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Optical experiment to test negative 
probability in context of quantum-
measurement selection
Junghee Ryu   1*, Sunghyuk Hong2, Joong-Sung Lee2, Kang Hee Seol2, Jeongwoo Jae2, 
James Lim3, Jiwon Lee2, Kwang-Geol Lee2* & Jinhyoung Lee2*

Negative probability values have been widely employed as an indicator of the nonclassicality of 
quantum systems. Known as a quasiprobability distribution, they are regarded as a useful tool that 
provides significant insight into the underlying fundamentals of quantum theory when compared to the 
classical statistics. However, in this approach, an operational interpretation of these negative values 
with respect to the definition of probability—the relative frequency of occurred event—is missing. 
An alternative approach is therefore considered where the quasiprobability operationally reveals the 
negativity of measured quantities. We here present an experimental realization of the operational 
quasiprobability, which consists of sequential measurements in time. To this end, we implement two 
sets of polarization measurements of single photons. We find that the measured negativity can be 
interpreted in the context of selecting measurements, and it reflects the nonclassical nature of photons. 
Our results suggest a new operational way to unravel the nonclassicality of photons in the context of 
measurement selection.

As previously discussed by Richard P. Feynman, a negative probability, which relaxes the axiom of a non-negative 
probability of an event in Kolmogorov’s probability theory, sheds new light on our understanding of quantum 
phenomena1,2. The essence of his idea is that a negative probability results in much less mathematical com-
plications in intermediate steps for the analysis of a given physical event. As an example, Feynman developed 
joint probability distributions for spin-1/2 systems to address Young’s double-slit experiment using a different 
approach, such that the probability distributions can have negative values1. Such an idea has been applied to many 
studies involving various quantum phenomena3–7. In particular, the negative probability approach provides new 
insight into a disagreement between classical and quantum predictions on the Bell’s theorem8. It is experimentally 
verified that our nature cannot be described by any classical theory of local realism, as the classical theory obeys 
but the quantum theory violates the Bell inequalities9–11. Negative probability introduces a different point of view 
that local realistic theory endowed with a negative probability can simulate violations of the Bell inequalities, 
similar to quantum theory12–14. However, these negative probabilities are distinct from the definition of probabil-
ity with respect to the relative frequency of events, in which case, an operational interpretation is not necessarily 
straightforward (for historical review, see ref. 15).

On the other hand, negative values play a role as an indicator. Let us retrace Feynman’s example on the trading 
of apples1: “A man starting a day with five apples who gives away ten and is given eight during the day has three 
left.” Feynman pointed out that the initial and final numbers of apples, we denote by (5,3) and call a fundamental 
entity, can be calculated in the following two ways. The first case reads “beginning with 5 apples at time t1, given 8 
at t2, giving away 10 at t3, and having 3 left at t4”, or symbolically, + − =5 8 10 3t t t t1 2 3 4

 with a time ordering <t ti j 
for <i j. This can be claimed to be natural since the apple number is always kept as non-negative. On the other 
hand, Feynman introduced an alternative model which disregards keeping the apple number as nonnegative but 
maintains the same fundamental entity ( )5 , 3t t1 4

; it reads − = −5 10 5, and − + =5 8 3. Note that the latter 
model disregards the chronological order ti, i.e., changes the order of trading, thus a negative number of apples 
appears in the intermediate steps. Although such negative numbers are abstract, allowing negativity leads to have 
more freedom in mathematical analysis without altering the fundamental entity. We say that such a model is free 
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of time context16,17. In other words, the time context-free approach maintains the same fundamental entity at the 
expense of relaxing the assumption of nonnegative apples. Moreover, the negative apples in the intermediate steps 
introduce the idea of “debts” with respect to the trading of apples (the indicator).

