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ARCHITECTURAL PLANNING AND DESIGN

Hybrid deep-learning model to recognise emotional responses of users
towards architectural design alternatives
Sunwoo Chang and Hanjong Jun

School of Architecture, Hanyang University, Seoul, South Korea

ABSTRACT
In architectural planning and initial designing process, it is critical for architects to recognise
users’ emotional responses toward design alternatives. Since Building Information Modelling
and related technologies focuses on physical elements of the building, a model which
suggests decision-makers’ subjective affection is strongly required. In this regard, this paper
proposes an electroencephalography (EEG)-based hybrid deep-learning model to recognise
the emotional responses of users towards given architectural design. The hybrid model
consists of generative adversarial networks (GANs) for EEG data augmentation and an EEG-
based deep-learning classification model for EEG classification. In the field of architecture,
a previous study has developed an EEG-based deep-learning classification model that can
recognise the emotional responses of subjects towards design alternatives. This approach
seems to suggest a possible method of evaluating design alternatives in a quantitative
manner. However, because of the limitations of EEG data, it is difficult to train the model,
which leads to the limited utilisation of the model. In this regard, this study constructs GANs,
which consists of a generator and discriminator, for EEG data augmentation. The proposed
hybrid model may provide a method of developing supportive and evaluative environments
in planning, design, and post-occupancy evaluation for decision-makers.
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1. Introduction

1.1 Research background and aim

Architectural planning and initial designing involve
communication among various decision-making par-
ticipants including clients, designers, engineers,
potential users, and local community members. In
the architectural planning step, information that can
be a basis for future decision making is generated. In
the initial designing step, various design alternatives
are suggested by the designer based on the informa-
tion generated in the planning step. These design
alternatives are then reviewed and revised by deci-
sion-making participants. The designing step is of
considerable importance because as it proceeds,
design alternatives are specified and used as the fun-
damental basis for future procedures (Sebastian
2007).

However, in architectural planning and initial
designing, communication problems have constantly
arisen between the client and designer (Siva and
London 2012). There are inevitable limitations in the
client gaining an accurate understanding of the sug-
gestions of the designer and in the process of com-
municating requirements and aspects to be revised
(Shen et al. 2013). In addition, it is difficult for the
designer to grasp the client’s requirements accurately

and to quantitatively track and review the responses
of users towards revised design alternatives (Kiviniemi
2005). Therefore, design processes are often ineffi-
cient and the design quality is not guaranteed.

Building information modelling (BIM) technology is
used to structure physical architectural elements and
their relationships in a form of a database throughout
the lifecycle of a building based on a digitalised build-
ing information management platform and to main-
tain the accumulated building information. BIM
technology has been utilised in various fields such as
building design, construction, and maintenance. It
plays an important role in supporting the architectural
design step, providing various types of building infor-
mation that can be utilised in the decision-making
process. However, BIM technology does not reflect
the emotional evaluation of decision-making partici-
pants because it focuses solely on information regard-
ing the physical attributes of buildings. This is a major
limitation of BIM technology because in the planning
and designing steps, the emotional evaluation of deci-
sion-making participants with regard to the design
alternatives suggested by the designer can be an
important basis for decision making. Against this
background, research has been conducted actively in
the fields of brain science and neuroscience on the
emotional responses of users towards certain
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conditions by utilising electroencephalography
(Ekman and Friesen 1971). In the fields of architecture
and design as well, quantitative research has been
conducted actively on the emotions of users by utilis-
ing EEG. Brain waves are electric signals generated
during different brain activities, and EEG is
a technology to generate numerical data by attaching
electrodes to the scalps of subjects for brain wave
augmentation (Schomer and Silva 2010).

Recently, in the field of architecture, some
research studies have presented design alternatives
to subjects in the form of images while recording
their EEG and analysing the EEG data using deep-
learning classification models (Chang, Dong, and
Jun 2018). The models proposed in these studies
show the basic possibility of estimating the emo-
tional responses of decision-making participants
towards certain spaces. However, there are limita-
tions in training the model because the brain wave
data collected from experiments are insufficient. In
this reagard, as an alternative, a generative adversar-
ial networks (GANs) may be utilised to generate vir-
tual data using only a small volume of input data.

