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ABSTRACT Joint photographic experts group (JPEG) compression is lossy compression, and degradation
of image quality worsens at high compression ratios. Therefore, a reconstruction process is required for a
visually pleasant image. In this paper, we propose an end-to-end deep learning architecture for restoring
JPEG images with high compression ratios. The proposed architecture changes a core principle of the
squeeze and excitation network for low-level vision tasks where pixel-level accuracy is important. Instead of
extracting global features, our network extracts locally embedded features and fine-tunes each feature value
by using depthwise convolution. To reduce the computational complexity and parameters with large receptive
fields, we use a combination of the recursive structure and feature map down- and up-scaling processes.
We also propose a compact version of the proposedmodel by decreasing the number of filters and simplifying
the network, which has about one-twentieth of the parameters of the baseline model. Experimental results
reveal that our network outperforms conventional networks quantitatively, and the restored images are clear
with sharp edges and smooth blocking boundaries. Furthermore, the compact model shows higher objective
results while maintaining a low number of parameters. In addition, at a high compression ratio, the overall
information, including details in the blocks, are lost owing to high quantization errors. We apply a generative
adversarial network structure to restore these highly damaged blocks, and the results reveal that the image
produced has details similar to those of the ground truth.

INDEX TERMS Convolutional neural network, JPEG image restoration, generative adversarial network.

I. INTRODUCTION
JPEG compression is a popular standard for still image com-
pression, and it is a lossy compression technique due to
the quantization of the discrete cosine transformation (DCT)
coefficients. Lossy compression has a much higher compres-
sion ratio than lossless compression; however, it damages
image parts that are relatively less sensitive to the human eye.
A compressed image with a low compression ratio may be
difficult for the human eye to detect, but an image with a high
compression ratio might be seriously distorted. JPEG com-
pression causes a serious degradation in image quality when
the quantization step size is increased. Because in JPEG com-
pression, DCT and quantization are performed in a block unit,
blocking artifacts occur at the block boundary and ringing
artifacts appear at the edge of the object. Furthermore, at high
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compression ratios, posterization occurs in the flat region,
block information is completely blurred, or directional pat-
terns occur within the block (see Fig. 1). Many deblocking
algorithms [1]–[5] have been proposed to reduce blocking
artifacts; however, the ability of simple deblocking alone
to restore damaged images with high compression ratios is
limited. Some methods have been proposed to restore JPEG
images. Liu et al. [6] proposed sparsity-based dual-domain
DCT, and Goto et al. [7] reduced compression artifacts
using total variation regularization. Nosratinia [8] proposed
enhancement of the compressed image by re-application of
JPEG compression, and Jancsary et al. [9] proposed a method
using regression tree fields. Wang et al. [10] improved the
performance of a JPEG image restoration using deep sparse
coding networks.

In recent years, convolutional neural networks (CNNs)
have been used successfully in image classification [11], [12],
super resolution [13], [14], image denoising [15], [16],
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FIGURE 1. Examples of JPEG artifacts at a high compression ratio. At a
high compression ratio, in addition to blocking artifacts, many kinds of
artifacts occur due to the loss of detail information.

optical flow estimation [17], image dehazing [18] and other
image restoration areas. CNNs have also significant improved
JPEG image restoration. The ARCNN [19], a compact net-
work with four convolution layers, was one of the initial
networks for JPEG artifacts removal, and Svoboda et al. [20]
used residual learning [12] and edge-loss to improve perfor-
mance. TheDnCNN [21] used global residual learning (GRL)
and successfully trained a deeper network with a depth
of 20 to enhance performance, and MemNet [15] adopts
a recursive unit that reuses the weights of the convolution
layer several times and a densely-connected block structure,
thereby improving the performance while maintaining a few
parameters. These methods train the network using a loss
function based on the l2 norm, which yeilds a high peak
signal-to-noise ratio (PSNR); however, the resulting image
tends to be blurred. SRGAN [22] applies a generative adver-
sarial network (GAN) [23] composed of a generator and dis-
criminator to super-resolution to avoid blurring and therefore,
to obtain a more realistic super-resolved image.