In quantum optics, negative values have been widely used as an indicator of nonclassicality in regard to clas-
sical statistics. For instance, the Wigner function, one of the so-called quasiprobability distributions, is used to 
represent a joint distribution of the position and momentum in phase space18. However, due to the uncertainty 
principle with such conjugate variables, the Wigner function is negatively valued for some quantum states. It 
witnesses quantum phenomena of the states and has been generalized to finite dimensional systems such as quan-
tum bits, and currently the quasiprobability approach has been applied to the omnidirectional range of fields in 
quantum information science19–30.

However, such nonclassicality indicators with Wigner functions lack the operational formalism wherein 
preparation, operation, and measurement cooperate explicitly16,17. Negative values in one quasiprobability can 
be positive in another. This fact can be an obstacle to the operational interpretation of these negative values. 
Furthermore, their comparison to classical statistics reveals the subtlety that quasiprobabilities require differ-
ent physical interpretations for the same form of functionals as their classical counterparts. This is described 
as “incommensurability” of quasiprobabilities31,32. Therefore, it is more natural to employ quasiprobability that 
compares quantum and classical statistics on the same footing.

The operational quasiprobability (OQ) introduced in31,32 allows the problems in question to be resolved. The 
OQ is commensurate since it evaluates the statistics of the mathematical functionals with the same physical 
interpretation in every model, regardless of whether a quantum or classical case is being considered. The OQ 
consists of selective and sequential measurements in time and is formulated as joint probability distributions that 
simultaneously describe multiple measurement setups. We consider the expectation values of multiple measure-
ment setups as fundamental entities, i.e., the measurable quantities of interest. The OQ method allows the joint 
distributions to be independent of the measurement setups and to simultaneously describe the multiple-setup 
outcomes, even though the distributions can be negative. This method can be considered as an alternative way 
of describing quantum theory that depends on the setups. It allows a direct comparison between quantum and 
classical statistics and identifies nonclassicality in an operational way.

We are focused on the specific feature that the moments will vary depending on the measurement(s) that are 
performed. This is called measurement-selection context and is similar to the time context of the Feynman’s apple 
example. The fundamental entity is a set of all moments in the single measurements. For two dichotomic observ-
ables, it is A B{( , )}n m  with An  being n-th moments in one of the single measurements and similarly Bm  in 
the other. The OQ is free of the measurement-selection context, in the sense that the local marginals of the joint 
distribution are equal to the probabilities of the single measurements. This is one of the most astonishing features 
that classical models presume, including a macrorealistic model33. Moreover, the context-free OQ can always be 
constructed in quantum theory, even though quantum theory is not context-free. Instead, the quantum OQ pays 
a tariff of negative probabilities. Such inevitable negatives can be understood as an indicator of nonclassicality in 
the context of measurement selection.

The macrorealistic model assumes no-signaling in time (NSIT) and arrow of time (AoT); NSIT implies that a 
later measurement produces a result which is not affected by whether or not an earlier measurement is performed, 
and AoT is a similar condition where the role of later and earlier measurements is exchanged. In other words, 
roughly speaking, the two measurements are independent, and both of the sequential measurement and the indi-
vidual measurements leave the fundamental entity unchanged. The classical model is thus free of the 
measurement-selection context. More explicitly, when two measurements are sequentially performed at times t1 
and t2 with <t t1 2, respectively, or they are individually performed, the NSIT and AoT are described by 

=

= .

P a P a
P a P a

NSIT: ( ) ( ),
AoT: ( ) ( )

t t t

t t t

2 , 2

1 , 1

2 1 2

1 1 2

Here P a( )t ii
 are the probabilities of the single measurements, whereas P a( )t t i,1 2

 are the marginals of the joint meas-
urement P a a( , )t t, 1 21 2

 such that = ∑
≠

P a P a a( ) ( , )t t i a t t, , 1 2j i1 2 1 2
 for =i j, 1, 2. In contrast, quantum theory violates the 

macrorealistic assumptions and it is contextual with the measurement selection.
However, its OQ representation allows the joint distribution to be free of measurement-selection context as in 

the macrorealistic model, and it pays the quantum tariff of negative probabilities. The OQ representation states 
that a quasiprobability distribution   is operationally defined for both quantum and classical models by31,32: 