Goodfellow et al. (2014) proposed a GANs consist-
ing of a generator and discriminator and generated
virtual data through the augmentation of a small
volume of input data. A GANs can be utilised when
the available volume of data is not sufficient for the
training and evaluation of a deep-learning model. The
GANs concept is drawing attention in many fields,
particularly in fields where data acquisition is challen-
ging, such as facial recognition (Yang, Zhang, and Yin
2018) and voice recognition (Han et al. 2018).

Accordingly, this paper proposes an EEG-based
hybrid deep-learning model that can classify the emo-
tional responses of potential users towards architec-
tural design alternatives. This model is a combination
of a GANs and EEG-based deep-learning classification
model. The GANs augments brain wave data acquired
in previous studies, and the augmented brain wave
data are provided tothe classification model to train it.

1.2 Study method

The rest of the paper is structured as follows. Section
2 presents a theoretical investigation on previous
studies that utilise brain waves in the field of archi-
tecture and establishes the theoretical background
for GANs models and deep-learning classification
models. Section 3 describes the development of
a GANs model for brain wave data augmentation
and an EEG-based deep-learning classification
model for the data classification based on the find-
ings of the previous studies; hence, a hybrid deep-
learning model based on EEG is developed by com-
bining these two deep-learning models. Section 4
presents the implementation of the proposed GANs

model for the augmentation of the brain wave data
acquired under experimental settings and describes
the details of an EEG-based deep-learning model
training and evaluation using both existing data
and augmented data. In the process of establishing
the GANs model and EEG-based deep-learning clas-
sification model, the TensorFlow platform developed
by Google is utilised, which is a core open-source
machine learning library (TensorFlow, 2018). The pro-
posed hybrid model in this research is built espe-
cially for EEG data augmentation and classification
using the TensorFlow libraries. The brain wave data-
sets are recorded using the “EMOTIV EPOC+ 14
Channel Mobile EEG” device from Emotiv and the
EmotivPro software (Emotiv 2018).

2. Theoretical investigation

2.1 Utilisation of brain waves in field of
architecture

Brain waves are electric signals generated during
brain cell and neurons activities. The numerical data
of these waves are recorded using EEG, for which
electrodes are attached to the scalps of subjects
(Schomer and Silva 2010). Brain waves have drawn
attention because it is possible to usually detect
them in any person and to utilise their quantitative
numerical data, which indicate the responses of the
brain towards external stimuli. In the field of architec-
ture, the quantitative data are utilised for research on
the concentration and productivity of space occu-
pants, dependence of sleep patterns on environmen-
tal changes, biological reactions of occupants or
subjects in satisfaction analysis, and so on. Lan and
Lian (2009), Lee, Choi, and Chun (2012), and Zhang
et al. (2017) utilised brain waves to observe and verify
changes in the productivity of occupants depending
on the indoor temperature. Pan, Lian, and Lan (2011),
Lan et al. (2013), and Lan, Lian, and Lin (2016) utilised
EEG for obtaining quantitative data, using which they
analysed the dependence of the sleep patterns and
satisfaction of subjects on the spatial environment. All
such studies utilise brain waves for obtaining quanti-
tative data, which are used to examine the physiolo-
gical changes in occupants depending on the physical
architectural conditions.

Many previous studies relevant to architectural
design have used EEG to grasp the emotional
responses of users towards changes in the architec-
tural space. One such research included a preference
survey and brain wave experiments among youths,
who were given indoor images with emotional voca-
bularies of community facilities in an apartment com-
plex (Hwang, Kim, and Kim 2013). Hwang et al. (2014)
used brain wave data to examine facility preferences
among youths. Ryu and Lee (2015) examined the
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correlations between colour changes in an indoor
residential space and brain waves. Such studies are
important in that they utilise the quantitative data
obtained from brain to grasp the emotional responses
of subjects in architectural design perspectives and to
observe relevant changes. However, these studies
have limitations in terms of establishing specific mod-
els for EEG data analysis. In contrast, Chang, Dong,
and Jun (2018) recorded the brain waves of subjects
while showing them images of a small residential
space and asking them to select the most-preferred
and least-preferred images. This study also proposed
an EEG-based deep-learning classification model
through which the recorded brain wave data could
be analysed. This model is important in that it ana-
lyses the subjective emotional responses of users
towards architectural spaces in a limited experimental
situation, but the quantity of brain wave data
obtained from experiments is limited. Therefore, it is
difficult to apply this model universally, and further
learning and evaluation of the model is required. In
addition, the process of obtaining brain wave data is
complicated and requires EEG equipment, making it
difficult to apply this model to various other research
areas. Thus, the present study aims to establish
a generative adversarial networks model through
which a small quantity of brain wave data acquired
through experiments from previous studies could be
augmented and converted into virtual data and to
train the EEG-based deep-learning classification
model using the acquired data. Figure 1 shows
a diagram that illustrates how the proposed hybrid
deep-learning model could be applied to an architec-
tural design process.

