ADDITIVE s-FUNCTIONAL INEQUALITIES AND PARTIAL MULTIPLIERS IN BANACH ALGEBRAS

Choonkil Park
(Communicated by A. Gilányi)

Abstract. In this paper, we solve the additive s-functional inequalities

$$
\begin{equation*}
\|f(x+y-z)-f(x)-f(y)+f(z)\| \leqslant\|s(f(x-y)+f(y-z)-f(x-z))\| \tag{0.1}
\end{equation*}
$$

where s is a fixed nonzero complex number with $|s|<1$, and

$$
\begin{equation*}
\|f(x-y)+f(y-z)-f(x-z)\| \leqslant\|s(f(x+y-z)-f(x)-f(y)+f(z))\| \tag{0.2}
\end{equation*}
$$

where s is a fixed nonzero complex number with $|s|<1$.
Furthermore, we prove the Hyers-Ulam stability of the additive s-functional inequalities (0.1) and (0.2) in complex Banach spaces. This is applied to investigate partial multipliers in Banach $*$-algebras and unital C^{*}-algebras, associated with the additive s-functional inequalities (0.1) and (0.2).

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [20] concerning the stability of group homomorphisms.

The functional equation $f(x+y)=f(x)+f(y)$ is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [6] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [1] for additive mappings and by Rassias [17] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [3] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

Gilányi [4] showed that if f satisfies the functional inequality

$$
\begin{equation*}
\|2 f(x)+2 f(y)-f(x-y)\| \leqslant\|f(x+y)\| \tag{1.1}
\end{equation*}
$$

then f satisfies the Jordan-von Neumann functional equation

$$
2 f(x)+2 f(y)=f(x+y)+f(x-y)
$$

Mathematics subject classification (2010): 39B52, 46L05, 39B62, 43A22.
Keywords and phrases: Partial multiplier in C^{*}-algebra, Hyers-Ulam stability, additive s-functional inequality.

See also [18]. Fechner [2] and Gilányi [5] proved the Hyers-Ulam stability of the functional inequality (1.1).

Park [14, 15] defined additive ρ-functional inequalities and proved the HyersUlam stability of the additive ρ-functional inequalities in Banach spaces and nonArchimedean Banach spaces. The stability problems of various functional equations and functional inequalities have been extensively investigated by a number of authors (see $[8,9,10,11,12,16]$).

In [19], Taghavi introduced partial multipliers in complex Banach $*$-algebras as follows.

Definition 1.1. Let A be a complex Banach $*$-algebra. A \mathbb{C}-linear mapping $P: A \rightarrow A$ is called a partial multiplier if P satisfies

$$
\begin{aligned}
P \circ P(x y) & =P(x) P(y) \\
P\left(x^{*}\right) & =P(x)^{*}
\end{aligned}
$$

for all $x, y \in A$.
This paper is organized as follows: In Section 2, we solve the additive s-functional inequality (0.1) and prove the Hyers-Ulam stability of the additive s-functional inequality (0.1) in complex Banach spaces. In Section 3, we solve the additive s-functional inequality (0.2) and prove the Hyers-Ulam stability of the additive s-functional inequality (0.2) in complex Banach spaces. In Section 4, we investigate partial multipliers in C^{*}-algebras associated with the additive s-functional inequalities (0.1) and (0.2).

Throughout this paper, let X be a complex normed space with norm $\|\cdot\|, Y$ a complex Banach space with norm $\|\cdot\|$ and A a complex Banach $*$-algebra with norm $\|\cdot\|$. Assume that s is a fixed nonzero complex number with $|s|<1$.

2. Additive s-functional inequality (0.1)

We solve and investigate the additive s-functional inequality (0.1) in complex normed spaces.

Lemma 2.1. If a mapping $f: X \rightarrow Y$ satisfies $f(0)=0$ and

$$
\begin{equation*}
\|f(x+y-z)-f(x)-f(y)+f(z)\| \leqslant\|s(f(x-y)+f(y-z)-f(x-z))\| \tag{2.1}
\end{equation*}
$$

for all $x, y, z \in X$, then $f: X \rightarrow Y$ is additive.

