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A B S T R A C T

Background: The development of optimal classification criteria for specific mental disorders which share similar
symptoms is an important issue for precise diagnosis. We investigated whether P300 features in both sensor-level
and source-level could be effectively used to classify post-traumatic stress disorder (PTSD) and major depressive
disorder (MDD).
Method: EEG signals were recorded from fifty-one PTSD patients, 67 MDD patients, and 39 healthy controls
(HCs) while performing an auditory oddball task. Amplitude and latency of P300 were evaluated, and the
current source analysis of P300 components was conducted using sLORETA. Finally, we classified two groups
using machine-learning methods with both sensor- and source-level features. Moreover, we checked the co-
morbidity effects using the same approaches (PTSD-mono diagnosis (PTSDm, n=28) and PTSD-comorbid di-
agnosis (PTSDc, n=23)).
Results: PTSD showed significantly reduced P300 amplitudes and prolonged latency compared to HCs and MDD.
Moreover, PTSD showed significantly reduced source activities, and the source activities were significantly
correlated with symptoms of depression and anxiety. Also, the best classification accuracy at each pair was as
follows: 80.00% (PTSD-HCs), 67.92% (MDD-HCs), 70.34% (PTSD-MDD), 82.09% (PTSDm-HCs), 71.58%
(PTSDm-MDD), 82.56% (PTSDc-HCs), and 76.67% (PTSDc- MDD).
Conclusion: Since abnormal P300 reflects pathophysiological characteristics of PTSD, PTSD patients were well-
discriminated from MDD and HCs when using P300 features. Thus, altered P300 characteristics in both sensor-
and source-level may be useful biomarkers to diagnosis PTSD.

1. Introduction

Shared symptoms of post-traumatic stress disorder (PTSD) and
major depressive disorder (MDD), such as emotional numbing, dys-
phoria, poor sleep, irritability, and difficulties with concentration, can
have a number of adverse effects on individuals (Elhai et al., 2011; Gros
et al., 2012; Post et al., 2011). Thus, more efforts have been made to
understand the unique biomarkers of these diseases to enhance diag-
nostic accuracy by minimizing burdens of patients and care providers,
as various neurophysiology-based biomarkers could function as useful
assistance tools for the diagnosis of both diseases (Kemp et al., 2007;
Kennis et al., 2013; Whalley et al., 2009).

In particular, dynamic neural activities could well reflect the in-
trinsic characteristics of each disorder. According to functional

magnetic resonance imaging (fMRI) research (Whalley et al., 2009),
patients with PTSD and MDD showed different neural responses when
reading emotional texts, with PTSD patients exhibiting enhanced he-
modynamic activity in the hippocampus, precuneus and cingulate
cortex compared to MDD patients and healthy controls (HCs). With a
number of shared symptoms, MDD and PTSD are often comorbid, and
these patients with both pathologies exhibit different brain activation
patterns compared to individuals with MDD or PTSD, alone. More
specifically, individuals with both MDD and PTSD exhibit reduced
amygdala and frontal activation compared to PTSD patients without
MDD (Kemp et al., 2007). Also, the synchrony between the anterior
cingulate cortex (ACC) and other brain areas in PTSD patients with
MDD was enhanced compared to PTSD patients without depression,
and the disrupted ACC connectivity was closely related to symptoms of
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avoidance and emotional numbing of PTSD patients with MDD (Kennis
et al., 2013). A number of previous research has focused on neuronal
activities during the processing of emotional information in two dis-
orders. However, the altered cognitive process also is an important
pathology of PTSD and MDD (Ehlers and Clark, 2000; Hammar and
Årdal, 2009; Lee et al., 2012).

The event-related potentials (ERPs) are a useful measure for ex-
amining cognitive processes that occur for very short periods of time
(Pfurtscheller and Da Silva, 1999). Particularly, P300 is well known to
be closely associated with cognitive processes (Linden, 2005; Polich,
2007), and a large body of research has documented abnormal P300 as
one of many characteristics of both MDD and PTSD. According to
previous research, PTSD showed reduced P300 amplitude and pro-
longed latency compared to HCs, and altered P300 amplitude was
significantly related to cognitive impairment, attentional allocation
problems (Javanbakht et al., 2011a; Lobo et al., 2015), and other PTSD
symptoms such as numbing (Araki et al., 2005; Bae et al., 2011;
Felmingham et al., 2002; Kim et al., 2009). Individuals with MDD
showed decreased P300 amplitudes compared to HCs as well as PTSD
(Mumtaz et al., 2015b). Meanwhile, P300 latencies were prolonged in
MDD compared to HCs (Kawasaki et al., 2004; Vandoolaeghe et al.,
1998), Moreover, the abnormal source activities of MDD in the frontal
and the temporo-parietal area were revealed by a source imaging study
(Kawasaki et al., 2004).

