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Abstract: This study addresses the problem of identifying the source location of a contaminant spill in
a river system when a sensor network returns observations containing random measurement errors.
To solve this problem, we suggest a new framework comprising three main steps: (i) spill detection,
(ii) data preprocessing, and (iii) source identification. Specifically, we applied a statistical process
control chart to detect a contaminant spill with measurement errors while keeping the false alarm
rate at less than or equal to a user-specified value. After detecting a spill, we generated a nonlinear
regression model to estimate a breakthrough curve of the observations and derive a characteristic
vector of the estimated curve. Using the characteristic vector as an input, a random forest model was
constructed with the sensor raising the first alarm. The model provides output values between 0 and
1 to represent the possibility of each candidate location being the true spill source. These possibility
values allow users to identify strong candidate locations for the spill. The accuracy of our framework
was tested on part of the Altamaha River system in Georgia, USA.

Keywords: source identification; sensor network; water quality monitoring; river system; statistical
process control; random forest

1. Introduction

Water is a crucial resource for both public health and ecological life. Since the amount of fresh
water is decreasing at the same time that population, industrialization, and environmental pollution
are increasing, the importance of water quality monitoring is attracting more attention. Based on
improvements to real-time sensor and data analysis technologies that enable people to monitor water
quality more effectively, the problem of identifying the source location of a contaminant spill has
also been extensively studied by researchers. Most previous studies related to this problem have
addressed two types of water systems: groundwater and rivers. Optimization algorithms, such as
linear/nonlinear programming and meta-heuristics, have been commonly used to identify contaminant
spill locations in groundwater systems, as shown by Aral and Guan [1], Aral et al. [2], Gorelick et al. [3],
Singh and Datta [4], and Sun et al. [5]. Additionally, statistical methods (such as a backward probability
model approach [6,7] and a geostatistical approach [8]) and machine learning techniques including
artificial neural network models have been used by Singh and Datta [9], Singh et al. [10], and Srivastava
and Singh [11] to address similar problems.

Due to the size and complexity of the problem, fewer studies have been conducted for rivers
than for groundwater systems. Boano et al. [12] employed a geostatistical approach that generates
previous information about a pollutant. Chen et al. [13] applied multivariate statistical methods to
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determine the spatial and temporal variations of water quality, then identified the contaminant source
location. The backward probability method was also used by Ghane et al. [14] and Telci and Aral [15],
while Lee et al. [16] recently provided a method based on random forest models to identify the source
location of a contaminant spill in a river system. The random forest model is a famous classification
model that consists of a set of tree-structured classifiers. It is known to have several advantages,
such as computational efficiency, accuracy, and robustness, compared with other models. One may see
Breiman [17] for an overview of the random forest model. For source identification in a river system,
the random forest models provide values between 0 and 1, indicating the possibility that a candidate
location is the true spill location, while the backward probability method provides only the rankings of
candidate locations.

Many studies rely on hydrodynamic simulation models that provide contaminant concentration
levels in a water system to develop and test their methods. It is difficult to apply these methods,
however, because, in practice, the observed concentration levels often contain random measurement
errors. As mentioned by Kim et al. [18], the results from a case considering observations with random
measurement errors may be totally different compared with those from a case considering ideal
observations generated by the simulation models without measurement errors (e.g., the concentration
levels are exactly 0 when no spill event occurs). To obtain reliable results despite random measurement
errors, one may need to control false alarm rates, which can be done by statistical process control (SPC)
charts. A good review of SPC charts is provided by Montgomery [19]. Among the various SPC charts,
we focus on the CUSUM chart developed by Kim et al. [20] due to the following advantages: (i) it
enables users to derive a threshold value with a simple analytical method and (ii) it can deal with
autocorrelated observations that follow a non-normal distribution.