Proof. Assume that $f: X \rightarrow Y$ satisfies (2.1).
Letting $x=y$ and $z=0$ in (2.1), we get $f(2 x)=2 f(x)$ for all $x \in X$.
Letting $y=-x$ and $z=0$ in (2.1), we get

$$
\|f(x)+f(-x)\| \leqslant\|s(f(2 x)+f(-x)-f(x))\|=\|s(f(x)+f(-x))\|
$$

and so $f(-x)=-f(x)$ for all $z \in X$, since $|s|<1$.

Letting $x=0$ in (2.1), we get
$\|f(y-z)-f(y)+f(z)\| \leqslant\|s(f(-y)+f(y-z)-f(-z))\|=\|s(f(y-z)-f(y)+f(z))\|$
and so $f(y-z)=f(y)-f(z)$ for all $y, z \in X$, since $|s| \leqslant 1$. So $f(y+z)=f(y)+f(z)$ for all $y, z \in X$.

We prove the Hyers-Ulam stability of the additive s-functional inequality (2.1) in complex Banach spaces.

THEOREM 2.2. Let $r>1$ and θ be nonnegative real numbers and let $f: X \rightarrow Y$ be an odd mapping satisfying

$$
\begin{align*}
\|f(x+y-z)-f(x)-f(y)+f(z)\| \leqslant & \|s(f(x-y)+f(y-z)-f(x-z))\| \\
& +\theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right) \tag{2.2}
\end{align*}
$$

for all $x, y, z \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leqslant \frac{2 \theta}{2^{r}-2}\|x\|^{r} \tag{2.3}
\end{equation*}
$$

for all $x \in X$.

Proof. Letting $z=0$ and $y=x$ in (2.2), we get

$$
\begin{equation*}
\|f(2 x)-2 f(x)\| \leqslant 2 \theta\|x\|^{r} \tag{2.4}
\end{equation*}
$$

for all $x \in X$. So

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\| \leqslant \frac{2}{2^{r}} \theta\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\| & \leqslant \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\| \\
& \leqslant \frac{2}{2^{r}} \sum_{j=l}^{m-1} \frac{2^{j}}{2^{r j}} \theta\|x\|^{r} \tag{2.5}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.5) that the sequence $\left\{2^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ is Cauchy for all $x \in X$. Since Y is a Banach space, the sequence $\left\{2^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{k \rightarrow \infty} 2^{k} f\left(\frac{x}{2^{k}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing to the limit $m \rightarrow \infty$ in (2.5), we get (2.3).

It follows from (2.2) that

$$
\begin{aligned}
& \|A(x+y-z)-A(x)-A(y)+A(z)\| \\
= & \lim _{n \rightarrow \infty}\left\|2^{n}\left(f\left(\frac{x+y-z}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)+f\left(\frac{z}{2^{n}}\right)\right)\right\| \\
\leqslant & \lim _{n \rightarrow \infty}\left\|2^{n} s\left(f\left(\frac{x-y}{2^{n}}\right)+f\left(\frac{y-z}{2^{n}}\right)-f\left(\frac{x-z}{2^{n}}\right)\right)\right\| \\
& +\lim _{n \rightarrow \infty} \frac{2^{n}}{2^{r n}} \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right) \leqslant\|s(A(x-y)+A(y-z)-A(x-z))\|
\end{aligned}
$$

for all $x, y, z \in X$. So

$$
\|A(x+y-z)-A(x)-A(y)+A(z)\| \leqslant\|s(A(x-y)+A(y-z)-A(x-z))\|
$$

for all $x, y, z \in X$. By Lemma 2.1, the mapping $A: X \rightarrow Y$ is additive.
Now, let $T: X \rightarrow Y$ be another additive mapping satisfying (2.3). Then we have