 = + 
 − 

 + 
 − 

.a a P a a P a P a P a P a( , ) ( , ) 1
2

( ) ( ) 1
2

( ) ( )
(1)t t t t t t t t1 2 , 1 2 1 , 1 2 , 21 2 1 1 2 2 1 2

The   has marginal probabilities equal to those of the single measurements. The presence of negative  a a( , )1 2  
originates from the statistical difference between the single and sequential measurements. Note that   will be 
nonnegative joint probabilities if NSIT and AoT are applicable. Thus, measuring OQ represents an evaluation of 
the context-free model for a given experiment on one hand, and also is a test of whether a given system violates 
the macrorealistic model based on its negative values on the other hand. Recently, experiments to test macroreal-
ism have been conducted with various quantum states and measurement schemes34–37.

It is worth noting that a negative OQ suffices for the failure of the macrorealistic description but is not nec-
essary. Despite the violation of the assumptions, we can still observe a positive OQ depending on the statis-
tical differences. Such a behaviour was reported by employing general measurements32. This implies that the 
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macrorealism, or the conditions of NSIT and AoT cannot fully capture the classicality reflected by the OQ posi-
tivity in the context of measurement-selection.

We now experimentally illustrate the negative probability in an operational way by measuring the degrees of 
freedom of the polarization of single photons. By considering the negative quasiprobability together with the 
quantum nature of photons, nonclassicality was demonstrated in the laboratory. To this end, we selectively imple-
mented two sets of polarizations at consecutive times; the horizontal/vertical (H/V) measurement at t1 and the 
diagonal/anti-diagonal (D/A) at t2. Let us denote the selection of measurements by a tuple n n( , )1 2 . We can then 
perform the following four measurement setups: (i) no measurement by =n n( , ) (0, 0)1 2 , (ii) H/V single meas-
urement by =n n( , ) (1, 0)1 2 , (iii) D/A single measurement by =n n( , ) (0, 1)1 2 , and (iv) consecutive joint meas-
urement of H/V and D/A by =n n( , ) (1, 1)1 2 . In this way, each of the probabilities at times ti in equation 1 is 
associated with the tuple. We represent the experimental results by the notation of times for convenience. For 
example, the joint probabilities P a a( , )t t, 1 21 2

 are equal to P a a( , )n n, 1 21 2
 with =n n( , ) (1, 1)1 2 . The negativity is 

defined by the sum of the negative components of a a( , )1 2 : ≡ ∑ − .a a a a[ ( , ) ( , )]a a
1
2 , 1 2 1 21 2

N W W  The max-
imum of the negativity is − ≈ .( 2 1)/4 0 104 in case of two measurements31. We investigated the negativity of 
OQ for two input sources: (i) heralded single photons generated by spontaneous parametric down-conversion 
(SPDC) and (ii) single photons emitted from a single molecule. Note that all inputs were set to generate a single 
photon.

For the generation of heralded single photons, we exploited collinear type-II SPDC as shown in Fig. 1b. The 
signal was counted only when the trigger (Dtrigger) clicked. The input polarization state of a single photon is given 
by θ φ θ θΨ = + φH e V( , ) cos( /2) sin( /2)i  with θ φ ∈ , [0, 90 ], where the angles of waveplates determine θ 
and φ (see Methods). To experimentally implement the four measurement setups for OQ, which are described in 
Fig. 1a, we used the arrangement depicted in Fig. 1b. Three polarizing beam splitters (PBSs) and two half-wave 
plates (HWPs) are used to selectively measure the polarization states of photons. The PBS1 is used for the H/V 
polarization measurements and the two PBS2 and PBS3 with the HWPs are used for the D/A polarization meas-
urements. Selective measurements can be performed by moving each PBS in and out of the path of the input 
beam. In the laboratory, we positioned two PBS2 and PBS3 at fixed positions to reduce experimental errors, and 
moved only the PBS1 to implement the four measurement setups. In the detection part, we counted the relative 
ratio of measurement outcomes as follows: =P a a N a a N( , ) ( , )/n n n n n n, 1 2 , 1 2 ,

tot
1 2 1 2 1 2

, where N a a( , )n n, 1 21 2
 denotes the 

sum of the counted photons at the detector Da a,1 2
 and Nn n,

tot
1 2

 is the total number of counted photons at all detectors 
for a given setup n n( , )1 2 . See Methods for more details.