In this paper, we propose a post-processing network that
restores low-quality images with a high quantization error,
focusing on JPEG compressed images with a high compres-
sion ratio. Inspired by [24] and [15], we adopt the recursive
unit as the basic structure of the network that iteratively uses
the same parameters. The structure of the proposed recursive
unit is based on the block structure of the SE-ResNet pro-
posed in the squeeze and excitation network (SENet) [25].
While SENet uses global pooling to extract globally embed-
ded spatial information, our network uses the depthwise
convolution [26] to extract locally embedded spatial informa-
tion and perform point-wise multiplication, so that detailed
information for each feature is stored in parameters. The pro-
posed network is named a local excitation network for JPEG
restoration (LEJR). We also propose a compact version of an
LEJR by greatly reducing the number of parameters, which
shows superior performance over the number of parameters
compared to conventional networks. In addition, because
the image we are interested in is a low-quality image with
a significant amount of information lost, the result image
would be blurred if the network is trained based on l2 loss.
To better restore the detail, we apply GAN structure to the

JPEG restoration by adding a discriminator to the LEJR.
GAN-based LEJR is trained using perceptual loss function
resulting in more realistic images than LEJR trained on l2
loss. The main contributions of this paper are summarized as
follows:
• State-of-the-art performance by suggesting a new mod-
ule that modifies SENet for low-level vision applica-
tions.

• A good trade-off between the memory usage and recep-
tive field by using a combination of the recursive block
and down-up sampling structure.

• Maximization of the efficiency between computational
complexity and performance by proposing a compact
version of the network.

• Application of the GAN structure to remove JPEG arti-
facts to restore more realistic images at a high compres-
sion ratio.

II. RELATED WORKS
In this section, SENet [25], SRGAN [22], ARCNN [19],
DnCNN [21], and MemNet [15] are briefly reviewed.

A. SENET
SENet is proposed for image classification. It upgrades the
existing network by adding a squeeze and excitation (SE)
unit to the block. The SE unit is connected to ensure that
the conventional CNN does not have limited receptive fields
according to the depth of each network. The SE unit is divided
into two stages, squeeze and excitation. Squeeze uses global
average pooling to create channel-wise descriptors. Excita-
tion uses a fully connected layer, rectifier linear unit (ReLU),
and sigmoid activation to extract the final feature, and each
descriptor is multiplied by the input features. SENet enhances
the performance of image classification with a small amount
of additional computational complexity and fewer parameters
compared to the existing network.

Cheng et al. [27] applied SENet to super-resolution and
obsevered that it resulted in a performance improvement
compared to the existing ResBlock. However, when SENet
is applied to the proposed network, it has lower performance
than ResBlock. Therefore, we propose a local excitation
block (LEB) that modifies SE-ResBlock, improving its per-
formance in JPEG artifact reduction.

B. SRGAN
SRGAN is a method that applies the GAN structure to single
image super-resolution. To ensure that the resulting image is
not blurred when the network is trained using the l2 loss func-
tion, SRGAN uses perceptual loss function by training a gen-
erator with a discriminator which decides the reconstructed
image is real or not. After pretraining the generator, the whole
network is trained using perceptual loss, combining feature
loss using VGGNet [11] and adversarial loss of discriminator
with a weighting parameter. As a result, the PSNR value of
the SRGAN is lower than that of the network trained with l2
loss, but more visually pleasant images can be obtained.
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FIGURE 2. Restoration result of the proposed method. Our GAN-based
network not only eliminates bloc-king artifacts but also restores details
at a high compression ratio.

Inspired by SRGAN, we apply the GAN structure to the
restoration of JPEG compressed images. Unlike SRGAN,
the structure of the discriminator and the weight in perceptual
loss are changed. As can be seen in Fig. 2, the restored
image is quite similar to the original image at low quality
factors.

C. DEEP LEARNING FOR JPEG DEBLOCKING
In this subsection, we briefly introduce three deep-learning
papers for JPEG artifacts removal.

