation stage builds upon the traditional VPP, it retrieves 

and edits standard plans with the use of energy models during the process planning phase. Here, an 

energy model is defined as a numerical function that characterizes the relationship between x variables 

(process parameters: feedrate, spindle speed, cutting depth and cutting width) and y variable (energy) 

at a certain set of Machining Configuration (MC) parameters. An energy model provides the ability to 

predict energy at the level of tool paths. The MC parameters are the classifier for identifying a specific 

machining condition where an energy model can be applied. Note that the machining data consist of 

process plan, Numerical Control (NC) program and machine-monitoring data. 

3. Methods for preparatory stage  

Section 3 explains technical methods for individual functions in the preparatory stage, which consist 

of data elements identification, data synchronization, prediction modelling, and model accumulation.  

3.1. Data elements identification  

This function defines the data elements that should be extracted from machining data to acquire the 

data instances for energy modelling. Specifically, this function identifies the data elements regarding x 

variables, y variable and a set of MC parameters while the data elements can be designated among 

process plan, NC program and machine-monitoring data. We first define a list of MC parameters (M) 

as below. Here, command stands for an NC block code such as G00 or G01, and trajectory does the 

specific purpose of an NC block code.   

 

}trajectory,command,strategy,feature,operation,material,machine|m,m,m,m,m,m,m{M 7654321  

 

Then, we define x variables as the four process parameters - feedrate (x1), spindle speed (x2), cutting 

depth (x3) and cutting width (x4) - and y variable as delta energy as below. Here, we use the concept of 

delta energy, which multiplies power with a sampling time interval of measuring power [11]. It comes 
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from that a power meter typically measures not energy directly but power at each timestamp because 

energy-unit is a scalar quantity [12].  

 

}energydelta,widthcutting,depthcutting,speedspindle,feedrate|y,x,x,x,x{)y,X( 4321M =  

 

Figure 1. Concept of the proposed approach 

3.2. Data synchronization  

This function extracts and collects data element instances, and synchronizes machine-monitoring data 

with process plan and NC program data to generate training datasets for machine-learning analysis. 

These data instances are extracted from entities or attributes designated in machining data. We can 

extract machine, material, operation, feature, strategy, feedrate, spindle speed, cutting depth and 

cutting width from a STEP-NC part program; command and trajectory from an NC program; while, 

delta energy from an MTConnect document, which records sensor-level data about a machine’s 

movements and actions [13]. As described in Section 3.1, the delta energy is indirectly acquired from 

wattage attribute in an MTConnect document.   

Data synchronization comprises time and context synchronizations. Time synchronization aligns 

machining data instances on timestamps. Context synchronization configures input-and-output 

datasets aligning with sets of MC parameters. These synchronizations can be achieved by backward 

connection. The first connecting point is the position attribute in an MTConnect document. Each 

position instance can be matched with its corresponding NC block because this NC block obviously 

commands the tool movement associated with the position. Such NC block can be the next connecting 

point with a STEP-NC part program because NC blocks are generated based on the STEP-NC 

program where machining operations and tool path strategies are specified. In such way, training 

datasets can be prepared, formalized into {M: X, y}.  

3.3. Energy modelling  

This function generates energy models through machine-learning analysis that uses training datasets. 

Machine-learning analysis learns training datasets to acquire knowledge. This energy modelling 

relates to supervised learning because input and output variables are supervised by humans. This 

supervised learning derives a numerical function y=f(X)+ε for an energy model through minimizing 

the error term (ε), which can be achieved by computing and adjusting appropriate coefficients 

repeatedly. Here, we use polynomial regression, which is commonly-used and applicable for 
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supervised learning. Figure 2 describes the structure of an energy model, which consists of a set of 

MC parameters and its corresponding energy function derived by regression.  

 

 

Figure 2. Structure of an energy model 

3.4. Model accumulation  

One problem of machine-learning analysis is that the models for the machining conditions that have 

not been run in machines cannot be created. It comes from the high dependency on training datasets, 

which do not exist in such machining conditions. For this case, this function creates alternative energy 

models based on existing energy models. Existing models can be reused to substitute for non-existent 

models through three kinds of methods: cloning, blending and competition.  