The unique P300 characteristics could be useful biomarkers when
classifying psychiatric disorders from HCs using machine-learning
method. In case of the differentiating between MDD patients from HC
using P300, the classification accuracy of 90.5% was achieved by the
logistic regression classifier (Mumtaz et al., 2015a). Moreover, the MDD
patients were differentiated with relatively high classification accuracy
using various neurological measures such as power spectral density as
well as ERPs (Mumtaz et al., 2015b; Mumtaz et al., 2017). However,
previous machine-learning studies which attempted to predict PTSD
used only symptoms scores as the criteria features, lacking a functional
neurological measure such as P300 (Karstoft et al., 2015; Leightley
et al., 2019). Moreover, the study which directly differentiated PTSD
and MDD using P300 features at both sensor- and source-level has not
yet been reported.

The aim of this study is to investigate differences of P300 features in
both sensor- (amplitude and latency) and source-level (source activ-
ities) between PTSD and MDD using an auditory oddball task.
Additionally, we investigated the possible relationships between P300
features and symptom severity scores. Finally, we examined the possi-
bility of P300 characteristics as a biomarker by differentiating PTSD,
MDD, and HCs using a machine learning methodology with sensor- and
source-level P300 features. To the best of our knowledge, this is the first
ERP study to investigate the differences of the cognitive process be-
tween PTSD and MDD and further to differentiate two disorders based
on machine learning measure.

2. Material and methods

2.1. Participants

Fifty-one PTSD patients, 67 MDD patients, and 39 HCs were re-
cruited for this study from the Psychiatry Department of Inje University
Ilsan Paik Hospital. The patients' diagnoses were based on the
Diagnostic and Statistical Manual of Mental Disorders, 4th edition
(DSM-IV) Axis I Psychiatric Disorders by a board-certified psychiatrist.
Patients were excluded if they accorded with the following contents: 1)
abnormality of the central nervous system, 2) medical histories of al-
cohol or drug abuse, 3) mental retardation, 4) a history of head injuries
with loss of consciousness and experience with electrical therapy, 5)
psychotic symptoms lasting for at least 24 h. To control for the influ-
ence of anxiety, the MDD patients with comorbid anxiety disorders (e.g.
general anxiety disorder, panic disorder, and obsessive-compulsive
disorder) were excluded by an expert clinician with the DSM- IV di-
agnostic criteria. HCs were recruited from the local community through
local newspapers and posters. A person without any psychiatric medical
history was recruited for HCs. If HCs took or have taken any kinds of
psychotropic medication, they were excluded in the study. All partici-
pants provided written informed consent, and the study protocol was
approved by the Institutional Review Board of Inje University Ilsan Paik
Hospital (2015-07-025 and 2015-07-048-002).

Beck Anxiety Inventory (BAI) (Beck and Steer, 1990) were used to
evaluate anxiety symptom (mild: 8–15; moderate: 16–25; and severe:
26–63) (Yook and Kim, 1997). To investigate depressive symptom, and
Beck Depression Inventory (BDI) (Beck et al., 1996) were used (mild:
14–19; moderate: 20–28; and severe: 29–63) (Cha et al., 2018). Also,
Impact of Event Scale-Revises (IES-R) (Weiss, 2007) was used to check
the responses to a traumatic event of PTSD patients (mild: 0–24;
moderate: 25–39; and severe: 40–59; very severe:≥ 60) (Lee et al.,
2016). The prevalence of caseness in the PTSD patients was as follows:
sever motor vehicle accidents= 44 (86.24%), physical or sexual vio-
lence=2 (3.92%), other accidents (e.g. building collapse)= 5
(9.81%). Demographic data and the mean and standard deviation (SD)
of psychiatric severity scores in each group are reported in Table 1.

2.2. EEG recordings and ERP analysis

The stimuli used for the auditory oddball paradigm were composed
of target tones with 1500Hz tone frequency and standard tones with
the 1000 Hz tone frequency. The duration of each stimulus was set to
100ms, and rising and falling times were set to 10ms. Four-hundred
pure tone stimuli consisting of 15% target tones and 85% standard
tones were presented in a random order with an inter-stimulus interval
of 1500ms. The participants were required to press a response button
when the target tones were presented.