ARCNN is one of the earliest researches using CNN for
JPEG artifact removal, which consists of four convolution
layers: feature extraction, feature enhancement, mapping, and
reconstruction. The network is trained using l2 loss. ARCNN
has very few parameters, but performance is limited, because
the network is very shallow.

DnCNN performs three tasks: Gaussian noise reduction,
JPEG artifacts removal, and super-resolution, with the same
network structure. It differs from ARCNN as it constructs a
network with deeper depth (20 convolution layer) and uses
GRL to train only the residuals of input and output, thereby
improving both the training stability and performance of the
deep model. It is also trained using l2 loss.
MemNet utilizes recursive structure, local residual learn-

ing, and block-based densely connected structures to max-
imize the gradient flow of errors and reuse feature maps.
Although the network depth is 80, the number of parameters
is similar to that of DnCNNwhich uses 20 convolution layers
owing to the recursive structure. In addition, the performance
is further enhanced by using a multi-supervised loss function
that takes into account not only the final output but also the
local outputs of each block.

III. PROPOSED NETWORK
This section describes the structure and training method of
the proposed network.

FIGURE 3. Comparison of three block structures. (a) ResBlock,
(b) SE-ResBlock, and (c) Proposed block (LEB). Instead of using global
pooling in SENet, our block uses depthwise convolution to extract local
features.

A. NETWORK ARCHITECTURE
We propose two models: baseline model, LEJR, and
LEJR_compact, a compact version of LEJR that reduces the
number of parameters to about one-twentieth of the baseline
model. Fig. 4 shows the overall structure of the proposed
LEJR network. The proposed network consists of feature
extraction & down-sampling, recursive block, reconstruction,
and up-sampling.

1) FEATURE EXTRACTION & DOWN-SAMPLING
First, LEJR extracts 256 features through two convolution
layers and two parametric rectifier liniear units (PReLU) [28],
and the second convolution down-samples the feature map by
1/2 in each direction with stride 2. Down-sampling reduces
the size of the feature map by a factor of four, thus reduc-
ing the computational complexity of the recursive block to
one-fourth, which accounts for most of the network’s over-
all computation volume, thus enabling much faster train-
ing. However, as down-sampling of feature maps may cause
information loss, we use a global skip connection. It reduces
information loss by predicting only the residual values while
keeping the original input signal intact. When the input of
the network is x0, feature extraction & down-scaling can be
expressed as the following equations:

H0 = P2 (W2 ∗ P1(W1 ∗ x0 + B1)+ B2), (1)

Pi (x) = max (x, 0)+ ai ·min (0, x) , (2)
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FIGURE 4. Architecture of the proposed network (baseline model).

where Pi(·) is the i-th PReLU activation function and ai is a
weight. Wi means the i-th weights of the convolution layer,
Bi is bias. In the second convolution W2, down-scaling is
performed with the stride set to 2. The extracted feature H0
becomes the input of the subsequent recursive block.

2) RECURSIVE BLOCK
Inspired by [24] and [27], we use a recursive structure to reuse
weights to maximize performance efficiency. A recursive
block is shown in Fig. 3(c). In the existing SE-ResBlock
in Fig. 3 (b), instead of using global average pooling, which
reduces the size of the feature map to 1×1, our network uses
depthwise convolution to extract descriptors with the same
size as the input feature map containing local information
with a small number of additional computations and param-
eters. Then, the network considers the correlation between
feature maps through a 1×1 convolution, and after sigmoid
activation, which maps the signal range from 0 to 1, descrip-
tors are point-wisely multiplied by input features. Each fea-
ture has its own descriptor, which implicates a local feature;
thus it is possible to fine-tune the feature values. We named
this process local excitation (LE), and it is formulated as
follows:

L(x) = σ (Wc ∗ (WDC ∗ x + BDC )+ Bc) · x, (3)

where L(·) means the LE function, x is the input feature map
of the function, WDC and BDC are the weights and bias of
depthwise convolution layer, respectively, Wc and Bc are the
weights and bias of 1×1 convolution layer, respectively. σ (·)
denotes the sigmoid activation function. Using Equation (3),
the N -th recursive block is formulated as follows:

HN = L(W4 ∗ P3 (W3 ∗ HN−1 + B3)+ B4), (4)

whereHN is the output of the N-th recursive block, and it uses
the previous output, HN−1, as its input.