2.2 Generative adversarial networks

Goodfellow et al. (2014) proposed the concept of
a GANs, which is a deep-learning algorithm based
on unsupervised learning. Supervised deep-learning

method algorithm processes data based on the fea-
ture values of input data, calculates differences(loss)
between model predictions and actual data labels
based on the user-given results, and proceeds to
reduce the loss from such differences (Hinton and
Salakhutdinov 2006). When this process occurs while
classification values of actual data (labels) are pro-
vided, it is called supervised learning. When any clas-
sification values of actual data are provided, it is called
unsupervised learning. However, in the case of super-
vised learning, model training is limited if any label
values of actual data are provided or if the quantity of
data is small. In contrast, the GANs model is different
in that this algorithm is based on unsupervised learn-
ing and thus can generate virtual data based on input
data even if the quantity of the input data is small.
This data augmentation supports the process of train-
ing the supervised deep-learning algorithm. The GANs
model consists of a generator and discriminator. The
generator generates virtual data using latent data and
delivers the generated data to the discriminator. The
discriminator processes the data from the generator
and the original data simultaneously, distinguishing
the original data from the virtual data. As the training
is repeated, the generator and discriminator continue
to adjust the weight and bias values that indicate the
extent of connection among the nodes in each hid-
den layer. The discriminator continues learning with
regard to distinguishing the original data from the
virtual data, whereas the generator proceeds to gen-
erate virtual data that are similar to the original data.
Because the generator and discriminator continue
learning in a hostile and competing environment,
the algorithm is adversarial, competitive and
generative.

The GANs model is utilised to increase the size of
data whose actual classification values are hardly
secured as well as to generate certain data types
such as image, video, and voice. Caramihale,
Popescu, and Ichim (2018) and Luo and Lu (2018)

Figure 1. Application scenario.
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augmented key facial expression data and brain wave
data by utilising the GANs. Their finding indicates that
as augmented data are utilised for training an emo-
tional lassification model, the model’s accuracy is
enhanced.

Figure 2 shows the structure of the GANs consist-
ing of the discriminator and generator. The discrimi-
nator receives virtual data generated by the generator
in addition to actual data, whereas the generator
receives random data. Input datasets pass through
the neural networks of both the generator and dis-
criminator. The discriminator receives actual data and
data generated by the generator simultaneously. It
distinguishes the actual data from the fake data and
calculates the loss. The generator and discriminator
continue learning in a manner that reduces this loss.

2.3 Deep-learning classification

Hinton and Salakhutdinov (2006) proposed a concept
of deep learning that combines multiple artificial
neural networks. The deep-learning model is mainly
divided into three types of layers: the input layer,
hidden layers, and output layer. The hidden layers
consist of multiple nodes and the weight and bias
values that indicate the extent of connection between
the nodes. These values pass through the activation
function and then through the following layer. As
data enter into the deep-learning model, computa-
tional operations are performed on them while they
pass through each layer. The output layer presents
the predicted values after the model classifies the
data. In the case of the supervised learning classifica-
tion model, both the labels and feature values of the
data are put into the model. The difference between
the classification values of the actual data and the
values predicted by the model is calculated which is
so called loss.

Figure 3 shows the structure of the deep neural
networks. An input (xn) is multiplied by a weight value

(wn), and then, the result works as an input for the
activation function. The activation function then cal-
culates the input and transmits it to the following
node as an output value.

If the classification values of the actual data are
provided to the model in the process of entering
data to the deep-learning model and training it, it is
called supervised learning. If such values are not pro-
vided, it is called unsupervised learning. If the model
is trained through supervised learning, the training
may proceed in a manner that reduces the difference
between the values predicted by the model and the
classification values of the actual data. However, in
this case, the learning may be limited if the quantity
of data is small or if no classification values are pro-
vided. In contrast, the unsupervised learning method
has limitations in that it may produce different values
depending on the model’s structure or parameters
although it is possible to train the model even with-
out the classification values of the data (Jain, Duin,
and Mao 2000).