EEG was recorded using a NeuroScan SynAmps2 (Compumedics

Table 1
Demographic data of post-traumatic stress disorder, major depressive disorder and healthy controls. The p value represents significant differences among three
groups (total PTSD, MDD and HCs) by one-way ANOVA, and comparison pairs were represented by the bold letter.

PTSD MDD HCs p

PTSDm PTSDc Total PTSD

Cases (N) 28 23 51 67 39
Gender (male/female) 14/14 10/13 24/27 24/43 18/21 0.429
Age (years) 43.50 ± 8.88 42.09 ± 12.33 42.86 ± 10.49 42.09 ± 9.83 38.74 ± 9.05 0.118
Education (years) 13.64 ± 3.11 12.83 ± 3.16 13.27 ± 3.13 13.54 ± 3.53 14.47 ± 2.15 0.198
Symptom score
BDI 26.64 ± 12.66 26.50 ± 12.88 26.58 ± 12.62 25.81 ± 8.39
BAI 28.71 ± 15.75 31.38 ± 15.90 29.86 ± 15.71 24.43 ± 9.83
IES-R 53.38 ± 20.59 55.00 ± 20.72 53.21 ± 20.80

PTSD: post-traumatic stress disorder; PTSDm: PTSD-mono diagnosis; PTSDc: PTSD-comorbid diagnosis; MDD: major depressive disorder; HCs: healthy controls; BDI:
Beck Depression Inventory, BAI: Beck Anxiety Inventory, IES-R: Impact of Event Scale-Revises.
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USA, El Paso, TX, USA) from 64 Ag/AgCl scalp electrodes evenly
mounted on a QuikCap according to the extended 10–20 international
system (references: M1 and M2). EEG was recorded with a 1- to 100 Hz
band-pass filter at a sampling rate of 1000 Hz. The eye artifacts were
removed using established mathematical procedures(Semlitsch et al.,
1986), and other gross artifacts were rejected by visual inspection.
Artifacts-free EEG was band-pass filtered at 1- to 30 Hz and epoched
from 100ms before the target onset to 900ms after the target onset.
The epochs were rejected if they contained significant physiological
artifacts (± 75 μV) at any electrodes. Artifact-free epochs were aver-
aged across trials for ERP analysis. P300 was defined as a maximum
peak between 250 and 500ms after the target onset at five electrodes
(Fz, Cz, Pz, T7, and T8) (Bharath et al., 2000; Hopfinger and Maxwell,
2005; Lazzaro et al., 1997).

2.3. Source analysis

Standardized low-resolution brain electromagnetic tomography
(sLORETA) is widely used for solving the EEG inverse problem when
estimating neural activation of the brain. sLORETA assumes that the
current source density (CSD) of one voxel is synchronized to that of the
surrounding voxels to calculate a particular solution. CSD was esti-
mated using the realistic head model constructed from the MNI152
standard template. The source space was restricted to the cortical gray
matter, yielding 6239 voxels with 5×5×5mm resolution. The time
windows for estimating P300 CSD were set as the mean P300 la-
tency± two standard deviations in each group (Kim et al., 2014):
PTSD: 289–453ms; MDD: 284–429ms; HCs: 302–416ms. All source
estimation procedures were done using the open sLORETA software
(http://www.uzh.ch/keyinst/loretaOldy.htm).

2.4. Statistical analysis

A one-way ANOVA was performed to evaluate differences of P300
amplitude and latency among the three groups at each electrode. When
a significant difference was revealed, a post hoc analysis was performed
using an independent t-test with Bonferroni corrected p-value.

Also, we checked the effects of comorbidity in two groups of pa-
tients on P300 amplitudes and latencies. We divided patients into three
groups as follows: 1) PTSD-mono diagnosis (PTSDm, n=28), they
showed only PTSD symptoms without comorbidity; 2) PTSD-comorbid
diagnosis (PTSDc, n=23) groups, they showed mood swings and
emotional problems that are symptoms of disorders such as depression
and anxiety; 3) MDD (n=67). To eliminate effects of anxiety, the pa-
tients with an anxiety disorder were strictly excluded from our study.
To find possible differences between three groups, we performed the
one-way ANOVA and post hoc analysis.

When a significant difference was found in sensor-level, statistical
analysis of CSD between groups was performed using the statistical
non-parametric mapping method (SnPM) that was implemented in the
sLORETA software. The estimated voxel activation was averaged over
the calculated time frame and tested for voxel-by-voxel with in-
dependent t-test for the 6239 voxels, followed by adjustments for
multiple comparisons. Furthermore, the relationships between P300
features (P300 peak amplitude, latency, and CSD) and psychiatric
scores of patients were investigated using Spearman's correlation
method with 5000 bootstrap resamples.

