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The finite-difference time-domain (FDTD) method has been popularly utilized to analyze the electromagnetic (EM) wave
propagation in dispersive media. Various dispersion models were introduced to consider the frequency-dependent permittivity,
including Debye, Drude, Lorentz, quadratic complex rational function, complex-conjugate pole-residue, and critical point models.
The Newmark-FDTDmethod was recently proposed for the EM analysis of dispersive media and it was shown that the proposed
Newmark-FDTDmethod can give higher stability and better accuracy compared to the conventional auxiliary differential equation-
(ADE-) FDTDmethod. In this work, we extend theNewmark-FDTDmethod tomodified Lorentzmedium, which can simply unify
aforementioned dispersion models. Moreover, it is found that the ADE-FDTD formulation based on the bilinear transformation
is exactly the same as the Newmark-FDTD formulation which can have higher stability and better accuracy compared to the
conventional ADE-FDTD. Numerical stability, numerical permittivity, and numerical examples are employed to validate our work.

1. Introduction

The finite-difference time-domain (FDTD) method has been
widely utilized to analyze various electromagnetic wave (EM)
problems owing to its simplicity, robustness, and accuracy
[1–3]. It is of great importance to choose well-fitted disper-
sion model to obtain accurate results in dispersive media.
A variety of dispersion models were proposed such as
Debye, Drude, Lorentz, quadratic complex rational function
(QCRF), complex-conjugate pole-residue, and critical point
models [4–14]. Note that the modified Lorentz dispersion
model can unify the aforementioned dispersion models and
has more degree of freedom than Debye, Drude, and Lorentz
models [15, 16].

Recently, the Newmark time-stepping algorithm was
applied to the dispersive FDTD modeling of Debye, Drude,
Lorentz, and QCRF dispersion models [17, 18]. The authors
showed that the Newmark-FDTD method can lead to sim-
ple arithmetic implementation, higher stability, and better
accuracy compared to the conventional auxiliary differential

equation- (ADE-) FDTD method [19]. In this work, the
Newmark-FDTD method is successfully extended to the
modified Lorentz dispersion model. It is found that the
formulation of the ADE-FDTDmethod based on the bilinear
transformation (BT) [20–22] leads to the same formulation
of the Newmark-FDTD method. Moreover, the ADE-FDTD
formulations with BT for Debye, Drude, Lorentz, and QCRF
dispersion models are also considered and it will be shown
that the resulting FDTD formulations are equivalent to the
Newmark-FDTD counterparts.

The remainder of this paper is organized as follows.
The Newmark time-stepping algorithm is reviewed and then
the Newmark-FDTD formulation is derived for modified
Lorentz medium. Numerical stability and numerical permit-
tivity of the Newmark-FDTD formulation are discussed and
the equivalence of the Newmark-FDTD formulation to the
ADE-FDTD formulation based on the BT is also addressed.
In the next section, numerical examples involving homoge-
nous one-dimensional (1D) structure and three-dimensional
(3D) plasmonic nanosphere are used to validate our work.
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2. Formulations

Before proceeding with the Newmark-FDTD method, it
is worth reviewing the Newmark time-stepping algorithm
briefly [23, 24]. Let us consider the second-order differential
equation of the form

𝑀𝑥 + 𝐶𝑥 + 𝐾𝑥 = 𝑓, (1)

where 𝑥 denotes the displacement [24].The Taylor expansion
of the velocity (𝑥) about (𝑛 + 1) Δ 𝑡 is

𝑥𝑛+1 = 𝑥𝑛 + Δ 𝑡𝑥𝑛 + Δ2𝑡
2! 𝑥

𝑛 + . . . , (2)

where 𝑥𝑛 denotes the value of 𝑥 at 𝑛Δ 𝑡. For sufficiently
smooth functions, the above expansion can be truncated as

𝑥𝑛+1 = 𝑥𝑛 + Δ 𝑡𝑥𝑞 , (3)

where 𝑛 ≤ 𝑞 ≤ 𝑛 + 1. Using the linear interpolation, (3) can
be expressed as

𝑥𝑛+1 = 𝑥𝑛 + (1 − 𝛾)�𝑡𝑥𝑛 + 𝛾�𝑡𝑥𝑛+1, (4)

where 0 ≤ 𝛾 ≤ 1. Similarly, the Taylor expansion of the
displacement about (𝑛 + 1)Δ 𝑡 can be written as