Accordingly, this study aims to develop an EEG-
based hybrid deep-learning model that can recognise
the emotional responses of users in the initial design-
ing step. It consists of a GANs for brain wave data
augmentation and an EEG-based deep-learning classi-
fication model for brain wave data classification. Brain
wave datasets of subjects from previous studies are
augmented through the GANs, and then, the aug-
mented datasets are utilised to train and evaluate
the classification model (Chang, Dong, and Jun 2018).

3. Proposed hybrid deep-learning model

In this work, two distinct deep-learning-based models
are suggested. The first is a generative adversarial
networks (GANs) model for EEG data augmentation,
and the second is an EEG-based deep-learning model
for data classification. The hybrid deep-learning
model consists of a combination of these two models.

Figure 2. Generative adversarial networks (GANs).
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Both these models were built in this study using
Google TensorFlow, which is a core open-source
library for machine learning and deep learning.

Brain wave data collected from experiments work
as input values for GANs and then augmented in
a competitive environment between the generator
and discriminator. The augmented data work as
input values for deep-learning classification model
along with raw brain wave data collected through
experiments, and then, the model proceeds with
training and evaluation based on the data. Figure 4
shows how the GANs used for brain wave data aug-
mentation is combined with the EEG-based deep-
learning classification model used for EEG data
classification.

3.1 Generative adversarial networks for brain
wave data augmentation

This section aims to establish a GANs model to aug-
ment a small quantity of brain wave data collected in

previous studies. In the process of establishing this
model, the open-source library Google TensorFlow
was used.

The EEG data that are to be used by the estab-
lished model have 14 channels, and datasets are nor-
malised for each channel. This step is necessary to
prevent data distortion in the event that the value
of a certain channel is larger than that of another
channel.

The generator and discriminator of the established
GANs consist of three hidden layers, which consist of 50,
100, and 50 nodes, respectively. The number of nodes in
each layer was determined after evaluations with multi-
ple combinations of hyper parameters that showed the
highest training speeds. The generator receives random
values between 0 and 1 and generates virtual EEG data.
The discriminator receives EEG collected through
experiments and virtual data and distinguishes the ori-
ginal data from the virtual data. Once the training is
completed, the EEG data generated by the generator
are presented to users and saved as csv format. Figure 5

Figure 3. Deep neural networks (DNNs) structure.
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shows the structure of the generator and discriminator
of the established GANs.

3.2 EEG-based deep-learning classification model
for brain wave data classification

The purpose of the EEG-based deep-learning classi-
fication model is to classify the emotional states of

the brain wave data as “positive” or “negative”
toward architectural design alternatives. The classi-
fication model utilises TensorFlow as well as appli-
cation programming libraries related to supervised
learning.

The model consists of three layers: the input layer,
hidden layers, and output layer. And the hidden layers
consist of three layers which consist of 100,200 and

Figure 5. GANs generator and discriminator.

Figure 4. Hybrid deep-learning model - GANs + EEG-based Deep-Learning Classification Model.
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100 nodes respectively. A number of nodes in the
hidden layers were selected after preliminary tests
with various combinations of hyper-parameters and
were optimised for training speed and accuracy.

The classification model proceeds with learning
according to the following steps: (1) data input and
normalisation, (2) distinction of training data from
evaluation data(train-test split), (3) training, and (4)
evaluation and accuracy measurement. (1) In the
data input and normalisation step, the brain wave
data of 14 channels are entered according to each
channel’s feature data values and are normalised.
The actual classification values of the corresponding
brain wave data are also given to the model. (2) In
the data splitting step, the entire input data are
shuffled and divided: 70% for training and 30% for
testing. The division between the training and test
datasets was determined after conducting multiple
optimisations of the model and was intended to
prevent over-fitting or under-fitting problems. (3) In
the training step, the classification model presents
the predicted values based on the feature values of
the input data, and the weight and bias values are
adjusted in a manner that reduces the difference
between the predicted output values and actual
classification values. (4) In the evaluation and accu-
racy measurement step, the model accuracy is mea-
sured and given to users. Figure 6 shows the
structure of the model.