$$
\begin{aligned}
\|A(x)-T(x)\| & =\left\|2^{q} A\left(\frac{x}{2^{q}}\right)-2^{q} T\left(\frac{x}{2^{q}}\right)\right\| \\
& \leqslant\left\|2^{q} A\left(\frac{x}{2^{q}}\right)-2^{q} f\left(\frac{x}{2^{q}}\right)\right\|+\left\|2^{q} T\left(\frac{x}{2^{q}}\right)-2^{q} f\left(\frac{x}{2^{q}}\right)\right\| \\
& \leqslant \frac{4 \theta}{2^{r}-2} \frac{2^{q}}{2^{q r}}\|x\|^{r}
\end{aligned}
$$

which tends to zero as $q \rightarrow \infty$ for all $x \in X$. So we can conclude that $A(x)=T(x)$ for all $x \in X$. This proves the uniqueness of A, as desired.

THEOREM 2.3. Let $r<1$ and θ be nonnegative real numbers and let $f: X \rightarrow Y$ be an odd mapping satisfying (2.2). Then there exists a unique additive mapping A : $X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leqslant \frac{2 \theta}{2-2^{r}}\|x\|^{r} \tag{2.6}
\end{equation*}
$$

for all $x \in X$.

Proof. It follows from (2.4) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leqslant \theta\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| & \leqslant \sum_{j=l}^{m-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\| \\
& \leqslant \sum_{j=l}^{m-1} \frac{2^{r j}}{2^{j}} \theta\|x\|^{r} \tag{2.7}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.7) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing to the limit $m \rightarrow \infty$ in (2.7), we get (2.6).

The rest of the proof is similar to the proof of Theorem 2.2.

3. Additive s-functional inequality (0.2)

We solve and investigate the additive s-functional inequality (0.2) in complex normed spaces.

Lemma 3.1. If a mapping $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\|f(x-y)+f(y-z)-f(x-z)\| \leqslant\|s(f(x+y-z)-f(x)-f(y)+f(z))\| \tag{3.1}
\end{equation*}
$$

for all $x, y, z \in X$, then $f: X \rightarrow Y$ is additive.
Proof. Assume that $f: X \rightarrow Y$ satisfies (3.1). Letting $x=y=z=0$ in (3.1), we get $f(0)=0$.

Letting $x=z=0$ in (3.1), we get $\|f(-y)+f(y)\| \leqslant 0$ and so $f(-y)=-f(y)$ for all $y \in X$.

Letting $z=x+y$ in (3.1), we get

$$
\begin{equation*}
\|f(x-y)+f(-x)-f(-y)\| \leqslant\|s(f(x+y)-f(x)-f(y))\| \tag{3.2}
\end{equation*}
$$

for all $x, y \in X$. Replacing y and $-y$ in (3.2), we obtain

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leqslant\|s(f(x-y)-f(x)+f(y))\| \tag{3.3}
\end{equation*}
$$

for all $x, y \in X$. It follows from (3.2) and (3.3) that $f(x+y)=f(x)+f(y)$ for all $x, y \in X$, since $|s| \leqslant 1$. So f is additive.

We prove the Hyers-Ulam stability of the additive s-functional inequality (3.1) in complex Banach spaces.

THEOREM 3.2. Let $r>1$ and θ be nonnegative real numbers and let $f: X \rightarrow Y$ be an odd mapping satisfying

$$
\begin{align*}
\|f(x-y)+f(y-z)-f(x-z)\| \leqslant & \|s(f(x+y-z)-f(x)-f(y)+f(z))\| \\
& +\theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right) \tag{3.4}
\end{align*}
$$

for all $x, y, z \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leqslant \frac{2 \theta}{2^{r}-2}\|x\|^{r} \tag{3.5}
\end{equation*}
$$

for all $x \in X$.