𝑥𝑛+1 = 𝑥𝑛 + �𝑡𝑥𝑛 + �2𝑡
2! 𝑥

𝑟 , (5)

where 𝑛 ≤ 𝑟 ≤ 𝑛 + 1. Employing the linear interpolation to
the above equation, we have

𝑥𝑛+1 = 𝑥𝑛 + �𝑡𝑥𝑛 + (1 − 2𝛽) �
2
𝑡

2! 𝑥

𝑛 + 2𝛽�

2
𝑡

2! 𝑥

𝑛+1, (6)

where 0 ≤ 2𝛽 ≤ 1. When the governing equation (1) is
expressed at time step 𝑛 + 1, 𝑛, and 𝑛 − 1, the following
equations can be obtained:

𝑀𝑥𝑛+1 + 𝐶𝑥𝑛+1 + 𝐾𝑥𝑛+1 = 𝑓𝑛+1, (7)

𝑀𝑥𝑛 + 𝐶𝑥𝑛 + 𝐾𝑥𝑛 = 𝑓𝑛, (8)

𝑀𝑥𝑛−1 + 𝐶𝑥𝑛−1 + 𝐾𝑥𝑛−1 = 𝑓𝑛−1. (9)

Similar procedure to (4) and (6) is applied to the value of 𝑛Δ 𝑡:
𝑥𝑛 = 𝑥𝑛−1 + (1 − 𝛾)�𝑡𝑥𝑛−1 + 𝛾�𝑡𝑥𝑛 , (10)

𝑥𝑛 = 𝑥𝑛−1 + �𝑡𝑥𝑛−1 + (1 − 2𝛽) �
2
𝑡

2! 𝑥

𝑛−1 + 2𝛽�

2
𝑡

2! 𝑥

𝑛 . (11)

There are three nonderivative terms (𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛+1) and
six derivative terms (𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛−1, 𝑥𝑛 , 𝑥𝑛+1) in seven
equations (see (4) and (6)–(11)). After simple mathematical

manipulation, we can finally obtain the update equation
without the derivative terms:

[𝐾𝛽�2𝑡 + 𝐶𝛾�𝑡 +𝑀]𝑥𝑛+1
+ [𝐾 (0.5 − 2𝛽 + 𝛾)�2𝑡 − 𝐶 (2𝛾 − 1)�𝑡 − 2𝑀]𝑥𝑛
+ [𝐾 (0.5 + 𝛽 − 𝛾)�2𝑡 + 𝐶 (𝛾 − 1)�𝑡 +𝑀]𝑥𝑛−1

= [𝛽�2𝑡 ] 𝑓𝑛+1 + [(0.5 − 2𝛽 + 𝛾) Δ2𝑡] 𝑓𝑛
+ [(0.5 + 𝛽 − 𝛾)�2𝑡 ] 𝑓𝑛−1.

(12)

Now, let us derive the Newmark-FDTD method for the
modified Lorentz dispersion model. The modified Lorentz
model [15, 16] can be expressed as 𝜀𝑟(𝜔) = 𝜀𝑟,∞ +𝜒(𝜔), where

𝜒 (𝜔) = 𝑎0 + 𝑎1 (𝑗𝜔)
𝑏0 + 𝑏1 (𝑗𝜔) + 𝑏2 (𝑗𝜔)2 (13)

and 𝜀𝑟,∞ is a relative permittivity at the infinite frequency.
Note that the update equation of magnetic field can be
implemented by using standard central difference scheme
(CDS) to Faraday’s law [1]:

∇ × E = −𝜇0 𝜕H𝜕𝑡 . (14)

Ampere’s law can be written as

∇ ×H = 𝜀∞ 𝜕E𝜕𝑡 +
𝜕P
𝜕𝑡 , (15)

where 𝜀∞ = 𝜀0𝜀𝑟,∞, 𝜀0 is the permittivity in the free space,
and P(𝜔) = 𝜀0𝜒(𝜔)E(𝜔) is the constitutive relation in the
frequency domain. Inverse Fourier transform (IFT) is applied
to the constitutive relation:

𝑏0P (𝑡) + 𝑏1 𝜕P (𝑡)𝜕𝑡 + 𝑏2 𝜕
2P (𝑡)
𝜕𝑡2

= 𝑎0𝜀0E (𝑡) + 𝑎1𝜀0 𝜕E (𝑡)𝜕𝑡 = W (𝑡) ,
(16)

where a temporary variable W is introduced to apply the
Newmark time-stepping algorithm.