Figure 2 shows the negativity of OQ by the heralded single photon as a function of θ and φ in the state 
θ φΨ( , ) . For φ = 0 , we observed the negativity for all range of θ (see Fig. 2a). The error bars are obtained by 

considering the functioning errors of the optics and devices used (see Supplementary Information). Figure 2b 
shows a contour plot of the negativity as varying the variables θ and φ. The maximum negativity yields  ≈ .0 103 
at θ = 45  and φ = 0 , which well reproduces the theoretical prediction31. The negativity clearly indicates that any 
classical models that assume the NSIT and AoT conditions, cannot describe the nonclassicality of a single 
photon.

The quantum nature and the negativity of a single photon is reduced due to the decoherence. Figure 3a shows 
the theoretical values of the negativity on a cross-section of the Bloch sphere for φ = 0 . A pure state in the form 
of θ φ θ θΨ = = +H V( , 0) cos( /2) sin( /2)  with θ≤ ≤ 0 360  is placed on the rim of the plane. The  
inner points correspond to mixed states which are in the probabilistic mixture of the pure states; 
 θ θ α θ θ θ θ= Ψ Ψ + Ψ Ψα α+ −^( , , ) ( ) ( ) ( ) ( )1 2

1
2 1 1

1
2 2 2 , where α determines the mixing ratio of two pure states 

with a constraint of α ≤ 1. When α = 1, ̂ becomes the pure state. The central point of the circle indicates a 
completely depolarized state. The diamond dash lines in Fig. 3a represent the mixture of two pure states, where 
the negativity becomes zero and thus their convex region inside the dash lines also has a zero negativity. In this 
case, the experimental results, Fig. 3b, are again in well agreement with the theoretical predictions.

The heralded single photons exhibit an anti-bunching feature (see Supplementary Information). However, 
discussions on the second-order correlation function of these photons have been previously reported38–40. As 
a demonstration with a deterministic single photon source, we performed similar measurements with pho-
tons emitted from a single molecule (terrylene)41 (see Methods for more experimental details). In this case, the 
photon statistics clearly show the anti-bunching nature without any detection schemes such as triggering (see 
Supplementary Information). A similar negativity is obtained compared to the SPDC case (see Fig. 3c).

Finally, we also performed the same experiment with the weak-field light source (see Supplementary 
Information). Similar to the results obtained for the single photon sources, we also observed negative values. 
In this experiment, we post-selected the raw data to evaluate the negativity in a way that only single APD clicks 
were sampled and the rest of events, e.g., more than two clicks simultaneously were neglected. In general, the 
weak-field light is understood not to be the single-photon source in the sense that this light does not show the 
anti-bunching effects. However, the negativity can be detected with a post-selection process. Recently, such a 
phenomenon was reported that a coherent state of the optical field can show the nonclassicality32,42. We highlight 
that the operational quasiprobability reveals the negativity by an interplay between given state and measurement.

In conclusion, we experimentally explored the negativity of the operational quasiprobability by measuring 
the single photon polarizations. We introduced the context of measurement selection by constructing the qua-
siprobability such that by marginals it provides the same fundamental entity as that of the single measurements. 
As a result, the quasiprobability can reproduce the quantum predictions by allowing negative probabilities. The 
measured negatives highlight the discrepancy between the classical and quantum predictions in the context of 
measurement selection. In the case of the classical prediction, we investigated the macrorealistic model assuming 
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the NSIT and AoT conditions. In this model, the operational quasiprobability becomes a legitimate joint proba-
bility distribution for the given measurement setups. Therefore, observing the negatives highlights the nonclassi-
cal property in the context of measurement selection. We note that negativity is merely a sufficient condition for 
violating the NSIT. That is, the operational quasiprobability can be nonnegative even if the NSIT is violated. Such 
a case is encountered if a general measurement is involved, which will be discussed in a forthcoming paper. From 
a fundamental perspective, the measured negativity provides an operational approach to unravel the nonclassi-
cality of photons in the context of measurement selection.