2.5. Classification model and feature selection

Additionally, we differentiated patient groups and HCs using the
computed sensor and source activities to check their potential usability
as a biomarker. To discriminate groups, we set seven different classi-
fication pairs: 1) PTSD-HCs; 2) MDD-HCs; 3) PTSD-MDD; 4) PTSDm-
HCs; 5) PTSDm-MDD; 6) PTSDc-HCs; 7) PTSDc-MDD.

Both sensor-level and source-level P300 features were used to find

optimal features to discriminate groups by each classification pair. The
used features were as follows: sensor-level – each of the sixty-two P300
amplitudes and latencies (total 124); source-level – CSD in different
brain regions showing significantly different between groups. In order
to decrease the computational cost and avoid the overfitting by the use
of large numbers of features, feature selection based on Fisher score
(Alimardani et al., 2018; Gu et al., 2012) was used. The higher Fisher
score for each feature represents the better discrimination capability
between the two groups. The features with relatively higher Fisher
scores were selected for the classification, with the number of features
ranging from 1 to 20 (Shim et al., 2016). The classification accuracy
was evaluated using a two-class linear support vector machine (SVM)
classifier (Alimardani et al., 2018; Orru et al., 2012) with a leave-one-
out cross-validation (LOOCV) method for each feature set (Shim et al.,
2016). To compute LOOCV, the only one subject was used for validating
the model and remaining subjects (N-1) were used for training of the
model (Al-Kaysi et al., 2017; Wang et al., 2015).

3. Results

3.1. P300 amplitude and latency

Regarding P300 amplitude, there were significant differences
among three groups at all electrodes (Fz: F(2, 154)= 8.08, p= .000;
Cz: F(2, 154)= 8.89, p= .000; Pz: F(2, 154)= 8.49, p= .000; T7: F(2,
154)= 3.45, p= .034; T8: F(2, 154)= 9.53, p= .000). The significant
difference at each electrode after the post hoc analysis with adjusted p
value using Bonferroni methods were as follows: 1) PTSD showed sig-
nificantly reduced P300 amplitude compared to HCs at Fz (adjusted p
(adjP)= 0.002), Cz (adjP=0.000), Pz (adjP=0.001), T7
(adjP=0.032), and T8 (adjP=0.000); 2) PTSD showed significantly
reduced P300 amplitude compared to MDD at Fz (adjP=0.002), Cz
(adjP=0.004), Pz (adjP=0.004), and T8 (adjP=0.016).

Also, there were significant differences among three groups of la-
tency at Cz (F(2, 154)= 3.20, p= .043; Pz (F(2, 154)= 4.90,
p= .009) and T8 (F(2, 154)= 4.59, p= .012). The results were as
follows: 1) PTSD showed significantly delayed latency compared to HCs
at Pz (adjP=0.038); 2) PTSD showed significantly delayed latency
compared to MDD at Cz (adjP=0.038), Pz (adjP=0.015), and T8
(adjP=0.010). The sensor-level results of amplitude and latency in
each group are reported in the Supplementary Table 1, and Fig. 1a and
b. represent P300 amplitude in each group at five electrodes. Topo-
graphical distributions of P300 in each group are represented in Fig. 1c.

3.2. Source localization using sLORETA

In the source-level, we performed a comparison of CSD between two
groups (e.g., PTSD vs. HCs) because the statistical method provided by
sLORETA software could apply only to a comparison of two groups.
First, PTSD compared to HCs showed significantly decreased CSD in
anterior cingulate (AC), cingulate gyrus (CG), cuneus, fusiform gyrus,
inferior occipital gyrus (IOG), inferior temporal gyrus(ITG), insula,
lingual gyrus, medial frontal gyrus (MFG), middle occipital gyrus
(MOG), parahippocampal gyrus, posterior cingulate (PC), precuneus,
sub-gyral, superior temporal gyrus (STG), uncus (p < .05; Table 2,
Fig. 2a. Secondly, PTSD compared to MDD showed significantly re-
duced CSD in AC, CG, cuneus, insula, MFG, MTF, parahippocampal
gyrus, PC, precuneus, sub-gyral, superior occipital gyrus (SOG) and STG
(p < .05; Table 2, Fig. 2b).