This study, therefore, considers the problem of identifying a spill source location in a river
system in the presence of random measurement errors. To the best of our knowledge, this is the first
work considering random measurement errors in the source identification problem. To solve this
problem, we suggest a new framework comprised of three main steps: (i) detecting a contaminant
spill, (ii) preprocessing obtained contaminant spill data, and (iii) identifying the spill source location
via random forest models. Specifically, we first use the CUSUM chart developed by Kim et al. [20]
to detect a contaminant spill, where the false alarm rate is guaranteed to be less than or equal to a
user-specified level. Then, we obtain a set of observation data including all information about the
contaminant spill and use a robust locally-weighted regression model [3] to estimate the profile of the
observations, called the breakthrough curve. Finally, using profile characteristics as inputs, we develop
a classification method using random forest models to measure the possibility that each candidate
spill location is truly the correct location of the contaminant source. Based on the possibilities, we can
consistently identify strong candidate locations for the spill.

This paper is organized as follows. Section 2 describes the problem with notations and assumptions
and provides a method for obtaining the observation data. In Section 3, we suggest a new framework
to identify the source location of a contaminant spill in the presence of random measurement errors.
Section 4 presents experimental results of a case study applied to a part of the Altamaha River system
located in Georgia, USA. Concluding remarks follow in Section 5.

2. Background

2.1. Problem Description

We consider a river system including N possible candidate locations for a contaminant spill. We
index the locations by integers starting from 1 and call these integers location indices. In order to
monitor the water quality and detect the spill event, K number of sensors are installed at a subset of the
possible spill locations to report the concentration levels of the contaminant at each discretized time t.

Let D denote the index set of all possible locations, i.e., D = {1, 2, . . . , N}. For 2 ≤ K ≤ N given,
the location of the K sensors are represented by a vector y = (y1, . . . , yK), such that y j ∈ D for all
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j = 1, . . . , K. (We assume y1 < y2 < . . . < yK to avoid the repetition of representations). At each time
t, an observation Xt

(
y j

)
is returned by the sensor installed at y j location, and the values from all K

sensors at time t are represented by the observation vector:

Xt(y) =


Xt(y1)

...
Xt(yK)

. (1)

Since the true spill location is unknown and a contaminant spill can occur at any of the candidate
locations, the possibility that location d ∈ D is the true source of the spill, P(d), can be evaluated.
Note that 0 ≤ P(d) ≤ 1 for all d ∈ D. The closer P(d) is to 1, the more likely that d is the source location
of the spill. Let P denote a vector of P(d) as follows:

P =


P(1)

...
P(N)

. (2)

The problem considered in this paper is to construct a data-driven framework for the purpose of
identifying the source location of a contaminant spill. We develop a model that calculates P based
on the recent observation vectors, Xt−ω+1(y), . . . . . . , Xt(y) with a pre-specified window length ω,
when K and y are given.

To construct the data-driven framework and test its performance, preparation of a large dataset
is required. In the next subsection, we briefly explain the data acquisition method by incorporating
random measurement errors with values obtained from a hydrodynamics simulation.

2.2. Data Acquisition with Simulation

This paper supposes that an observation Xt
(
y j

)
may contain some measurement error for all

t and j = 1, . . . , K. In order to obtain realistic Xt
(
y j

)
values reported by the sensors with random

measurement errors, we adopt the model from Kim et al. [18] as follows:

Xt
(
y j

)
= ξt

(
y j

)
+ εξ, (3)

where ξt
(
y j

)
is the true concentration level of the contaminant and εξ is a random measurement error

that depends on the value of ξt
(
y j

)
.

For obtaining the realizations of ξt
(
y j

)
values, a popular simulation software package called the

Storm Water Management Model (SWMM) provided by the United States Environmental Protection
Agency, Durham, NC, USA, is used. The SWMM is developed by the United States Environmental
Protection Agency to simulate hydrodynamics and contaminant transport in river systems under
dynamic flow, including the various rainfall and watershed conditions described by Rossman [21].
The SWMM requires inputs of variable information related to the properties of random contaminant
spills and rainfall events derived from historical data in addition to fixed information related to
geologic/geometric properties and fundamental river system hydrodynamics. After executing the
SWMM software using the inputs, we can obtain concentration levels from each candidate location at
every inter-reporting time of the simulation clock.