Therefore, we have two sets of differential equations:

𝑏0P (𝑡) + 𝑏1 𝜕P (𝑡)𝜕𝑡 + 𝑏2 𝜕
2P (𝑡)
𝜕𝑡2 = W (𝑡) , (17)

𝑎0𝜀0E (𝑡) + 𝑎1𝜀0 𝜕E (𝑡)𝜕𝑡 = W (𝑡) . (18)

By applying the Newmark time-stepping algorithm to the
above equations, the solution in terms of P and E can be
obtained as follows:

𝐶𝑎P𝑛+1 + 𝐶𝑏P𝑛 + 𝐶𝑐P𝑛−1 = 𝐶𝑑E𝑛+1 + 𝐶𝑒E𝑛 + 𝐶𝑓E𝑛−1, (19)
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where

𝐶𝑎= [𝑏0𝛽�2𝑡 + 𝑏1𝛾�𝑡 + 𝑏2] ,
𝐶𝑏= [𝑏0 (0.5 − 2𝛽 + 𝛾)�2𝑡 − 𝑏1 (2𝛾 − 1)�𝑡 − 2𝑏2] ,
𝐶𝑐= [𝑏0 (0.5 + 𝛽 − 𝛾)�2𝑡 + 𝑏1 (𝛾 − 1)�𝑡 + 𝑏2] ,

𝐶𝑑=𝜀0 [𝑎0𝛽�2𝑡 + 𝑎1𝛾�𝑡] ,
𝐶𝑒=𝜀0 [𝑎0 (0.5 − 2𝛽 + 𝛾)�2𝑡 − 𝑎1 (2𝛾 − 1)�𝑡] ,
𝐶𝑓=𝜀0 [𝑎0 (0.5 + 𝛽 − 𝛾)�2𝑡 + 𝑎1 (𝛾 − 1)�𝑡] .

(20)

Therefore, the E field can be updated by inserting P𝑛+1 of (19)
into the CDS version of Ampere’s law (15):

(𝐶𝑎𝜀∞ + 𝐶𝑑𝐶𝑎�𝑡 ) E𝑛+1=(𝐶𝑎𝜀∞ − 𝐶𝑒𝐶𝑎�𝑡 )E𝑛 − 𝐶𝑓
𝐶𝑎�𝑡E

𝑛−1

+ ∇ ×H𝑛+1/2 + 𝐶𝑏 + 𝐶𝑎
𝐶𝑎�𝑡 P𝑛 + 𝐶𝑐

𝐶𝑎�𝑡P
𝑛−1.

(21)

In what follows, we choose 𝛽=0.25 and 𝛾=0.5 the same as
in [17, 18] because this Newmark-FDTD can have higher
stability and better accuracy compared to the conventional
ADE-FDTDmethod [18].

Next, let us derive the conventional ADE-FDTDmethod.
Toward this purpose, CDS is applied to (16):

𝑏0P𝑛 + 𝑏1P
𝑛+1 − P𝑛−1

2�𝑡 + 𝑏2P
𝑛+1 − 2P𝑛 + P𝑛−1

�2𝑡

= 𝑎0𝜀0E𝑛 + 𝑎1𝜀0 E
𝑛+1 − E𝑛−1

2�𝑡 .
(22)

This equation can also be written in the same form as (19),
where the coefficients are expressed as

𝐶𝑎= [0.5𝑏1�𝑡 + 𝑏2] ,
𝐶𝑏= [𝑏0�2𝑡 − 2𝑏2] ,
𝐶𝑐= [−0.5𝑏1�𝑡 + 𝑏2] ,
𝐶𝑑=𝜀0 [0.5𝑎1�𝑡] ,
𝐶𝑒=𝜀0 [𝑎0�2𝑡 ] ,

𝐶𝑓=𝜀0 [−0.5𝑎1�𝑡] .

(23)

Now, let us consider the ADE-FDTD formulation based on
the BT.TheBT is basically an approximate of 𝑗𝜔 ≈ (2/�𝑡)((1−𝑍−1)/(1 + 𝑍−1)) [20–22]. When the BT is applied to the
constitutive relation, (16) can be expressed as

𝑏0P
𝑛+1 + 2P𝑛 + P𝑛−1

4 + 𝑏1P
𝑛+1 − P𝑛−1

2�𝑡

+ 𝑏2P
𝑛+1 − 2P𝑛 + P𝑛−1

�2𝑡

= 𝑎0𝜀0E
𝑛+1 + 2E𝑛 + E𝑛−1

4 + 𝑎1𝜀0 E
𝑛+1 − E𝑛−1

2�𝑡 .
(24)