3.3. Correlation between P300 characteristics and psychiatric scales

Sensor-level features were not correlated with psychiatric scale.
In case of source-level features, there were significant relationships

between CSD and symptom scores (BDI and BAI) in PTSD: 1) BDI: fu-
siform gyrus(r=−0.328, p= .002); IOG (r=−0.434, p= .002);
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lingual gyrus (r=−0.423, p= .002); MOG (r=−0.316, p= .025);
PC (r=−0.293, p= .039); 2) BAI: fusiform gyrus(r=−0.375,
p= .008); IOG (r=−0.342, p= .016); lingual gyrus (r=−0.385,
p= .006); MOG (r=−0.326, p= .022); PC (r=−0.322, p= .024).

3.4. Comorbidity check

Significant differences among three groups were found at Fz, Cz and
Pz electrode (Fz: F(2, 115)= 5.56, p= .005; Cz: F(2, 115)= 5.35,
p= .006; Pz: F(2, 115)= 5.16, p= .007). The significant differences at
each electrode after the post hoc analysis with adjusted p-value using
Bonferroni methods have appeared only between PTSDc and MDD (Fz
(adjP=0.012), Cz (adjP=0.013), and Pz (adjP= 0.017)). To provide
more specific information about comorbidity factors, we represent
P300 waveforms and topographical distributions of three groups in
Fig. 1b and Supplementary Table 1. Also, there were significant dif-
ferences among three groups of latency at Pz (F(2, 115)= 4.46,
p= .014) and T8 (F(2, 115)= 4.11, p= .019). Likewise amplitude
analysis, the post hoc analysis with adjusted p-value using Bonferroni
correction methods was performed, PTSDm showed a significantly
prolonged latency compared to MDD at Pz (adjP=0.012). Moreover,
PTSDc showed decreased source activations in AC, CG, MFG and STF
compared to MDD (p < .05; Table 2, Fig. 2c). However, there was no
significant difference in CSD between PTSDm and MDD.

3.5. Classification results

Source-level features were extracted from different 23 brain regions
showing significant statistical differences between all possible pairs of
groups, and the list of ROIs was reported in the supplementary in-
formation. Best classification accuracies at each classification pair were
as follows: 1) PTSD-HCs: 80.00%; 2) MDD-HCs: 67.92%; 3) PTSD-MDD:
70.34%; 4) PTSDm-HCs: 82.09%; 5) PTSDm-MDD: 71.58%; 6) PTSDc-

HCs: 82.56%; 7) PTSDc-MDD: 76.67%. The best classification accuracy,
specificity, and sensitivity in each classification pairs are summarized in
Table 3. More details on the features used for each classification pairs
are described in the supplementary information.

4. Discussion

In this study, we investigated neurocognitive abnormalities of PTSD
and MDD in sensor- and source level using P300 and differentiated
PTSD, MDD, and HCs based on a machine-learning method. The major
findings were as follows: (1) PTSD showed significantly reduced P300
amplitude and latency compared to HCs and MDD; (2) PTSD showed
significantly reduced CSD in several regions compared to HCs as well as
MDD; (3) CSD of PTSD in fusiform gyrus, IOG, lingual gyrus, MOG, and
PC was negatively correlated with both BDI and BAI scores; (4) in
machine-learning-based classification, the best classification accuracies
for each pair were 80.00% (PTSD-HCs), 67.92% (MDD-HCs), 70.34%
(PTSD-MDD), 82.09% (PTSDm-HCs), 71.58% (PTSDm-MDD), 82.56%
(PTSDc-HCs), and 76.67% (PTSDc- MDD).

4.1. Abnormal P300 amplitude and latency

Most prior PTSD research has reported reduced P300 amplitude,
and in some cases, reported prolonged P300 latency compared to HCs
(Javanbakht et al., 2011b). Moreover, significant correlations between
P300 features and various symptom scores (STAI, IES-R, and CAPS) are
also well documented (Javanbakht et al., 2011b; Lobo et al., 2015).
Despite these well-replicated findings, some studies have failed to find
significant relationships between PTSD symptoms and P300 (Kimble
et al., 2010; Lamprecht et al., 2004), and some have even found the
relationships in an opposite nature(Attias et al., 1996). In the case of
MDD, the results of previous ERP studies have largely been inconsistent
(Mumtaz et al., 2015b). Some researchers have reported reduced P300

Fig. 1. P300 event-related potential (ERP) waveforms at Fz, Cz, Pz, T7, and T8 electrodes. a) ERP waveforms in post-traumatic stress disorder (PTSD), major
depressive disorder (MDD), and healthy controls (HCs). b) P300 ERP waveforms in patients with comorbidity (post-traumatic stress disorder-comorbid diagnosis
(PTSDc), post-traumatic stress disorder-mono diagnosis (PTSDm) and MDD). c) Topographical distributions of the grand averaged P300 ERP component over
250–500ms in each group.
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amplitudes (Kawasaki et al., 2004; Vandoolaeghe et al., 1998), while
others have found no significant difference between MDD and HCs
(Bruder et al., 2012). Moreover, there have been failed attempts to
replicate findings that prolonged P300 latency could be a biomarker for
MDD (Vandoolaeghe et al., 1998), whereas it was not replicated to
others (Kaustio et al., 2002).