3) RECONSTRUCTION
To make full use of the local output, the outputs in each
block go through a single reconstruction network, which is
composed of one 3×3 convolution layer and PReLU. All the
outputs of the reconstruction are concatenated, and the feature

map is compressed through a 1×1 convolution layer, which
acts as a bottleneck layer.

4) UPSAMPLING
The features down-scaled in the early part of the network
are up-sampled. For the upsampling layer, we use a sub-
pixel layer [29] to reduce network parameters, computational
complexity, and information loss. The layer performs upscal-
ing by rearranging the shape of the feature map without
additional parameters. If the down-scaling factor is set to 2,
the network can reduce the computational complexity to
1/4 of that of a network without down-up scaling. Then,
the convolution layer adjusts the number of feature maps to
three (RGB), and the final output image is obtained by adding
the input image for GRL. Unlike existing networks, which
handle only luminance images, the proposed network outputs
an RGB image by receiving an RGB input.

5) COMPACT MODEL
Although the baseline model uses recursive blocks, as it uses
256 filters for each convolution layer, the total number of
parameters is approximately 3,000K, which is larger than that
of existing networks (Table 4). We propose a compact version
of the LEJR, which has much fewer parameters. Fig. 5 shows
the proposed compact network. It reduces the number of
filters at all convolution layers to 64 and removes additional
layers after the concatenation. Furthermore, the compact
model does not use down-scaling of the feature map; this is
covered in detail in Section 3.2. As a result, the network has
one-twentieth of the parameters of the baseline model.

6) GAN STRUCTURE
Because a JPEG image that is compressed at a high com-
pression ratio has serious degradation, based on SRGAN,
we apply the GAN structure to JPEG image restoration.
A baseline model is used as a generator and is trained with
the discriminator in Fig. 6, which determines whether the
image is a generated image or real image. The generator is
first trained using the l1 loss function and then further trained
using perceptual loss, which combines the VGG-19 [11]
based content loss with the adversarial loss of the discrimi-
nator, as in SRGAN. Detailed training methods are described
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FIGURE 5. Architecture of the proposed network (compact model).

FIGURE 6. Architecture of the proposed discriminator.

FIGURE 7. Parameters and PSNRs (dB) of each method (LIVE1 dataset is
used with Q = 10).

in Section 3.3. Fig. 9 compares the output images of the GAN
structure with the baselinemodel. In a low-quality imagewith
Q = 10, the GAN-based model better restores the details of
the image than the baseline model.

B. NETWORK ANALYSIS
In this section, experimental results on the structures of the
network and the setting of recursion depth are explained.

Extracting a global feature and multiplying it to existing
features is a core principle of SENet. Because our model
directly links input and output images using a global skip
connection and predicts only residual values, global tuning of
feature values is not effective. Because of the characteristics
of low-level vision tasks where pixel-level accuracy is impor-
tant, our model extracts point-wise features through depth-
wise convolution and multiplies them to the existing features

TABLE 1. Block structure comparison (LIVE1 dataset is used with Q = 10).

to fine-tune each individual feature value. To demonstrate the
superiority of our block structure, we experimented our net-
work using three different block structures, and Fig. 3 shows
the structures of each block. Figures 3(a), 3(b), and 3(c)
are the basic ResBlock, SE-ResBlock, and proposed block,
respectively. Table 1 compares the number of parameters and
the PSNR using the three blocks. Compared to the ResBlock,
the SE-ResBlock increases the number of parameters by
0.2%, but the PSNR is rather lower for JPEG artifact reduc-
tion application. However, compared with ResBlock, the pro-
posed block has a 2% increase in the number of parameters
and a 0.03 dB increase in the PSNR. These results indicate
that our local excitation block is more effective in removing
JPEG artifacts than are other existing blocks developed in
high-level vision tasks.