As shown in Kim et al. [18], the measurement error εξ is quantified based on two perspectives:
accuracy (i.e., the bias of the measurement error) and precision (i.e., the variability of the measurement
errors). Let µξ denote the level of accuracy and σξ denote the level of precision of the sensor at location
y j at time t. For given values of µξ and σξ, εξ is assumed to be independent and identically distributed
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along with the Laplace distribution. Therefore, the probability density function of εξ is specified
as follows:

f (εξ | µξ, σξ) =
1

σξ
√

2
exp

−
√

2
∣∣∣εξ − µξ∣∣∣
σξ

. (4)

3. Methods

3.1. Overall Description of the Proposed Framework

In this subsection, we provide notations and an overall description of our framework to identify
the source location of a contaminant spill in the presence of random measurement errors. A list of
notations needed to describe our framework is as follows:

t the discretized time index at which each sensor returns an observation;
y∗ the location index of the sensor that raises the first alarm;
τ∗a the point of time when the first alarm is on by the sensor at y∗;
τ∗b the point of time when the first alarm is off by the sensor at y∗;
xth the concentration level reported by the sensor at y∗ at time τ∗a (i.e., Xτ∗a (y∗));
ω a pre-specified window length for spill detection;
` a lag parameter pre-designated by users to determine τ∗b;
ψ(t) a nonlinear regression model for Xt(y∗) in the time period [τ∗a, τ∗b];
B(y∗) a vector representing the curvature characteristics of ψ(t);
D
(
y j

)
the set of candidate spill locations that can be identified only by the sensor at y j; and

φ
(
y j

)
the random forest model corresponding to the sensor at y j.

Figure 1 shows the overall description of our framework. Note that the framework consists of
three main steps for (i) detecting a spill, (ii) preprocessing the set of obtained data, and (iii) identifying
the source location with a classification model. Sections 3.2–3.4 provide details about each of the three
steps, respectively.
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3.2. Spill Detection

Detecting a contaminant source location under measurement errors is more complicated than
detecting one without measurement errors. If there is no measurement error, the observed value is the
same as the true contaminant concentration level and a sensor can simply raise an alarm when the
observed value exceeds 0. In this case, an alarm is always a true alarm providing notification that a
spill event has happened somewhere upstream. With measurement errors, however, nonzero values
can be reported by sensors even when no spill event has occurred. In this case, users should be aware
of the risk of false alarms and must carefully determine the threshold value for triggering an alarm.
(A high threshold value increases the chance of missing a spill event, while a low threshold value
subjects users to frequent false alarms.)

In order to detect a contaminant spill under random measurement errors, a statistical process
control (SPC) chart with a carefully designed threshold can be used as a monitoring tool. The SPC chart
was originally developed to detect a change in the mean of monitoring statistics while maintaining
a targeted rate of false alarms. Among the various SPC charts, this paper introduces the CUSUM
chart developed by Kim et al. [20] because it provides a simple analytical method for identifying a
threshold value even for autocorrelated observations that follow a non-normal distribution. The target
false alarm rate is proportional to a target in-control average run length (ARL), denoted by ρ, which
represents the average number of observations until a false alarm is raised when the true mean of
monitoring statistics is the same. Based on the target ρ given (i.e., the target false alarm rate given),
Kim et al. [20] provide the threshold valueH by solving the following equation:

Kρ =
1

2ς2

{
exp

(
2ς(H + 1.166σ0)

σ0

)
− 1−

2ς(H + 1.166σ0)

σ0

}
, (5)

where ς represents a reference parameter and σ0 is the known standard deviation of the random
measurement errors. We use ς = 0.1, which is recommended by Kim et al. [20]. We then construct our
CUSUM statistics S+

t

(
y j

)
for the sensor at location y j at time t with the monitoring window length ω

as follows:

Constructing CUSUM monitoring statistics

Set τ = t−ω and S+
τ−1

(
y j

)
= 0.