The amplitude of P300 is related to cognitive functioning such as
context updating, attention, and memory, and latency is affected by the
speed of information processing (Linden, 2005; Polich, 2007). In our
study, PTSD showed reduced P300 amplitudes and prolonged latencies
compared to HCs and MDD, which is consistent with previous studies.
Patients with PTSD have difficulty allocating the attentional resources
for cognitive processing, and the processing speed is slow compared to
both MDD and HCs. That is, the overall cognitive system of PTSD might
be impaired compared to MDD as well as HC.

4.2. Altered source activation of P300 and the relationships with symptom
scores

In the present study, PTSD showed significantly reduced CSD of the
cingulate (AC, CG, and PC), frontal (MFG and IFG), occipital (IOF,
MOG, cuneus, precuneus, and lingual gyrus), temporal (fusiform gyrus,
and sub-gyral), insular and parahippocampal gyrus compared to HCs.
Also, those PTSD individuals showed smaller CSD in cingulate (AC, CG,
and PC), middle frontal gyrus, occipital (SOG, cuneus, and precuneus),
temporal (MTF, STG, fusiform gyrus, and sub-gyral), insula and para-
hippocampal gyrus compared to MDD. Moreover, reduced source acti-
vation has shown negative correlations with BDI and BAI (in the fusi-
form gyrus, IOG, lingual gyrus, MOG, and PC) in PTSD.

It is well-known that individuals with PTSD suffered from abnormal
cognitive functioning, including not only trauma memories and nega-
tive appraisals, but also atypical automatic information processing
(Ehlers and Clark, 2000), which has been documented in neuroimaging

Table 2
Brain regions showing significant P300 source activity differences between patients and healthy controls.

ROI (structure) MNI coordination Talairach coordinates T score

X Y Z X Y Z

PTSD < HCs
Anterior Cingulate 10 25 30 10 26 26 −4.11
Cingulate Gyrus 0 −40 25 0 −38 25 −4.07
Cuneus −5 −65 5 −5 −63 8 −4.10
Fusiform Gyrus −25 −50 −15 −25 −49 −10 −4.07
Inferior Occipital Gyrus −25 −90 −20 −25 −88 −12 −4.10
Inferior Temporal Gyrus 40 −20 −35 40 −21 −28 −4.08
Insula 30 −30 15 30 −28 15 −4.11
Lingual Gyrus −10 −55 0 −10 −53 3 −4.13
Medial Frontal Gyrus −15 25 35 −15 26 31 −4.07
Middle Occipital Gyrus −20 −90 −15 −20 −88 −8 −4.40
Parahippocampal Gyrus −10 −50 0 −10 −48 2 −4.18
Posterior Cingulate −5 −60 5 −5 −58 8 −4.25
Precuneus 0 −70 15 0 −67 17 −4.07
Sub-Gyral −15 −45 −10 −15 −44 −6 −4.09
Superior Temporal Gyrus 35 −35 15 35 −33 15 −4.13
Uncus 30 −15 −35 30 −16 −29 −4.11

MDD < HCs
Cuneus −5 −65 5 −5 −63 8 −4.43
Fusiform Gyrus −20 −60 −15 −20 −59 −10 −4.06
Lingual Gyrus −5 −65 0 −5 −63 3 −4.08
Parahippocampal Gyrus −10 −50 0 −10 −48 2 −4.05
Posterior Cingulate −5 −60 5 −5 −58 8 −4.07