Methods
Input preparation.  Heralded single photons: The experimental schematic used to generate the heralded 
single photons is shown in Fig. 1b. Orthogonally polarized photon pairs are generated by a type-II SPDC process 
using a 401.5 nm continuous wave (CW) mode laser to irradiate a periodically poled KTiOPO4 (PPKTP). The 
resulting photon pair is separated using a PBS. The horizontally polarized photon (signal) is used as the input 
photon and the vertically polarized photon (idler) is used as the trigger. Simultaneous detection in the signal and 
idler channels exclude the contribution of the vacuum state of the SPDC source, and thus gives the anti-bunching 
property of the heralded single photons. We also experimentally examined this by measuring a second-order 

Figure 1.  Experimental scheme for measuring the polarization of single photons. (a) A sequential polarization 
measurement was implemented. Two knobs denoted by n1 and n2 indicate the selective polarization 
measurements at the times t1 and t2, respectively. Such configurations are implemented in a laboratory setting, as 
shown (b). When the PBS1 is in position, the H polarization is measured by taking the sum of clicks on D0,0 and 
D0,1 and the V polarization is obtained from the sum of D1,0 and D1,1. If the PBS1 is out, then the input light 
travels directly to the PBS2 corresponding to the D/A polarization measurement (see Methods for more details).
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correlation function with multi-channel correlation measurements and obtained a value of = .g (0) 0 0362  (for 
more details, see Supplementary Information).

Single photons from a single molecule: The output of a CW-mode laser (532 nm) is focused using an oil objec-
tive (NA = 1.40) onto a single terrylene molecule which is embedded in a thin para-terphenyl crystal (~20 nm) in 
a total internal reflection geometry38. The emitted fluorescence signal transmitted across a long-pass filter (LPF) 
is collected by the same objective and diverted to the detection part. The measurement value of g (0)2  is 0.14 (see 
Supplementary Information).

Input polarization state: The input photon polarization state was set to a pure state for H/V polarization states 
in the form of θ φ θ θΨ = + φH e V( , ) cos( /2) sin( /2)i , where θ and φ are the bases of the polar coordinates on 
a unit sphere, called a Bloch sphere. To prepare such a state, the horizontally polarized photons are sequentially 
transmitted through the half wave-plate (HWP) and two quarter wave plates (QWPs) as illustrated in Fig. 1b. The 
last QWP is fixed at the angle of π/4. The final polarization state of the input photon is obtained as follows: 

π π
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Figure 2.  Negativity with a source by spontaneous parametric down conversion. (a) Negativity as a function of 
θ with a fixed value of φ = 0  of the state θ φ θ θΨ = + φ⟩ ⟩ ⟩H e V( , ) cos( /2) sin( /2)i . The black line shows the 
theoretical values and the i experimental results are denoted by the red circles with the error estimation. (b) A 
contour plot of the measured negativity for θ φ≤ ≤ 0 , 90 . The inset represents the theoretical values. The 
experimental maximum negativity  ≈ .0 103 is obtained at θ = 45  and φ = 0 .