While τ ≤ t do
S+τ

(
y j

)
← max

(
0, S+

τ−1

(
y j

)
+ Xτ

(
y j

)
− kσ0

)
.

τ← τ+ 1 .
end while

Once the threshold value H from Equation (5) and the monitoring statistic S+
t

(
y j

)
are ready,

an alarm is raised by a sensor at location y j at time t, when

S+
t

(
y j

)
≥ H . (6)

If the first alarm is raised by a sensor, we record the location of the sensor as y∗, the current time
as τ∗a, and the concentration level Xτ∗a(y∗) as xth, before proceeding to the data preprocessing step.

3.3. Data Preprocessing

The main purpose of the data preprocessing step is to prepare refined input data for the random
forest models to identify the source of the contaminant spill in the next step. This preparation is done
by modeling the breakthrough curve of the observed concentration levels over time after the alarm [16]
and deriving the characteristics of the curve.
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To model the breakthrough curve that contains the most important information about the spill
event, we must first define the start and end times of the curve. Because of random measurement
errors, positive values of observations can be returned by a sensor even without any spill event. Thus,
the time period considered for the curve should not be chosen simply as a period having positive
values for returned observations. Instead, our framework suggests a heuristic approach to defining the
start time of the curve as τ∗a and the end time as

τ∗b ≡ min { t | Xp(y∗)< xth for p = t− `, . . . , t and t >τ∗a
}
, (7)

where ` is a lag parameter pre-designated by users. See Figure 2 for examples of Xt(y∗) over time, τ∗a
and τ∗b.
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Since random measurement error is similar to a noise factor, instead of using raw data{
Xt(y∗); t = τa(y∗), · · · , τb(y∗)

}
to represent the breakthrough curve, we used a nonlinear regression

model to refine the curve. By reducing the impact of the random measurement errors with the
regression model, a smoother and clearer breakthrough curve can be obtained. Among the various
nonlinear regression models, we employ the robust locally-weighted regression model developed
by Cleveland [22]. In this model, the independent variable is t and the dependent variable is Xt(y∗)
for t = τ∗a, · · · , τ∗b. Let ψ(t) denote the concentration level estimated by the regression model at t.
In Figure 2, the solid curve provides an example of the curve ψ(t) over time t = τa(y∗), · · · , τb(y∗).

After obtaining the estimated breakthrough curve ψ(t), we need to derive its characteristics.
We basically introduce two quantitative characteristics of ψ(t), denoted by B1(y∗) and B2(y∗), which
represent the total area and the time-averaged area between the horizontal axis and the estimated
breakthrough curve ψ(t), respectively [10]. Specifically, they are calculated as follows:

B1(y∗) =
∫ τ∗b

τ∗a

ψ(t)dt, (8)
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B2(y∗) =

∫ τ∗b
τ∗a

ψ(t)dt(
τ∗b − τ

∗
a

) . (9)

In addition to B1(y∗) and B2(y∗), we also consider the central statistical moment, standard
deviation, skewness, and kurtosis of ψ(t) as the main characteristics of the curve as described by
Telci and Aral [15]. The first moment of the estimated breakthrough curve is denoted by µ(y∗) and
calculated by

µ(y∗) =

∫ τ∗b
τ∗a

t ψ(t)dt

B1(y∗)
. (10)

The estimated kth central moment of ψ(t), for k = 2, 3, . . ., is denoted by mk
ψ(y∗) and calculated by

mk
ψ(y∗) =

∫ τ∗b
τ∗a

(t− µ(y∗))k ψ(t)dt

B1(y∗)
. (11)

The standard deviation, skewness, and kurtosis of the estimated curve, denoted by B3(y∗), B4(y∗),
and B5(y∗) respectively, are calculated as follows:

B3(y∗) =
√

m2
ψ
(y∗), (12)

B4(y∗) =
m3
ψ
(y∗)

(B3(y∗))3 , (13)

B5(y∗) =
m4
ψ(y∗)

(B3(y∗))4
− 3. (14)

Based on Equations (8)–(14), the curvature characteristics of ψ(t) are summarized into a
five-dimensional vector as follows:

B(y∗) = (B1(y∗), B2(y∗), B3(y∗), B4(y∗), B5(y∗)).