4. Implementation of
electroencephalography-based hybrid
deep-learning model

4.1 Brain wave dataset

Chang, Dong, and Jun (2018) performed an experiment
in which they recorded EEG data of subjects. The
experiment was performed in an experiment room of
Hanyang University with the help of 18 individuals (12
women and 6 men) who were healthy physically and
mentally. The experiment was performed in the follow-
ing order: (1) presentation of space images to subjects
for selection, (2) machine calibration and meditation,
(3) brain wave measurement, and (4) questionnaire
completion. (1) In the step of presenting space images
to subjects for selection, eight space images were pre-
sented and subjects selected images that they most
preferred and the ones they least preferred. (2) In the
machine calibration and meditation step, subjects were
asked to wear the “EMOTIV EPOC+ 14 Channel Mobile
EEG” device from Emotiv for machine calibration using
the EmotivPro software. (3) In the brain wave measure-
ment step, the brain waves of subjects were recorded
for 20 s. (4) In the questionnaire completion step,
subjects filled out the Positive and Negative Affect
Schedule (PANAS) questionnaire. The PANAS question-
naire included 20 questions: 10 regarding “positive
emotion” and 10 regarding “negative emotion.” For
the answer to each question, “very much” was given

Figure 6. EEG-based Deep-Learning Classification Model.
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5 points and “not at all” was given 1 point. In this
manner, the scores of the “positive emotion” and
“negative emotion” questions were calculated
(Watson, Clark, and Tellegen 1988). Chang, Dong, and
Jun (2018) excluded the emotion scores that were
lower than the average scores of “positive emotion”
and “negative emotion” presented in the research of
Watson, Clark, and Tellegen (1988). Consequently, the
brain wave data of 8 individuals for the “positive emo-
tion” questions and the data of 17 individuals for the
“negative emotion” questions were included in the
dataset. From the brain wave data for 20 s, the data

for the first 5 s and last 5 s were excluded to remove
noise, and the remaining brain wave data for 10 s were
used. The number of rows in the “positive emotion”
and “negative emotion” datasets was 10,240
(8 × 128 × 10) and 21,760 (17 × 128 × 10), respectively.

Figure 7(a) shows the result of the brain wave
experiment performed on one subject, Figure 7(b)
shows the brain wave recording software called
EmotivPro(Emotiv 2018), and Figure 7(c) shows the
electrode position of the “EMOTIV EPOC+ 14
Channel Mobile EEG” device, which is the EEG equip-
ment used in this experiment (Emotiv 2018).

Figure 7. (a) Subject recording EEG, (b) EmotivPro software interface with recording EEG (Emotiv 2018), (c) “EMOTIV EPOC+ 14
channel mobile EEG” device technical specifications (Emotiv 2018).

Figure 8. EEG-based Deep-learning classification model training dataset: (a) Features: 14 channels of recorded EEG data, (b)
Affection: Re-classified PANAS Questionnaire Results, (c) Labels: “Negative” = 1 and “Positive” = 2, (d) Subject Initials, (e)
Frequency (Hz).
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Figure 8 shows the structure of the EEG dataset.
Figure 8(a) shows the raw brain wave data of 14 chan-
nels, which include feature values. Figure 8(b) shows the
re-classified affection results of the PANAS survey.
Figure 8(c) shows numerically casted values from the
survey results. Actual classification values were entered
into the model as follows: 1 for “negative” items and 2
for “positive” items. Figure 8(d) shows the initials of each
subject, and Figure 8(e) shows the frequency.

4.2 Brain wave dataset augmentation using
generative adversarial networks

The learning process of the GANs includes the following
four steps: (1) data input, (2) virtual data generation by
the generator, (3) discriminator training, and (4) virtual
data output. (1) In the data input step, the “positive
emotion EEG dataset” and “negative emotion EEG data-
set” recorded in the previous study were entered into the
model. (2) In the step involving virtual data generation by
the generator, random values between 0 and 1 were
entered into the generator and the generator generated
virtual brain wave data. (3) In the discriminator training
step, the actual EEG data and virtual EEG data generated
by the generator were entered into the discriminator

simultaneously. The discriminator distinguished the
actual data from the fake data. In this phase, loss values
of discriminator and generator are calculated. If gener-
ated data becomes similar to actual data during training
process, generator loss decreases. (4) In the virtual data
output step, virtual brain wave data generated by the
generator were saved in csv format. In total, 30,000 rows
were generated by the generator for the “positive emo-
tion EEG dataset” and “negative emotion EEG dataset”
items respectively.