Some machining strategies already own their energy models by the methods explained from 

Section 3.1 to Section 3.3, but other strategies may not own. Each strategy is composed of not only 

similar but also different tool paths with other strategies. For example, the feed path in bidirectional 

can be treated to be similar with that of unidirectional due to their similarity in cutting pattern and 

contact volume. This similarity allows to make correlations among strategies. Hence, we can prepare a 

correlation matrix, which records the mutual similarity in energy demands in terms of high, middle 

and low levels. These levels can be determined by preliminary energy analysis using machining data. 

High-level correlation has priority of creating alternative models than middle or low level correlation.  

Figure 3 explains cloning, blending and competition. In Figure 3(a), cloning copies and pastes a 

high-level energy model. In Figure 3(b), blending chooses or synthesizes high-level models existent in 

multiple strategies. In Figure 3(c), competition selects the most-similar model when several high-level 

models exist in multiple strategies. This competition can be determined by likeliness or default setup. 

In such way, alternative energy models can be created for the machining conditions that do not own 

training datasets. Lastly, we can generate and accumulate machine-learned and alternative energy 

models in a knowledge base, process plan repository.  

4. Methods for operation stage  

Section 4 explains technical methods for individual functions in the operation stage, which consist of 

part coding, family search, process plans retrieval and models use. These methods build upon GT. 

Model-based process planning is possible through the integration of GT with the use of energy models.  

4.1. Part coding  

Once a part drawing is inputted, this function generates numerical codes, which identifies design 

attributes by numerical digits for efficient similarity search. A part can configure multiple sets of 

design attributes with respect to machining features. For problem simplification, we define the design 

attributes as below.  

 

}shapefeautre,material,feature|a,a,a{A 321=  
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(a) Cloning  (b) Blending 

 
(C) Competition  

Figure 3. Methods of creating alternative models 

4.2. Family search  

This function searches the most-relevant process plan from the process plan repository by the input of 

the numerical digits. The similarity search can be applicable by the nearest neighbour search, which 

calculates Euclidean distance between an inputted case and existing cases [14], as expressed in 

Equation (1). We assume that all the weight factors are identical for problem simplification. 

Calculating similarity distances allows to find the most-similar process plan that scores the minimum 

distance in their similarities.  

 

∑ -
m

1i

2

eiiei )aa(w)a,a(Similarity
=

=  (1), 

where, ai: an inputted case, ae: an existing case, m: the number of attributes, w: weight factor 

4.3. Process plan retrieval  

This function retrieves the most-similar process plan found from the process plan repository. The 

process plan information contain machine, (sub-) operation and strategy, as showed in Figure 4. 

Moreover, the retrieved process plan directly links with energy models for model-based process 

planning. In Figure 4, Alternatives 1 and 2, respectively, suggest two selective bidirectional and 

contour parallel strategies.  

4.4. Models use  

This function allows process planners to anticipate energy values during their process planning and 

part programming. Once process planners decide tool path movements and generate an NC program, 

sets of MC parameters are fully identifiable aligning with a sequence of tool paths. Thus, energy 

models can be combined with regard to sequential sets of MC parameters. Each energy model can 

calculate a predicted energy value whenever process parameters are inputted. In such way, the total 

energy consumed during the execution of an NC program can be calculated through summing each 

area bounded by a moving time and a predicted energy value. The moving time on a tool path can be 

obtained from the path length divided by cutting speed.  
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Figure 4. An example of standard process plan and energy model retrieval  

5. Case study 

5.1. Experiment 

Table 1 lists twelve sets of process parameters for fabricating twelve parts that contain thirteen 

machining features. Feedrate (x1), spindle speed (x2) and cutting depth (x3) are randomly determined 

within allowable ranges, and identically assigned on each trial. Cutting width (x4) is fixed as the 

cutting tool diameter. The experimental setup is as follows: machine (Mori Seiki NVD 1500 DCG), 

Computerized Numerical Controller (CNC) (Fanuc 0i), workpiece (steel 1018, 10.16*10.16*1.27cm), 

cutting tool (flat end mill, 8mm diameter, 4 number of flutes), and power meter (system insights high 

speed power meter). 