Proof. Since f is odd, $f(0)=0$.
Letting $z=0$ and $y=-x$ in (3.4), we get

$$
\begin{equation*}
\|f(2 x)-2 f(x)\| \leqslant 2 \theta\|x\|^{r} \tag{3.6}
\end{equation*}
$$

for all $x \in X$. So

$$
\begin{align*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\| & \leqslant \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\| \\
& \leqslant \sum_{j=l+1}^{m} \frac{2^{j}}{2^{r j}} \theta\|x\|^{r} \tag{3.7}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.7) that the sequence $\left\{2^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ is Cauchy for all $x \in X$. Since Y is a Banach space, the sequence $\left\{2^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{k \rightarrow \infty} 2^{k} f\left(\frac{x}{2^{k}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing to the limit $m \rightarrow \infty$ in (3.7), we get (3.5).

The rest of the proof is similar to the proof of Theorem 2.2.
THEOREM 3.3. Let $r<1$ and θ be nonnegative real numbers and let $f: X \rightarrow Y$ be an odd mapping satisfying (3.4). Then there exists a unique additive mapping A : $X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leqslant \frac{2 \theta}{2-2^{r}}\|x\|^{r} \tag{3.8}
\end{equation*}
$$

for all $x \in X$.
Proof. It follows from (3.6) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leqslant \theta\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| & \leqslant \sum_{j=l}^{m-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\| \\
& \leqslant \sum_{j=l}^{m-1} \frac{2^{r j}}{2^{j}} \theta\|x\|^{r} \tag{3.9}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.9) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing to the limit $m \rightarrow \infty$ in (3.9), we get (3.8).

The rest of the proof is similar to the proof of Theorem 2.2.

4. Partial multipliers in C^{*}-algebras

In this section, we investigate partial multipliers in complex Banach $*$-algebras and unital C^{*}-algebras associated with the additive ρ-functional inequalities (2.1) and (3.1).

THEOREM 4.1. Let $r>2$ and θ be nonnegative real numbers, and let $f: A \rightarrow A$ be an odd mapping such that

$$
\begin{align*}
\|f(\mu(x+y-z))-\mu(f(x)+f(y)-f(z))\| \leqslant & \|s(f(x-y)+f(y-z)-f(x-z))\| \\
& +\theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right) \tag{4.1}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}$ and all $x, y, z \in A$. Then there exists a unique \mathbb{C}-linear mapping $P: A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-P(x)\| \leqslant \frac{2 \theta}{2^{r}-2}\|x\|^{r} \tag{4.2}
\end{equation*}
$$

for all $x \in A$.
If, in addition, the mapping $f: A \rightarrow A$ satisfies $f(2 x)=2 f(x)$ and

$$
\begin{align*}
\|f \circ f(x y)-f(x) f(y)\| & \leqslant \theta\left(\|x\|^{r}+\|y\|^{r}\right) \tag{4.3}\\
\left\|f\left(x^{*}\right)-f(x)^{*}\right\| & \leqslant \theta\|x\|^{r} \tag{4.4}
\end{align*}
$$

for all $x, y \in A$, then the mapping f is a partial multiplier.
Proof. Let $\mu=1$ in (4.1). By Theorem 2.2, there is a unique additive mapping $P: A \rightarrow A$ satisfying (4.2) defined by

$$
P(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in A$.
Letting $y=z=0$ in (4.1), we get

$$
\|f(\mu x)-\mu f(x)\| \leqslant \theta\|x\|^{r}
$$

for all $x \in A$ and all $\mu \in \mathbb{T}^{1}$. So

$$
\|P(\mu x)-\mu P(x)\|=\lim _{n \rightarrow \infty} 2^{n}\left\|f\left(\mu \frac{x}{2^{n}}\right)-f\left(\mu \frac{x}{2^{n}}\right)\right\| \leqslant \lim _{n \rightarrow \infty} \frac{2^{n}}{2^{r n}} \theta\|x\|^{r}=0
$$

for all $x \in A$ and all $\mu \in \mathbb{T}^{1}$. Hence $P(\mu x)=\mu P(x)$ for all $x \in A$ and all $\mu \in \mathbb{T}^{1}$. By the same reasoning as in the proof of [13, Theorem 2.1], the mapping $P: A \rightarrow A$ is \mathbb{C}-linear.