Table 1 indicates that as the trainingwas repeated, the
virtual data in blue gradually became similar to the actual
data in orange. Among the 14 channels of the “positive
emotion” brain wave data, the two channels AF3 and T7
were visualisedon the x axis and y axis, respectively.When
the training was repeated 1,000 times, the generator
generated data containing negative numbers with no
actual data. When the training was repeated 8,000
times, the overlap of the virtual data with the actual
data increased. As the training was repeated, the over-
lapped parts of the actual data and virtual data on the
coordinate axes increased to the point that the discrimi-
nator could no longer distinguish the actual data from the
virtual data. Accordingly, the generator’s loss decreased
gradually.

Figure 9. Suggested Model Use Research Scenario.

Table 1. Comparison between real data and augmented data through iterations (Positive affection).
Iterations: 1,000 Iterations: 8,000 Iterations: 18,000 Iterations: 22,000
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4.3 DEEG-based deep-learning classification
model training using virtual brain wave data

The virtual EEG data generated using the GANs model
were utilised in the process of training the EEG-based
deep-learning classification model. The virtual brain
wave dataset generated based on the “positive emo-
tion EEG dataset” was added to this dataset, and then,
the “negative emotion EEG dataset” was added in the
same manner. Consequently, the “positive emotion
brain wave dataset” and “negative emotion brain
wave dataset” were combined with 40,240 and
51,760 rows, respectively.

The expanded “positive emotion EEG dataset” and
“negative emotion EEG dataset” were then entered
into the classification model for training. While the
previous classification model utilised 32,000 datasets
for training, in the present model, 92,000 datasets
were utilised in training as virtual brain wave data
were added. The final accuracy was 0.984, which was
better than the existing accuracy (0.979). If more data
are added in the future using the GANs model, the
accuracy and universality may improve further.

4.4 Implications and model utilisation scenarios

The proposed EEG-based hybrid deep-learning
model enables quantitative identification of user
emotions towards architectural space images. At
the design stage, the architects consider the emo-
tional qualitative reviews of the decision makers,
including owners and preliminary users, as well as
the quantitative reviews, including legal and loca-
tion-based reviews, on the design alternatives to be
important. In this regard, the proposed model can
be effectively used. However, at the current stage of
research, because it is difficult to manipulate EEG
recording machines and because the experimental
procedures are complicated, applying the proposed
model to actual design processes will require addi-
tional research in the fields of brain science and
architecture in the future.

At present, we can present research scenarios that
quantitatively measure specific subjects’ responses
towards specific architectural spaces and build data-
bases by obtaining measurement data and incorpor-
ating them into design knowledge using the
proposed model. Previous studies on design knowl-
edge databases mainly used surveys and in-depth
interviews to measure the emotional responses of
subjects to a specific type of architecture. However,
if the model proposed in this study is adopted, archi-
tects can quantitatively measure the emotional
responses of users under certain conditions and sui-
tably incorporate them into the knowledge base to

reflect real business processes. This scenario is sug-
gested in Figure 9.

5. Conclusion

The objective of this study was to establish an EEG-
based hybrid deep-learning model through which the
emotional responses of users towards a architectural
space could be evaluated. To this end, brain wave
data collected in previous studies were augmented
using the GANs model, and an EEG-based deep-
learning classification model was trained and evalu-
ated by using both actual and virtual data. The find-
ings of this study are as follows.

First, the GANs showed a major possibility of aug-
menting atypical EEG data. It is expected that this
networks can be used in the field of architecture to
augment and utilise datasets whose scale and avail-
ability are limited, such as simulation data, environ-
mental sensor data, and observation data. Second, as
the quantity of data increases, the accuracy of training
and evaluating the deep-learning model will improve
continually. The model has demonstrated that it can
handle big data pertaining to architecture, traffic, and
other environments that can be utilised in the field of
architecture. Third, by using the brain wave data and
EEG-based hybrid deep-learning model, the study has
demonstrated the possibility of helping the designer
in the architectural design step to grasp the emo-
tional responses of future users or clients towards
proposed design alternatives. In this study, it was
possible to utilise brain wave data as indicators of
the emotional responses or preferences of subjects
only in limited environments.

In future studies, the following research activities
should be considered. The proposed hybrid deep-
learning model should be applied to actual design pro-
cesses. The hybrid deep-learning model should be eval-
uated and verified. Experiments should be performed for
recording additional brain wave data to facilitate the
universal application of the model. The EEG-based hybrid
deep-learning model should be combined with an eye
tracking system for the evaluation of the emotional
responses of users towards actual spatial environments.
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