The above equation can also be expressed as the form of (19),
where the coefficients are

𝐶𝑎= [0.25𝑏0�2𝑡 + 0.5𝑏1�𝑡 + 𝑏2] ,
𝐶𝑏= [0.5𝑏0�2𝑡 − 2𝑏2] ,

𝐶𝑐= [0.25𝑏0�2𝑡 − 0.5𝑏1�𝑡 + 𝑏2] ,
𝐶𝑑=𝜀0 [0.25𝑎0�2𝑡 + 0.5𝑎1�𝑡] ,

𝐶𝑒=𝜀0 [0.5𝑎0�2𝑡 ] ,
𝐶𝑓=𝜀0 [0.25𝑎0�2𝑡 − 0.5𝑎1�𝑡] .

(25)

Please note that the above coefficients are exactly the same as
(20) with 𝛽 = 0.25 and 𝛾 = 0.5.

It is worth comparing the numerical stability of the
Newmark-FDTD formulation, the conventional ADE-FDTD
formulation, and the ADE-FDTD formulation based on the
BT. The numerical stability conditions for FDTD formula-
tions can be obtained by using von Neumann method [4, 25–
27]. Z transform is applied to the wave equation and the
constitutive relation. For the two Z-transformed equations,
the determinant must be zero to get nonzero solutions. To be
stable, all the roots of the polynomial must be inside or on
the unit circle. Instead of finding the roots of the polynomial,
let us transform 𝑍 = (𝑟 + 1)/(𝑟 − 1). By transforming
the Z-domain into the r-domain, roots inside the unit circle
in the Z-domain map onto the left half-plane in the r-
domain. Next, Routh-Hurwitz (R-H) criterion can be used to
derive the numerical stability conditions [4]. To be stable, all
components of the first column on the Routh table must be
equal to or larger than zero. Following the above procedure,
the numerical stability conditions of the conventional ADE-
FDTD formulation are as follows:

𝑏0 ≥ 0,
𝑏1 ≥ 0,

Q�2𝑡 + 𝑏1𝜀𝑟,∞]2 (4𝑏2 − 𝑏0�2𝑡 ) ≥ 0,
Q (𝑎1 + 𝑏1𝜀𝑟,∞)�2𝑡 + 4𝑎1𝑏1𝑏2𝜀𝑟,∞]2 ≥ 0,
(4𝑏2 − 𝑏0�2𝑡 ) (1 − ]2) 𝜀𝑟,∞ − 𝑎0�2𝑡 ≥ 0,

(26)

where Q = 𝑎0𝑏1 − 𝑎1𝑏0, ]2 = (𝑐∞�𝑡)2∑𝛼=𝑥,𝑦,𝑧(sin2(𝑘𝛼�𝛼/2)/
�2𝛼), 𝑐∞ = 1/√𝜇0𝜀∞, and 𝑘𝛼 are the numerical wavenumbers
in the 𝛼 direction.Thenumerical stability conditions of ADE-
FDTD formulation based on the BT are the same as those of
the Newmark-FDTD formulation, since both methods have
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the same formulation. Their numerical stability conditions
are

𝑏0 ≥ 0,
𝑏1 ≥ 0,

Q�2𝑡 + 4𝑏1𝑏2𝜀𝑟,∞]2 ≥ 0,
Q [𝑎1 + 𝑏1𝜀𝑟,∞ (1 − ]2)]�2𝑡 + 4𝑎1𝑏1𝑏2𝜀𝑟,∞]2 ≥ 0,

𝑏2 (1 − ]2) ≥ 0.

(27)

Next, the numerical permittivity can be derived inserting
the numerical solution P0𝑒𝑗𝜔𝑛�𝑡 and E0𝑒𝑗𝜔𝑛�𝑡 into the con-
stitutive relation [24, 28]. The numerical permittivity of the
ADE-FDTD formulation can be obtained as follows:

𝜀𝑟 (𝜔) = 𝜀𝑟,∞ + 𝑎0 + 𝑎1 (𝑗�̃�)
𝑏0 + 𝑏1 (𝑗�̃�) + 𝑏2 (𝑗�̃�)2

, (28)

where �̃� = 2tan(𝜔�𝑡/2)/�𝑡, 𝑎0 = 𝑎0/cos2(𝜔�𝑡/2), and𝑏0 = 𝑏0/cos2(𝜔�𝑡/2).The numerical permittivity of the ADE-
FDTD formulation based on the BT is the same as that of the
Newmark-FDTD formulation:

𝜀𝑟 (𝜔) = 𝜀𝑟,∞ + 𝑎0 + 𝑎1 (𝑗�̃�)
𝑏0 + 𝑏1 (𝑗�̃�) + 𝑏2 (𝑗�̃�)2

. (29)

We also consider Debye, Drude, Lorentz, and QCRF
dispersion models. The dispersion models are as follows:

𝜀𝐷𝑒𝑏𝑦𝑒𝑟 (𝜔) = 𝜀𝑟,∞ + �𝜀
1 + 𝑗𝜔𝜏 ,

𝜀𝐷𝑟𝑢𝑑𝑒𝑟 (𝜔) = 𝜀𝑟,∞ + 𝜔20
𝑗𝜔𝛾 + (𝑗𝜔)2 ,

𝜀𝐿𝑜𝑟𝑒𝑛𝑡𝑧𝑟 (𝜔) = 𝜀𝑟,∞ + �𝜀 ⋅ 𝜔20
𝜔20 + 2𝑗𝜔𝛿 + (𝑗𝜔)2

,

𝜀𝑄𝐶𝑅𝐹𝑟 (𝜔) = 𝐴0 + 𝐴1 (𝑗𝜔) + 𝐴2 (𝑗𝜔)2
𝐵0 + 𝐵1 (𝑗𝜔) + 𝐵2 (𝑗𝜔)2

.

(30)

ForDebye,Drude, and Lorentz dispersionmodels, 1/𝜒(𝜔) can
be written as 𝑀(j𝜔)2 + 𝐶(j𝜔) + 𝐾, where M, C, and 𝐾 are
constants for each model. By applying the Newmark-FDTD,
one can obtain

𝑆P𝑛+1 = 𝑤1P𝑛 + 𝑤2P𝑛−1 + 𝑢0E𝑛+1 + 𝑢1E𝑛 + 𝑢2E𝑛−1, (31)

where
𝑆 = 𝑀 + 0.5𝐶�𝑡 + 0.25𝐾�2𝑡 ,

𝑤1 = 2𝑀 − 0.5𝐾�2𝑡 ,
𝑤2 = −𝑀 + 0.5𝐶�𝑡 + 0.25𝐾�2𝑡 ,
𝑢0 = 0.25𝜀0�2𝑡 ,
𝑢1 = 0.5𝜀0�2𝑡 ,
𝑢2 = 0.25𝜀0�2𝑡 .

(32)
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Figure 1: Relative error of the numerical permittivity.

Note that this update equation is the same as the ADE-
FDTD formulation based on the BT. For QCRF dispersion
model, the constitutive relation between electric flux density
D and electric field E is simpler. The update equation for
the Newmark-FDTDmethod is the same as the ADE-FDTD
formulation based on the BT and it can be expressed as

[0.25𝐵0�2𝑡 + 0.5𝐵1�𝑡 + 𝐵2]D𝑛+1
+ [0.5𝐵0�2𝑡 − 2𝐵2]D𝑛
+ [0.25𝐵0�2𝑡 − 0.5𝐵1�𝑡 + 𝐵2]D𝑛−1

= [0.25𝐴0𝜀0�2𝑡 + 0.5𝐴1𝜀0�𝑡 + 𝐴2𝜀0]E𝑛+1
+ [0.5𝐴0𝜀0�2𝑡 − 2𝐴2𝜀0]E𝑛
+ [0.25𝐴0𝜀0�2𝑡 − 0.5𝐴1𝜀0�𝑡 + 𝐴2𝜀0]E𝑛−1.

(33)

All things considered, the Newmark-FDTD formulation with
𝛽 = 0.25 and 𝛾 = 0.5 is the same as the ADE-FDTD
formulation based on the BT.