If $f(2 x)=2 f(x)$ for all $x \in A$, then we can easily show that $P(x)=f(x)$ for all $x \in A$. It follows from (4.3) that

$$
\begin{aligned}
\|f \circ f(x y)-f(x) f(y)\| & =\|P \circ P(x y)-P(x) P(y)\| \\
& =\lim _{n \rightarrow \infty} 4^{n}\left\|f \circ f\left(\frac{x y}{2^{n} \cdot 2^{n}}\right)-f\left(\frac{x}{2^{n}}\right) f\left(\frac{y}{2^{n}}\right)\right\| \\
& \leqslant \lim _{n \rightarrow \infty} \frac{4^{n} \theta}{2^{r n}}\left(\|x\|^{r}+\|y\|^{r}\right)=0
\end{aligned}
$$

for all $x, y \in A$. Thus

$$
f \circ f(x y)=f(x) f(y)
$$

for all $x, y \in A$.
It follows from (4.4) that

$$
\begin{aligned}
\left\|f\left(x^{*}\right)-f(x)^{*}\right\| & =\left\|P\left(x^{*}\right)-P(x)^{*}\right\|=\lim _{n \rightarrow \infty} 2^{n}\left\|f\left(\frac{x^{*}}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)^{*}\right\| \\
& \leqslant \lim _{n \rightarrow \infty} \frac{2^{n} \theta}{2^{n r}}\left(\|x\|^{r}+\|x\|^{r}\right)=0
\end{aligned}
$$

for all $x \in A$. Thus

$$
f\left(x^{*}\right)=f(x)^{*}
$$

for all $x \in A$. Hence the mapping $f: A \rightarrow A$ is a partial multiplier.
THEOREM 4.2. Let $r<1$ and θ be nonnegative real numbers, and let $f: A \rightarrow A$ be an odd mapping satisfying (4.1). Then there exists a unique \mathbb{C}-linear mapping $P: A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-P(x)\| \leqslant \frac{2 \theta}{2-2^{r}}\|x\|^{r} \tag{4.5}
\end{equation*}
$$

for all $x \in A$.
If, in addition, the mapping $f: A \rightarrow A$ satisfies $f(2 x)=2 f(x)$ for all $x \in A$, (4.3) and (4.4), then the mapping f is a partial multiplier.

Proof. The proof is similar to the proof of Theorem 4.1.
Similarly, we can obtain the following results.
THEOREM 4.3. Let $r>2$ and θ be nonnegative real numbers, and let $f: A \rightarrow A$ be an odd mapping such that

$$
\begin{align*}
\|f(\mu(x-y))+f(\mu(y-z))-\mu f(x-z)\| \leqslant & \|s(f(x+y-z)-f(x)-f(y)+f(z))\| \\
& +\theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right) \tag{4.6}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$. Then there exists a unique \mathbb{C}-linear mapping $P: A \rightarrow$ A such that

$$
\begin{equation*}
\|f(x)-P(x)\| \leqslant \frac{2 \theta}{2^{r}-2}\|x\|^{r} \tag{4.7}
\end{equation*}
$$

for all $x \in A$.
If, in addition, the mapping $f: A \rightarrow A$ satisfies $f(2 x)=2 f(x)$ for all $x \in A$, (4.3) and (4.4), then the mapping f is a partial multiplier.

THEOREM 4.4. Let $r<1$ and θ be nonnegative real numbers, and let $f: A \rightarrow A$ be an odd mapping satisfying (4.6). Then there exists a unique \mathbb{C}-linear mapping $P: A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-P(x)\| \leqslant \frac{2 \theta}{2-2^{r}}\|x\|^{r} \tag{4.8}
\end{equation*}
$$

for all $x \in A$.
If, in addition, the mapping $f: A \rightarrow A$ satisfies $f(2 x)=2 f(x)$ for all $x \in A$, (4.3) and (4.4), then the mapping f is a partial multiplier.