3.4. Source Identification

To identify the location of the contaminant source, we employed the random forest model shown
in Lee et al. [16]. As inputs of the random forest model, Lee et al. [16] used not only characteristics of the
breakthrough curves, but also time differences in alarms between any pair of sensors. Obtaining such
relative time information, however, is often time-consuming and not helpful for improving source
identification with random measurement errors. Therefore, we used only the characteristics of the
estimated breakthrough curve B(y∗) as inputs to our random forest models.

In this study, we partitioned the whole river region into K sub-regions, each of which was
monitored by a single sensor. Recall that D

(
y j

)
is defined as a set of candidate spill locations that can

be identified only by the sensor located at y j. For example, when N = 19, K = 2 and y = (9, 19),
D(9) = {1, 2, · · · 14} and D(19) = {15, 16, 17, 18, 19} as in Figure 3. The sensor located at 9 raises
the first alarm if a spill event occurs at any locations in D(9), while the sensor located at 19 raises
the first alarm if a spill occurs at any locations in D(19). In our framework, a random forest model
was constructed corresponding to each D

(
y j

)
by using simulated training data that includes random

measurement errors. Let φ
(
y j

)
denote the random forest model regarding D

(
y j

)
.
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)
when sensors are installed at locations 9 and 19.

The random forest model φ
(
y j

)
consists of several tree classifiers. Suppose that we have Γ number

of datasets sampled from the training data using a bootstrapping technique. Since a tree classifier
is generated from each sample dataset, there are Γ number of tree classifiers in the random forest
model. A tree classifier has internal nodes and terminal nodes. At each internal node, Λ number of
input variables are randomly selected and linearly combined with coefficients. The linear combination
of the selected input variables is checked if its value is above a certain threshold constant, and we
move to the next node according to the result. To set the threshold constant and the coefficients of
the linear combination at each internal node, a randomized node optimization algorithm is used [23].
Each terminal node represents one of the locations in D

(
y j

)
as the identified spill source location, and

no additional decision or action is taken. Figure 4 shows a part of the tree classifier constructed for
D(19) from Figure 3 as an example. Notably, different tree classifiers have different structures (e.g.,
the numbers of nodes and arcs) and logic, with different threshold constants and linear combinations
for each internal node of the classifiers. If an input vector is given in the model, each tree classifier
individually nominates one of the candidate locations as the identified contaminant source location.
The random forest model φ

(
y j

)
collects the votes from all tree classifiers and calculates P(d) for

d ∈ D
(
y j

)
proportional to the number of votes from Γ. The model returns P(d) = 0 for d ∈ Dc

(
y j

)
.

Figure 5 depicts the overall structure of a random forest model.
As remarked on by Lee et al. [16], Γ (i.e., the number of tree classifiers) and Λ (i.e., the number

of input variables randomly selected at each internal node) affect the performance of the random
forest model. As Γ increases, the error of the model gradually decreases and converges to a certain
value; therefore, we use a sufficiently large value for Γ. Like Lee et al. [16], we selected Λ value as
that with minimum error among the possible integers in [0.5

√
M, 2

√
M] as well as [0.5(log2M + 1),

2(log2M + 1)], where M is the number of variables in the input vector.
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4. Case Study

4.1. Simulation Setup for the Targeted River System

In our case study, we applied our framework to monitor a part of the Altamaha River system in
the state of Georgia, USA. The whole river system is approximately 760 km long and has over 36,260
km2 area with 60 reaches and 62 junctions. The fixed information for the SWMM, such as geometric,
geologic, and hydrodynamic data, was obtained from the United States Geological Survey in the
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National Elevation Dataset, and spill and rainfall events are considered variable information for the
SWMM. Spill starting time and intensity followed uniform distributions in [0, 10] days and [10, 1000]
grams per liter, respectively. The rainfall pattern was randomly selected among five rain patterns for
each of 10 predesignated sub-catchments for the river. See Park et al. [24] and Telci et al. [25] for more
details about the river system and the corresponding SWMM model.