We perform actual machining based on the experimental setup. We collect twelve pairs of STEP-

NC and NC programs and their associating MTConnect documents. Machine (m1) and material (m2) 

are fixed as described above while operation (m3), feature (m4), strategy (m5), command (m6) and 

trajectory (m7) vary in terms of the entities and attributes coded in individual STEP-NC and NC 

programs.  

 

Table 1. List of process parameters 
Trial Feedrate (x1) (mm/tooth) Spindle speed (x2) (RPM) Cutting depth (x3) (mm) 

1 0.0127 1500 1.5 

2 0.0127 2000 1.5 

3 0.0127 1750 1.0 

4 0.0229 1750 1.0 

5 0.0127 1750 2.0 

6 0.0178 1500 1.0 

7 0.0178 2000 1.0 

8 0.0178 2000 2.0 

9 0.0178 1750 1.5 

10 0.0076 1750 1.5 

11 0.0152 1750 1.5 

12 0.0127 1750 1.5 

5.2. Data collection and synchronization   

Machine-monitoring data (MTConnect documents) comes from two sources. The CNC generates data 

instances including position and NC block, depending on task processing or events. The power meter 

measures power at 100 Hz frequency, independently with the CNC. Time synchronization combines 

these data instances from the two sources on the same timestamps, specially merged at average 0.365 

second intervals. Then, STEP-NC and NC data instances are synchronized with MTConnect data 

instances on the same time intervals. The context synchronization generates individual datasets with 

regard to sets of MC parameters, formalized into {M: X, y}.  
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In such way, we collect fifty-one datasets, which correspond to the number of total sets of MC 

parameters on twelve trials. For better performance in energy models, we carry out data cleaning. We 

exclude the erroneous power data instances null or less than 1500 watt. It comes from that the machine 

spends minimum 1500 watt during turned-on. We exclude power data instances lowermost 0.5% or 

uppermost 0.5% among the entire dataset. It causes from our outlier decision.  

5.3. Energy prediction modelling  

We generate fifty-one polynomial regression functions for energy models using KNIME, a data 

mining tool [15]. These models contain different coefficients in terms of m3, m4, m5, m6 and m7. Table 

2 presents the comparison result between the measured and predicted energy values on the twelve 

trials. Here, Root Mean Square Error (RMSE) means the average difference between individual 

measured and predicted energy values; meanwhile, Relative Total Error (RTE) measures percentages 

of the total measured and predicted energy difference. It is observable that energy models make a good 

performance to anticipate energy values within absolute 1.08% RTE. It conjectures from that energy 

models are accurately learned to ensure the rigidity of prediction through decomposing energy 

mechanism granularly up to the level of tool paths.  

 

Table 2. Comparison between measured and predicted energy  
Trial Measured energy (kJ) Predicted energy (kJ) RMSE (J) RTE (%) 

1 13980.5 13929.1 28.67 -0.37 

2 11410.0 11442.1 29.72 0.28 

3 19571.3 19494.0 23.62 -0.40 

4 9859.9 9853.1 28.39 -0.07 

5 9973.1 10037.9 34.50 0.65 

6 13392.9 13444.0 25.30 0.38 

7 11079.3 11111.9 26.26 0.29 

8 6038.8 5973.8 41.10 -1.08 

9 9764.7 9734.8 32.58 -0.31 

10 19312.8 19329.6 21.82 0.09 

11 10821.5 10903.4 30.12 0.76 

12 12607.7 12557.4 29.98 -0.40 

5.4. Model accumulation  

We produced three closed pocket features by bidirectional and contour parallel strategies but not 

unidirectional nor contour bidirectional. Nevertheless, the energy models for the two latter strategies 

can be alternatively created using the method explained in Section 3.4. In Figure 5(a), the approach 

and retract tool paths on unidirectional can clone those from the common strategy. The linear feed 

path on unidirectional can chose that of bidirectional through competition (specifically, likeliness) 

because they have high-level correlation and make the closest tool path patterns. In Figure 5(b), the 

energy models for contour bidirectional can be created from those of bidirectional or contour parallel 

through blending.  