PTSD < MDD
Angular gyrus −35 −80 30 −35 −76 31 −4.32
Anterior Cingulate 10 25 30 10 26 26 −3.96
Cingulate Gyrus −20 −45 25 −20 −42 25 −3.89
Cuneus −25 −85 25 −25 −81 27 −3.91
Insula −40 −45 20 −40 −43 21 −3.90
Medial Frontal Gyrus 15 25 35 15 26 31 −3.90
Middle Frontal Gyrus 20 20 45 20 21 40 −4.11
Middle Temporal Gyrus −35 −60 20 −35 −57 21 −3.96
Parahippocampal Gyrus 15 −5 −15 15 −5 −12 −3.93
Posterior Cingulate −5 −40 25 −5 −38 25 −3.90
Precuneus −20 −45 30 −20 −42 30 −3.91
Sub-Gyral −30 −60 25 −30 −57 26 −4.25
Superior Frontal Gyrus 20 15 50 20 17 45 −3.95
Superior Occipital Gyrus −30 −85 25 −30 −81 27 −3.94
Superior Temporal Gyrus −35 −55 20 −35 −52 21 −3.91
Transverse Temporal Gyrus −35 −35 10 −35 −33 11 −4.09

PTSDc < MDD
Anterior Cingulate −10 25 30 −10 26 26 −4.42
Cingulate Gyrus −15 10 40 −15 12 36 −4.28
Inferior frontal gyrus 35 5 30 35 6 27 −4.36
Medial Frontal Gyrus −15 25 35 −15 26 31 −4.29
Superior Temporal Gyrus −35 −55 25 −35 −52 26 −4.28

PTSD: post-traumatic stress disorder; HCs: healthy controls; MDD: major depressive disorder; PTSDc: PTSD-comorbid diagnosis; MNI: Montreal Neurological
Institute.

M. Shim, et al. NeuroImage: Clinical 24 (2019) 102001

5



studies. According to positron emission tomography (PET) research,
female PTSD patients with traumatic memory deficits showed de-
creased blood flow in the hippocampus, fusiform, and ITG during
reading traumatic text in comparison with HCs (Bremner et al., 1999).
Also, abnormal brain activations in PC, insular, cuneus, precuneus, and
lingual gyrus were found during emotional cognitive processing (Shin
et al., 2001). A few studies reported abnormal activities in the AC,
amygdala, hippocampus and parietal area occurred during automatic
information processing using oddball task (Bryant et al., 2005; Semple
et al., 2000). Moreover, the abnormal middle frontal activation of PTSD
is well-summarized (Hayes et al., 2012; Simmons and Matthews, 2012).

Most brain regions which showed altered brain activation in our
results exceedingly coincided with the previous studies. That is, the
abnormal brain activation in PTSD during attention processing may be
associated with patients' traumatic memory or negative appraisal.
Moreover, we found negative correlations between CSD and both BDI

and BAI. The result means that if the severities of depression and an-
xiety symptoms are worse in individuals with PTSD, the activity in five
brain areas (fusiform gyrus, IOG, lingual gyrus, MOG, and PC) decrease.
It might support that the altered source activities of PTSD during at-
tention processing.

Also, the patients with PTSDc showed significant differences in both
sensor- and source-level characteristics compared to MDD. However,
the PTSDm showed significant differences only in P300 latency. In the
present study, the patients with PTSDc tended to have severe anxiety
symptom compared to PTSDm patients (31.38 ± 15.90 vs.
28.71 ± 15.75). The previous study has shown that the severe anxiety
symptom of PTSD was closely related to declined P300 characteristics
(Metzger et al., 1997). That is, the higher symptom of anxiety in PTSDc
than PTSDm might have influenced the abnormal source activation
during cognitive process.

Fig. 2. Brain regions showing significant P300 source activity difference between the two groups. a) The blue color means the significantly reduced source activation
of post-traumatic stress disorder (PTSD) compared to healthy controls (HCs). b) PTSD showed the significantly reduced source activation compared to major
depressive disorder (MDD), and reduced activities are represented by blue color. c) The blue color means the significantly reduced source activation of post-trauma
stress disorder-comorbid diagnosis (PTSDc) compared to and major depressive disorder (MDD).

Table 3
Maximum classification accuracies, specificities and sensitivities (unit: %) for three different feature sets (sensor, source, and sensor+source) for seven different
classification pairs. The bold letter meant the best classification accuracy at each classification pair.