For each run, the SWMM monitors hydrodynamics and contaminant levels of spills and rainfalls
for 40 days. The related quantitative values (e.g., concentration levels, flow rates, and the amounts of
overflows) are reported every 15 min in the simulation clock at each candidate location. Each training
and test dataset is obtained by adding random errors whose density function is provided in Equation (4)
to the concentration levels returned by the SWMM.

4.2. Experimental Setup

We consider a part of the Altamaha River as a targeted study area, as seen in Figure 6. The study
area includes 53 candidate spill locations (i.e., D = {1, 2, . . . , 53}), which are marked as gray circles in
Figure 6. Based on research from Lee et al. [16], we set the number of sensors K = 6 and their locations,
y = (9, 19, 26, 33, 46, 53). As mentioned in Section 3.4, the whole study area was divided into six
sub-regions that were independently monitored by each sensor. The corresponding D(yi) values are
represented in Figure 6.

For the random measurement errors, we consider two configurations to evaluate the impact of
the errors: (i) low bias and low variability, denoted by (L, L), and (ii) high bias and high variability,
denoted by (H, H). Specifically, we use µξ = 0.002ξt(y j) and σξ = 0.005 + 0.02ξt(y j) for the (L, L)
configuration and use µξ = 0.05ξt(y j) and σξ = 0.015 + 0.06ξt(y j) for the (H, H) configuration as in
Kim et al. [18]. For each of the random measurement error configurations, we searched the threshold
valueH of the CUSUM chart by using Equation (5) with ρ = 1000 (days) for each sensor (i.e., equivalent
to the type I error, approximately 1.04× 10−5). Under each configuration of measurement errors, we
identified the control limit,H , for the CUSUM chart using Equation (5) when ρ = 1000. Thus, we set
H = 0.228 for the (L, L) configuration andH = 0.684 for the (H, H) configuration. The monitoring
window length for the CUSUM chart, ω, is set to 10 days and ` is set to 7.

Table 1 summarizes information about random forest models constructed by evaluating D(y j)s.
For each sensor location y j, the random forest model φ(yi) is constructed (and trained) by using a∣∣∣D(yi)

∣∣∣× 500 number of simulation datasets where |·| represents the cardinality of a set. As mentioned
in Section 3.4, we checked various values of Γ (i.e., the number of tree classifiers in a random forest
model) and Λ (i.e., the number of input variables randomly selected at each internal node), and finally
selected Γ = 500 and Λ = 4 for all models. We used the “StatsModels” package to generate each
robust, locally-weighted regression and the “scikit-learn” package to train each random forest model
in Python version 0.21.2 (provided by the Python Software Foundation, Beaverton, OR, USA) with
a personal computer (Intel Xeon E5-1650 CPU; RAM 64GB). The average time required to generate
each random forest model was approximately 10.7, 3.1, 3.9, 3.8, 10.5, 5.2 s. Table 1 also provides the
out-of-bag (OOB) errors for each random forest model, which was calculated by the ratio misclassified
datasets to the total number of training datasets for φ(yi).
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Table 1. Random forest models with their OOB errors.