 

 

 

 

(a) Unidirectional  (b) Contour bidirectional  

Figure 5. Cases of creating alternative models 
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6. Conclusion  

This paper proposed a HPP-based process planning approach to enable energy prediction in the 

process planning phase through incorporating GPP and VPP. The proposed approach could create 

machine-specific models that can predict energy up to the level of tool paths, and use such energy 

models to implement model-based eco-process planning.  

However, the present work has limitations. It only provides energy prediction models, but does 

not cover optimal process parameters for minimizing energy automatically. It excludes productivity 

performance including machining time and surface roughness, which are still significant in eco-

process planning. We plan to advance the proposed approach toward multi-objective optimization 

through accommodating energy minimization and productivity performance.  

7. Acknowledgments 

This work was supported by Basic Research Program in Science and Engineering through the Ministry 

of Education of the Republic of Korea and National Research Foundation of Korea (No. NRF-

2018R1D1A1B07047100).  

8. References 

[1] Groover MP, Zimmers Jr EW 1984 CAD/CAM: Computer-aided design and manufacturing 

(Englewood: Prentice-Hall) 

[2] Kara S and Li W 2011 Unit process energy consumption models for material removal processes 

CIRP Annals – Manufacturing Technology 60 37–40 

[3] Newman ST, Nassehi A, Imani-Asrai R and Dhokia V 2012 Energy efficient process planning 

for CNC machining CIRP Journal of Manufacturing Science and Technology 5 127-136 

[4] Zhao F, Murray VR, Ramani K and Sutherland JW 2012 Toward the development of process 

plans with reduced environmental impacts Frontiers of Mechanical Engineering 7(3) 231-246. 

[5] Peng T and Xu X 2014 A holistic approach to achieving energy efficiency for interoperable 

machining systems International Journal of Sustainable Engineering 7(2) 111-129. 

[6] Wang S, Lu X, Li XX and Li WD 2015 A systematic approach of process planning and 

scheduling optimization for sustainable machining Journal of Cleaner Production 87 914-929. 

[7] Amstead BH, Ostwald PF and Begeman ML 1987 Manufacturing process (New York: John 

Wiley & Sons) 

[8] Elinson A, Nau DS, Herrmann JW, Minis IE and Singh G 1997 Toward hybrid 

variant/generative process planning ASME Design Engineering Technical Conference 

(Sacramento: U.S.A.) 

[9] Xu XW, Wang H, Mao J, Newman ST, Kramer TR, Proctor FM and Michaloski JL 2005 STEP-

NC compliant NC research: the search for intelligent CAD/CAPP/CAM/CNC integration 

International Journal of Production Research 43(17) 3703-3743 

[10] Shin SJ, Woo JY, Kim DB, Kumaraguru S and Rachuri S (2015) Developing a virtual 

machining model to generate MTConnect machine-monitoring data from STEP-NC 

International Journal of Production Research 54(15) 4487-4505 

[11] Bhinge R, Park J, Law KH, Dornfeld DA, Helu M and Rachuri S 2017 Toward a generalized 

energy prediction model for machine tools Journal of Manufacturing Science and Engineering 

139(4) 041013. 

[12] Campatelli G, Lorenzini L and Scippa A 2014 Optimization of process parameters using a 

response surface method for minimizing power consumption in the milling of carbon steel 

Journal of Cleaner Production 66 309-316 

[13] Vijayaraghavan A and Dornfeld AD 2010 Automated energy monitoring of machine tools CIRP 

Annals - Manufacturing Technology 59 21–24 

[14] Zezula P, Amato G, Dohnal V and Batko M 2006 Similarity Search - The metric space 

approach (New York: Springer) 

[15] Berthold MR, Cebron N, Dill F, Gabriel TR, Kotter T, Meinl T, Ohl P, Sieb C, Thiel K and 

Wiswedel B 2008 KNIME: The Kostanz information miner Data Analysis, Machine Learning 

and Applications (Berlin: Springer-Verlag)  