Table 2 shows the effect of GRL and feature map down-up
scaling in the baseline model and compact model. For the
baseline model, both GRL and down-scaling improve per-
formance. The baseline models use 256 features in each
convolution layer and use down-up scaling and GRL simulta-
neously to extract features at various scales like U-Net [30].
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FIGURE 8. Restoration results of ‘‘img76’’, ‘‘img69’’, and ‘‘img61’’ in Urban100 with Q = 10. The image in the top row has a posterization
artifact. Compared with other models, our model restores smooth continuity of the color, which leads to a large improvement in the PSNR.

It also prevents the features from blurring in the upscaling
by using the subpixel layer instead of deconvolution layer.
Furthermore, as in JPEG image restoration, similarity of input
and output is very high. Like in SR, the network using GRL
can predict only the residual values without storing the infor-
mation of an input image. However, in the compact model,
the performance degrades significantly with down-scaling
(29.77 dB→ 29.71 dB). This is probably because the com-
pact model uses relatively small feature maps (64), and the

process of enhancing the results after the subpixel upscaling
layer is omitted.

Table 3 shows the PSNR and training time according to the
recursion depth of the baseline model. The performance is
0.02 dB higher when the depth is 6 or 8 than when the depth
is 4, but the training time increases 36% and 68%, respec-
tively. Furthermore, although the proposed network uses a
recursive block, it concatenates all outputs of reconstruction
so that the number of network parameters gradually increases
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FIGURE 9. LEJR vs. LEJR_GAN (‘‘cemetery’’ and ‘‘ocean’’ in LIVE1 with Q = 10). The GAN-based model has low PSNRs but restores the
texture information to produce a more realistic image.

TABLE 2. Effect of GRL and down-up scaling (PSNR (dB)) (LIVE1 dataset is
used with Q = 10).

TABLE 3. Performance of the baseline model at each recursion depth
(LIVE1 dataset is used with Q = 10).

TABLE 4. Performance of different training strategies (LIVE1 dataset is
used with Q = 10).

as depth increases. Therefore, we set the recursion depth to
4 in the proposed baseline model.

There are many options to the select color channel for
training. Table 4 lists the PSNR comparison of different color
channels. We found that the performance of the luminance
component is the highest when themodel is trained only using
luminance, and training together with YCbCr could reduce
the performance. Additionally, in both RGB and YCbCr
color spaces, the model trained with the RGB color channel

outperforms the model trained with the YCbCr color channel
also. The results reveal that although JPEG performs com-
pression in the YCbCr color space, training together with
YCbCr degrades the model performance because the char-
acteristics of Y and Cb, Cr channels are significantly differ-
ent. Meanwhile, RGB channels have high correlation among
channels, which yields improved performance in color image
processing. To improve the performance of the luminance
component, it is better to train only the luminance images;
however, this requires additional processing on the Cb and
Cr channels and is impractical in the real world, where most
images have color components. Therefore, we use the RGB
space for practical color image processing.

C. TRAINING
In this section, we discuss the training loss for each proposed
network.

1) TRAINING CNN MODEL
In the image restoration task, it is suggested that the model
trained with the l1 loss function shows a better performance
in terms of PSNR than with the l2 loss. Moreover, there are
additional performance enhancements when using the two
loss functions together [31]. As the removal of JPEG artifacts
is part of image restoration leads to fast convergence and
improved performance than that tasks, using l1 loss in our
experiment on JPEG restoration by using l2 loss. Therefore,
our CNN-based models, the baseline model and compact
model, are trained with the l1 loss function and then re-trained
with the l2 loss function. These loss functions are given by:

l1 (θ) =
1
N

∑N

i=1
|F (xi; θ)− yi|, (5)

l2 (θ) =
1
N

∑N

i=1
|F (xi; θ)− yi|2, (6)
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where N is batch size, F(·) is the network function with
learnable parameters θ , and xi and yi denote patch pairs of
the JPEG image and ground truth in the training data. When
the network is fine-tuned with the l2 loss function, the PSNR
increases by amaximumof 0.03 dB compared to trainingwith
only the l1 loss function.