Sensor
Location

Random Forest
Model Set of Candidate Spill Locations % of OOB

Error (L, L)
% of OOB

Error (H, H)

9 φ(9) D(9) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} 29.34 33.84

19 φ(19) D(19) = {15, 16, 17, 18, 19} 21.08 26.68

26 φ(26) D(26) = {20, 21, 22, 23, 24, 25, 26} 4.49 7.43

33 φ(33) D(33) = {27, 28, 29, 30, 31, 32, 33} 4.46 9.83

46 φ(46) D(46) = {34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46} 30.82 35.17

53 φ(53) D(53) = {47, 48, 49, 50, 51, 52, 53} 4.4 10.11

4.3. Results

We ran our framework on 53× 100 test datasets (i.e., 100 spills occurred at each of 53 candidate
locations) to evaluate the performance of source identification. Figures 7 and 8 show the identification
accuracy rate (in y-axis) for the true spill location (in x-axis) under the (L, L) and (H, H) configurations,
respectively. As the result of each test dataset, we can obtain a list of locations from the most promising
to the least promising regarding the highest to lowest values of P(d) returned by our framework.
Figure 7a presents the percentage of times (i.e., the rate) that the correct source location is the first place
on the list. Figure 7b,c presents the percentage of times (i.e., the rate) that the correct source location is
within the top two or three places on the list, respectively. Figure 7a shows that spills occurred at about
one-fifth of the locations are identified with a relatively low accuracy rate of less than 60% while the
spills that occurred at about half of the locations are identified easily with an accuracy rate of more
than 90%. However, regarding Figure 7b,c, high accuracy rates of more than 90% are achieved for all
53 locations. In sum, no matter where the spill occurs, users can find the true spill location with more
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than 90% probability, if they visit the top three locations on the list. Figure 8 shows a similar pattern to
Figure 7, but the identification accuracy rate in Figure 8 is slightly worse than that in Figure 7 because
of higher bias and the variability of random measurement errors.Sensors 2019, 19, x FOR PEER REVIEW 12 of 16 
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The random forest model is advantageous because it enables users to analyze the detailed
possibility of the correct selection (e.g., P(d)). By comparing the obtained P(d) values, users can
pick stronger candidates for the spill quickly and efficiently. For example, see Figure 9 representing
the averaged P(d) values (denoted by P̂(d)) at each location under the (L, L) configuration for some
related pairs of locations. Let us consider the first pair (i.e., locations 4 and 5) in Figure 9, as an
example. When a spill occurs at location 4 or 5, both locations 4 and 5 achieve significantly higher
P̂(d) values than other locations. This implies that the spill at location 4 can often be confused with
the spill at location 5. However, it implies that locations 4 and 5 can be recognized as promising
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spill locations when compared with other locations, regardless of where the true spill location is.
(Note that similar analyses can be done for other pairs in Figure 9.) Thus, users can distinguish a
group of stronger candidates based on gaps among P(d) values even when the true spill location is
unknown, which is especially helpful in practical situations for finding unknown source locations
under measurement errors.Sensors 2019, 19, x FOR PEER REVIEW 14 of 16 
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5. Conclusions

This study proposed a new framework to identify the source location of a contaminant spill in a river
system with random sensor measurement errors. In the framework, one may first detect a contaminant
spill using the CUSUM chart while the type I error of detection is controlled. The framework generates
a nonlinear regression model for observation data with random errors to estimate a breakthrough
curve, and derives characteristics of the estimated breakthrough curve for use as inputs to random
forest models. After selecting one random forest model corresponding to the sensor that detected the
spill, values between 0 and 1 are evaluated for the possibility of each candidate location being the true
contaminant source location. Based on the detailed values, users can judge how likely each location is
to be the true spill location, and analyze the gaps among the values to distinguish the most promising
candidate locations instead of just picking locations regardless of the possibility. The test results of
applying our framework to the Altamaha River system in the USA show that our framework performs
well on the identification of a spill source location, even with measurement errors. In the test results,
the true spill location is listed within the top three promising locations with more than 90% probability
in most of the cases considered.
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Our framework was originally proposed to identify a contaminant spill source location in a river
system. However, beyond water monitoring systems, the framework can be applied to other areas
including traffic and transportation, manufacturing process monitoring, and telecommunications.

While conducting this study, we determined that the identification accuracy of the framework can
be improved if the exact starting and ending times of the breakthrough curve caused by the spill event
are known. Further research on improving the accuracy of these time indices is ongoing.
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