Classification pair Sensor Source Sensor+ source

Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity

MDD vs. HCs 63.21 41.03 71.64 67.92 89.55 30.77 66.04 97.01 12.82
PTSD vs. HCs 67.78 68.63 66.67 80.00 86.27 71.79 75.56 88.24 58.97
PTSD vs. MDD 66.10 71.64 58.82 70.34 74.51 67.16 66.10 78.43 56.72
PTSDm vs. HCs 71.64 76.92 64.29 82.09 85.71 79.49 79.10 67.86 87.18
PTSDm vs. MDD 70.53 86.57 13.04 70.53 0.00 100.00 71.58 50.00 80.60
PTSDc vs. HCs 77.42 60.87 87.18 82.26 73.91 87.18 72.58 56.22 82.05
PTSDc vs. MDD 74.44 88.06 26.09 75.56 34.78 89.55 76.67 34.78 91.04

MDD: major depressive disorder; HCs: healthy controls; PTSD: post-traumatic stress disorder; PTSDm: PTSD-mono diagnosis; PTSDc: PTSD-comorbid diagnosis.
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4.3. Machine-learning-based classification between PTSD and MDD

Machine learning method was applied to classify patients and HCs
using sensor- and source-level features extracted from P300 ERP data.
Two classification pairs (PTSDm-MDD and PTSDc-MDD) showed max-
imum classification accuracies when both sensor- and source-level
features were simultaneously used, while the other classification pairs
(PTSD-HCs, MDD-HCs, PTSD-MDD, PTSDm-HCs, and PTSDc-HCs)
showed maximum classification accuracies when only source-level
features were used.

According to our results, the source-level features seem to play a
more important role in classifying different groups of people compared
to the sensor-level features. It is thought that source-level features could
supplement the weaknesses of sensor-level features such as the low
spatial resolution originating from volume conduction and con-
taminations from artifacts (Nolte et al., 2004; Nunez et al., 1997; van
den Broek et al., 1998). Especially, the improved spatial information by
the use of source imaging might contribute to the enhanced classifica-
tion accuracy because some brain regions showed disease-specific
dysfunctions. In the present study, the CSD in the cingulate gyrus
showed PTSD-specific dysfunction and played an important role in
discriminating PTSDs (PTSD, PTSDm, and PTSDc) from HCs and MDD
(for more details on the selected features, please refer to the supple-
mentary information). When maximum classification accuracy was
achieved in classification pairs including PTSDs, the cingulate gyrus
was always selected as the source-level features, with the activities in
the cingulate gyrus being smaller in PTSDs than HCs and MDD. The
cingulate gyrus is involved in several functioning such as emotion,
memory, and pain (Rolls, 2015; Vogt, 2005). It is well-known that
patients with PTSD suffer from traumatic memory (Herman, 1992;
Rubin et al., 2008), and the mal-functioning of memory in PTSD is
associated with the activation in cingulate gyrus (Sartory et al., 2013).
Taken together, this may suggest that reduced activation in cingulate
gyrus of PTSD is caused by traumatic events, and it could be used as an
important factor when classifying PTSD from MDD in the present study.

Moreover, except the pair of MDD vs. HC, the sensitivities of clas-
sification were increased when using source-level features. In the di-
agnostic field, the value of sensitivity indicates the ability to classify the
patients with specific disease as the same disease (Lalkhen and
McCluskey, 2008). That is, in present study, the PTSD patients could be
identified with PTSD with relatively higher sensitivities when using
source-level features compared to sensor-level features. While, when
identifying the patients with MDD, the performance of sensor-level
feature is better than source-level features. This result may infer that
the different types of features should be selected when diagnosing each
different disorders.

4.4. Limitations

There are some limitations in the present study. First, all of the
patients were on medication, we could not control for possible con-
founding effects of the psychotropic medication. Second, we did not use
the individual head model for source imaging; thus, source activity in
the deep brain such as amygdala could not be investigated. Third, we
did not perform the three groups' comparison due to restriction of
sLORETA software; thus, the differences of CSD among three groups
(PTSD vs. MDD vs. HCs) could not be estimated. Fourth, we have tried
to strictly exclude the anxiety disorder in our study; however, the in-
fluence of anxiety in diagnosis and results may be existed.

Despite shortcomings, our study is noteworthy because it is the first
attempt to find the differences in P300 processing among PTSD, MDD,
and HCs. Altered P300 features in both sensor and source-level were
found in PTSD compared to MDD and HCs, also significant correlations
between CSD and symptom severity scores were revealed. Moreover,
we achieved acceptable classification accuracies using P300 features
when discriminating different groups. These results suggest that

reduced amplitude and prolonged latency would reflect declined cog-
nitive processing of PTSD, the reduced CSD and relationships with
symptom scores would be supportive of impaired cognitive system in
PTSD. Also, altered P300 features in both sensor- and source-level
might be promising biomarkers to differentiate PTSD from HCs and
MDD. To keep pace with the advances in technology, we're trying to
improve our approach with deep-learning algorithms as a future di-
rection.
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