2) TRAINING THE GAN MODEL.
To train the GAN-based model, the perceptual loss function,
which combines the content loss and adversarial loss func-
tions, is used, as described in Section 3.1. The loss functions
are

lcontent (θ) =
1
N

N∑
i=1

|ϕ5,4(F (xi; θ))− ϕ5,4(yi)|
2, (7)

ladversarial (θ) = −
1
N

N∑
i=1

logD (F (xi; θ) ; θD), (8)

lperceptual (θ) = lcontent (θ)+ 0.1 · ladversarial (θ) , (9)

where lcontent (·) and ladversarial (·) are content loss and adver-
sarial loss functions, respectively, and lperceptual (·) is the per-
ceptual loss function. As in [22], the featuremap after the fifth
convolution before the fourth maxpooling of VGG-19 is used
for content loss, and it is expressed as ϕ5,4 (·) in Equation (7).
D(·) in Equation (8) represents the discriminator function.
After the generator (baseline model) is pre-trained with the
l1 and l2 loss functions, it is trained with a discriminator.

IV. EXPERIMENTAL RESULTS
This section explains the dataset and implementation details,
and compares the performance of the proposed model with
those of the state-of-the-art models.

A. DATASETS
We used the DIV2K dataset [32] consisting of 800 2K res-
olution training images and 100 validation images for train-
ing. For comparison, LIVE1, B100 [33], and Urban100 [34]
datasets were used for the test. The original images were
compressed with quality factors 10, 20, 30, and 40 using the
MATLAB JPEG encoder. A low quality factor means a high
compression ratio.

B. IMPLEMENTATION DETAILS
Our baseline model has four recursions and 256 filters at each
convolution layer. All convolution layers except the bottle-
neck layer and the convolution layer of LE using a 1×1 ker-
nel use 3×3 kernels. The Compact model has 10 recursion
depths, and uses 64 filters with a 3×3 kernel. Our networks
accept RGB images as inputs and output RGB images, and
because the network is fully convolutional, arbitrary image
sizes can be processed when testing. For training, the image
is divided into 80×80 size patches, and 16 patch pairs con-
stitute one batch. As the JPEG encoder uses a transform of
8×8 pixels, we set the stride to 79 to consider the various
cases of block boundaries when making training data. The

training data is augmented by random flip and rotation, and
the Adam is used as the optimizer. The CNN-based model
is initially trained at an initial learning rate of 1e − 4 using
the l1 loss function and re-trained using the l2 loss function
with an initial learning rate of 1e−5. When training the GAN
model, both the generator and discriminator are trained with
the Adam optimizer with an initial learning rate of 1e−4. One
epoch is made up of approximately 43,000 batches, and the
CNN-based model is trained for 500,000 iterations with the
l1 loss function, and re-trained for 100,000 iterations with
the l2 loss function. The proposed GAN model is trained
for 100,000 iterations by alternately training the generator
and discriminator. The proposed model was implemented
using Keras [35], and it took approximately 30 h to train the
baseline model using Geforce GTX 1080Ti. Each model was
trained for each quality factor.

C. COMPARISONS WITH STATE-OF-THE-ART MODELS
The proposed network was compared with an ARCNN [19],
a DnCNN [21], and a MemNet [15]. The ARCNN and
DnCNN were experimented on using MATLAB public code,
andMemNet was reproduced by us using Keras. The network
structure of the reproduction version is the same as that of
MemNet, but ours uses an RGB input and output instead of a
gray-scale image, and it was trained using an l1 loss function
instead of an l2 loss function.