From now on, assume that A is a unital C^{*}-algebra with norm $\|\cdot\|$ and unitary group $U(A)$.

THEOREM 4.5. Let $r>2$ and θ be nonnegative real numbers, and let $f: A \rightarrow A$ be an odd mapping satisfying (4.1). Then there exists a unique \mathbb{C}-linear mapping $P: A \rightarrow A$ satisfying (4.2).

If, in addition, the mapping $f: A \rightarrow A$ satisfies $f(2 x)=2 f(x)$ for all $x \in A$ and

$$
\begin{align*}
\|f \circ f(u v)-f(u) f(v)\| & \leqslant 2 \theta \tag{4.9}\\
\left\|f\left(u^{*}\right)-f(u)^{*}\right\| & \leqslant \theta \tag{4.10}
\end{align*}
$$

for all $u, v \in U(A)$, then the mapping f is a partial multiplier.

Proof. By the same reasoning as in the proof of Theorem 4.1, there is a unique \mathbb{C}-linear mapping $P: A \rightarrow A$ satisfying (4.2) defined by

$$
P(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in A$.
If $f(2 x)=2 f(x)$ for all $x \in A$, then we can easily show that $P(x)=f(x)$ for all $x \in A$.

By the same reasoning as in the proof of Theorem 4.1, $f \circ f(u v)=f(u) f(v)$ and $f\left(u^{*}\right)=f(u)^{*}$ for all $u, v \in U(A)$.

Since f is \mathbb{C}-linear and each $x \in A$ is a finite linear combination of unitary elements (see [7]), i.e., $x=\sum_{j=1}^{m} \lambda_{j} u_{j}\left(\lambda_{j} \in \mathbb{C}, u_{j} \in U(A)\right)$,

$$
\begin{aligned}
f\left(x^{*}\right) & =f\left(\sum_{j=1}^{m} \overline{\lambda_{j}} u_{j}^{*}\right)=\sum_{j=1}^{m} \overline{\lambda_{j}} f\left(u_{j}^{*}\right)=\sum_{j=1}^{m} \overline{\lambda_{j}} f\left(u_{j}\right)^{*}=\left(\sum_{j=1}^{m} \lambda_{j} f\left(u_{j}\right)\right)^{*}=f\left(\sum_{j=1}^{m} \lambda_{j} u_{j}\right)^{*} \\
& =f(x)^{*}
\end{aligned}
$$

for all $x \in A$.

Since f and $f \circ f$ are \mathbb{C}-linear and each $x, y \in A$ is a finite linear combination of unitary elements, i.e., $x=\sum_{j=1}^{m} \lambda_{j} u_{j}\left(\lambda_{j} \in \mathbb{C}, u_{j} \in U(A)\right)$ and $y=\sum_{k=1}^{n} \beta_{k} v_{k}\left(\beta_{k} \in \mathbb{C}\right.$, $\left.v_{k} \in U(A)\right)$,

$$
\begin{aligned}
f \circ f(x y) & =f \circ f\left(\sum_{j=1}^{m} \sum_{k=1}^{n} \lambda_{j} \beta_{k} u_{j} v_{k}\right)=\sum_{j=1}^{m} \sum_{k=1}^{n} \lambda_{j} \beta_{k} f \circ f\left(u_{j} v_{k}\right)=\sum_{j=1}^{m} \sum_{k=1}^{n} \lambda_{j} \beta_{k} f\left(u_{j}\right) f\left(v_{k}\right) \\
& =f\left(\sum_{j=1}^{m} \lambda_{j} u_{j}\right) f\left(\sum_{k=1}^{n} \beta_{k} v_{k}\right)=f(x) f(y)
\end{aligned}
$$

for all $x, y \in A$.
Therefore, the mapping $f: A \rightarrow A$ is a partial multiplier.
THEOREM 4.6. Let $r<1$ and θ be nonnegative real numbers, and let $f: A \rightarrow A$ be an odd mapping satisfying (4.1). Then there exists a unique \mathbb{C}-linear mapping $P: A \rightarrow A$ satisfying (4.8).