Figure 3.  Negativity of the mixed states. (a) Simulation of the negativity in a cross-sectional plane  
of a Bloch sphere for φ = 0 . The points on the surface of the circle corresponds to the pure state as 

θ φ θΨ = 〉 = 〉H( , 0) cos( /2) θ+ 〉Vsin( /2) . The inner points correspond to the mixed states which can  
be represented by a probabilistic mixture of the pure states as ̂ θ θ α θ θ= Ψ Ψ +α+( , , ) ( ) ( )1 2

1
2 1 1  

θ θΨ Ψα− ( ) ( )1
2 2 2 with a mixing parameter α. The yellow dotted lines denote the mixture of two pure states 

among the four measuring bases which results in zero negativity for each case. All points inside the dotted 
square, therefore, give a zero negativity. The centre position corresponds to a completely depolarized state.  
(b) Experimental results for the heralded single photons and (c) for single photons from a molecule. We 
plotted the data for the different conditions of the parameters as θ≤ ≤ 0 1801 , θ θ= + 1802 1 , and α ≤ 1 
with resolution values of θ∆ = 11  and α∆ = 1/30. The slightly distorted shape is due to the imperfect 
alingment and response of the wave-plate in the experiments.
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where TQ(H)WP represents the transfer matrix of the corresponding wave-plate. The parameters of p q, , and π/4 are 
the rotating angles of the waveplates and follow the relations: π φ θ= + −p ( )/4 and π θ= −q ( /2 )/2.

Collecting data.  In the detection part, we counted the relative ratio of measurement outcomes as follows: 
=P a a N a a N( , ) ( , )/n n n n n n, 1 2 , 1 2 ,

tot
1 2 1 2 1 2

, where N a a( , )n n, 1 21 2
 denotes the sum of the counted photons at the detector 

Da a,1 2
 and Nn n,

tot
1 2

 is the total number of counted photons at all detectors for a given setup n n( , )1 2 . We here describe 
in detail how to obtain each component in Eq. 1 in terms of the measurement setting n n( , )1 2  and the detectors 
(APDs) Da a,1 2

.

	 1.	 P a a( , )t t, 1 21 2
: we implement the consecutive measurement of H/V and D/A, which corresponds to 

P a a( , )n n, 1 21 2
 with =n n( , ) (1, 1)1 2 . Then, collect the data at all the APDs Da a,1 2

.
	 2.	 P a( )t 11

: this corresponds to the H/V single measurement that can be rewritten by P a( , 0)n n, 11 2
 with 

=n n( , ) (1, 0)1 2 . In laboratory, we fixed the PBS2,3, thus it can be obtained by the marginal of the 
P a a( , )n n, 1 21 2

 with =n n( , ) (1, 1)1 2 . That is, = +P a P a P a( , 0) ( , 0) ( , 1)1,0 1 1,1 1 1,1 1 . In this case, the data is 
collected at Da ,01

 for P a( , 0)1,1 1  and Da ,11
 for P a( , 1)1,1 1 .

	 3.	 P a( )t t, 11 2
: this is simply a marginal of a2 by P a a( , )t t, 1 21 2

.
	 4.	 P a( )t 22

: this corresponds to the D/A single measurement that is given by P a(0, )n n, 21 2
 with =n n( , ) (0, 1)1 2 . 

After the PBS1 is out, we collect the data at APDs D a0, 2
.

	 5.	 P a( )t t, 21 2
: this is simply a marginal of a1 by P a a( , )t t, 1 21 2

.

Detection and data acquisition.  The photon clicks of the single photon counting detectors (Perkin-Elmer, 
SPCM-AQ4C) are sent to a field-programmable gate array (FPGA, NI PXI-7841R) for the post-selection process. 
For data acquisition and processing, the FPGA operates at a 25 ns clock speed (40 MHz) and 125 ns processing 
cycle. Each detector has a slightly different detection efficiency; therefore, it is of crucial importance that their 
effective efficiencies are equalized. To this end, we measured the counts of the input polarization with the angle 
θ = 45 , where all four detectors are supposed to have the same input photon flux under the same detection effi-
ciency. The detected counts are used as the references to normalize the signals of each detector.

The sum of the detected counts at four APDs is about 104 on average, for all values of θ and φ. Table 1 shows 
some examples of the detected counts for each APD from Fig. 2a.

Data availability
All relevant data are available from the corresponding author on reasonable request.
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