Table 5 shows comparison results using the PSNR, struc-
tural similarity (SSIM), and the number of parameters, where
∗ indicates our reproduction results. The LIVE1, B100, and
Urban100 datasets were used with quality factors 10, 20, 30,
and 40. In all datasets and for all quality factors, the proposed
baseline model (LEJR) shows the highest objective indicator
values, and the proposed compact model has the second best
result. Although other methods process only the luminance
component and our model processes the RGB image with a
single model, LEJR and LEJR_compact models significantly
outperform the existing models in respect of the luminance
PSNR. Especially, LEJR shows superior results in Urban100,
which consists of images with a lot of complex regions and
edges. The LIVE1 dataset consists of 29 diverse RGB images,
and the LEJR_compact model shows an improved PSNR over
0.3 dB than MemNet with about four times less parameters.
The LEJR_compactmodel has a higher number of parameters
than the ARCNN, but it demonstrates good performance
while maintaining a small number of parameters compared
to the latest very deep models. Fig. 7 shows the number of
parameters and PSNR values for each method.

Fig. 8 compares the result images of LEJR and
LEJR_compactc with those of the conventional methods. The
first row in Fig. 8 depicts the restored results of severely
damaged image by posterization. JPEG images are subject
to severe posterization at a low quality factor, and conven-
tional methods cannot restore them well. By contrast, our
LEJR model reconstructs a smooth image, which is hard to
distinguish from the ground truth. In second and third rows,
compared to other methods where the images are severely
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TABLE 5. Average PSNR/SSIM for quality 10, 20, 30, and 40 on datasets LIVE1, B100, and Urban100. The last row represents the number of parameters of
each network. Red font indicates the best performance, blue font indicates the second-best performance, and ∗ indicates our reproduction results.

FIGURE 10. Restoration results of ‘‘carnivaldolls and womanhat’’ in LIVE1 dataset with Q = 10 and 20.

damaged, the LEJR_compact restores the edges well, and
the restored images obtained by applying the LEJR are
highly close to the ground truth. The CNN-based models

trained using the l1 loss function have high PSNR and SSIM
values; however, the resulting image is blurred. However,
although the proposed GAN-based network has low objective
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indicators, it shows clearer images that have more detail
information (see Fig. 9). Fig. 10 compares the LEJR and
LEJR_GAN models with conventional models. The LEJR
model demonstrates a good deblocking performance while
preserving sharp edges, and the LEJR_GAN model gives
more realistic restored images.

As our LEJR utilizes a combination of the recursive struc-
ture and down-up strategy, it has a large receptive field while
maintaining the number of parameters and GPU memory
consumption low. Conventional networks use relatively small
patch sizes for training: 24×24 in ARCNN [19], 40×40 in
DnCNN [21], and 31×31 in MemNet [15]. By contrast, our
LEJR uses sufficiently large size patches (80×80) to take
advantage of the large receptive field. Consequently, owing
to the efficient structure of LEJR, the large receptive field and
large size patch contributed to reduce posterization artiracts,
thereby resulting in a significant improvement in objective
scores.

V. CONCLUSION
In this paper, deep convolutional neural networks were pro-
posed for restoring JPEG-compressed images. We have pro-
posed a baseline model (LEJR) that maximizes objective
performances, a compact model (LEJR_compact) that greatly
reduces the number of parameters, and successfully applied a
GAN-based model (LEJR_GAN) that gives restored images
which are more realistic. A recursive structure was used to
improve performance against the number of parameters, and a
local excitation unit was developed by modifying the existing
SE-ResBlock to fit the JPEG artifact reduction. The LEJR
used the feature map down-up scaling strategy to speed up the
training and testing time apart from enlarging the receptive
field by reducing the computational complexity and memory
usage. For practical usage, the proposed network trains RGB
images end-to-end to obtain RGB images directly from the
network output. Consequently, the proposed baseline model
had significantly increased PSNR and SSIM values compared
to the existing models, and the proposed compact model
recorded higher objective values than the existing models
with fewer parameters. In addition, this study suggests that
GAN can be used to reconstruct realistic images that have
many details in JPEG image restoration with high compres-
sion ratios. The proposed network can be used in other image
restoration fields such as image dehazing, image denoising,
and super-resolution.
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