If, in addition, the mapping $f: A \rightarrow A$ satisfies $f(2 x)=2 f(x)$ for all $x \in A$, (4.9) and (4.10), then the mapping f is a partial multiplier.

Proof. The proof is similar to the proof of Theorem 4.5. \square
Similarly, we can obtain the following results.
THEOREM 4.7. Let $r>2$ and θ be nonnegative real numbers, and let $f: A \rightarrow A$ be an odd mapping satisfying (4.6). Then there exists a unique \mathbb{C}-linear mapping $P: A \rightarrow A$ satisfying (4.7).

If, in addition, the mapping $f: A \rightarrow A$ satisfies $f(2 x)=2 f(x)$ for all $x \in A$, (4.9) and (4.10), then the mapping f is a partial multiplier.

THEOREM 4.8. Let $r<1$ and θ be nonnegative real numbers, and let $f: A \rightarrow A$ be an odd mapping satisfying (4.6). Then there exists a unique \mathbb{C}-linear mapping $P: A \rightarrow A$ satisfying (4.8).

If, in addition, the mapping $f: A \rightarrow A$ satisfies $f(2 x)=2 f(x)$ for all $x \in A$, (4.9) and (4.10), then the mapping f is a partial multiplier.

REFERENCES

[1] T. AOKI, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[2] W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161.
[3] P. GǍVRUTA, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[4] A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math. 62 (2001), 303-309.
[5] A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707-710.
[6] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[7] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras: Elementary Theory, Academic Press, New York, 1983.
[8] B. Khosravi, M. B. Moghimi and A. Najati, Generalized Hyers-Ulam stability of a functional equation of Hosszu type, Nonlinear Funct. Anal. Appl. 23 (2018), 157-166.
[9] G. Kim and H. Shin, Approximately quadratic mappings in non-Archimedean fuzzy normed spaces, Nonlinear Funct. Anal. Appl. 23 (2018), 369-380.
[10] Y. Lee and S. Jung, A general theorem on the fuzzy stability of a class of functional equations including quadratic-additive functional equations, Nonlinear Funct. Anal. Appl. 23 (2018), 353-368.
[11] Y. Manar, E. Elqorachi and Th. M. Rassias, Hyers-Ulam stability of the Jensen functional equation in quasi-Banach spaces, Nonlinear Funct. Anal. Appl. 15 (2010), 581-603.
[12] Y. Manar, E. Elqorachi and Th. M. Rassias, On the Hyers-Ulam stability of the quadratic and Jensen functional equations on a restricted domain, Nonlinear Funct. Anal. Appl. 15 (2010), 647-655.
[13] C. Park, Homomorphisms between Poisson JC* -algebras, Bull. Braz. Math. Soc. 36 (2005), 79-97.
[14] C. PARK, Additive ρ-functional inequalities and equations, J. Math. Inequal. 9 (2015), 17-26.
[15] C. PARK, Additive ρ-functional inequalities in non-Archimedean normed spaces, J. Math. Inequal. 9 (2015), 397-407.
[16] C. Park, K. Ghasemi, S. G. Ghaleh and S. Jang, Approximate n-Jordan *-homomorphisms in C^{*}-algebras, J. Comput. Anal. Appl. 15 (2013), 365-368.
[17] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc. 72 (1978), 297-300.
[18] J. RÄTZ, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191-200.
[19] A. Taghavi, On a functional equation for symmetric linear operators on C^{*}-algebras, Bull. Iranian Math. Soc. 42 (2016), 1169-1177.
[20] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