3. Results and Discussion

In this section, numerical examples are used to validate
our study. First, we consider human blood from 300MHz
to 3GHz. The modified Lorentz parameters are extracted
by using the particle swarm optimization [29, 30] for the
complex relative permittivity data [31]. They are 𝑎0 = 6.9379 ⋅1021, 𝑎1 = 1.5057 ⋅ 1012, 𝑏0 = 6.1637 ⋅ 1018, 𝑏1 = 4.5425 ⋅
1010, 𝑏2 = 1, and 𝜀𝑟,∞ = 31.1662. The space step size �𝑧 =1𝑚𝑚 and time step size �𝑡 = 𝐶𝑛�𝑧/𝑐∞, where 𝐶𝑛 is a
classic Courant number [1] and 𝐶𝑛 = 0.99 is used in this
work. The relative errors of the numerical permittivity of the
three FDTD formulations are shown inFigure 1.The accuracy
of the ADE-FDTD with BT is the same as the Newmark-
FDTD and they have higher accuracy than the ADE-FDTD.
This result can be explained from the fact that the numerical
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Figure 2: 1D FDTDsimulations for different sets ofmodified Lorentz parameters. (a) All FDTD formulations are stable. (b)Only ADE-FDTD
is unstable. Legends are the same as Figure 1.
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Figure 3: Root locus of the stability polynomial in the Z-domain for Figure 1. Legends: Black circle: Newmark-FDTD/ADE-FDTDwith BT;
blue-gray square: ADE-FDTD.

coefficients 𝑎0 and 𝑏0 are involved in the ADE-FDTDmethod
in addition to the numerical angular frequency �̃�, differently
fromboth theNewmark-FDTD and the ADE-FDTDwith BT
(see (28)-(29)).

Next, actual FDTD simulations are performed. A
sinewave with the frequency of 300MHz is excited in
1D homogenous modified Lorentz medium. The 10-layer
perfectly matched layer (PML) [1] is used to truncate the
computational domain of 10,000 FDTD cells. First, we
consider the aforementioned modified Lorentz parameters
that satisfy the numerical stability conditions of (26) and
(27) for all possible values of ]. As expected, all FDTD
simulations are stable for 10,000 time steps in Figure 2(a). As
shown in Figure 3(a), all roots of the stability polynomial in
the Z-domain are inside or on the unit circle for all cases.
The memory requirement and the central processing unit
(CPU) time of all three FDTD formulations are the same
as 6.6 MB and 39.6 s, respectively, because the number of
auxiliary variables and the number of arithmetic operations
are completely the same for all three formulations. Now, only
𝑏2 is changed to 0.8, where the stability conditions of (26)

are not satisfied. For the ADE-FDTD method, instability can
be found in Figure 2(b). It can be observed that some roots
of stability polynomial in the Z-domain are outside the unit
circle for the ADE-FDTD method but all roots of stability
polynomial in the Z-domain are inside or on the unit circle
for the others, as shown in Figure 3(b). As can be seen in
these FDTD simulations, both the Newmark-FDTD and
the ADE-FDTD with BT have the same accuracy and they
are better than the ADE-FDTD in terms of the numerical
stability.

As a final example, a 3DAg nanosphere with the radius of
40 nm is considered. In this case, the parameters in [32] are
used, 𝑎0 = 1.9136 ⋅ 1032, 𝑎1 = 0, 𝑏0 = 0, 𝑏1 = 2.7362 ⋅ 1013, 𝑏2 =1, and 𝜀𝑟,∞ = 3.7. The x-polarized Gaussian-modulated
sinewave planewave is excited and the computational domain
is terminated by a 10-layer complex frequency shifted- (CFS-)
PML [33, 34]. The FDTD computational domain comprised
260x260x260 cells and the total number of time marching
steps is 40,000. To compare FDTD results with Mie theory
[35], we calculate the magnitude of E𝑥 at the centre of the
nanosphere normalized by the magnitude of the incident
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Figure 4: 3D FDTD simulations for an Ag nanosphere with the radius of 40 nm. (a) Spectral response. (b) Relative error.

electric field. As shown in Figure 4, the Newmark-FDTD is
the same as the ADE-FDTD with BT and they have higher
accuracy than the ADE-FDTD. For all 3DFDTD simulations,
the memory requirement is 4.5GB and the CPU time is 6
hours.

4. Conclusions

In this work, the Newmark-FDTD method is applied to
modified Lorentz dispersion model which can systematically
unify various existing dispersion models. It is found that
the Newmark-FDTD is equivalent to the ADE-FDTD with
the BT in terms of update formulation, numerical stability,
and numerical accuracy. In addition, it is figured out that
both methods can yield better accuracy and higher stability
against the conventional ADE-FDTD method. Moreover,
Debye, Drude, Lorentz, and QCRF dispersion models are
extended to the Newmark-FDTDmethod and its equivalence
to the BT-based ADE-FDTD counterpart is also observed.
Numerical permittivity and the 1D blood example are used
to illustrate that both the Newmark-FDTD method and
the ADE-FDTD method based on the BT are better than
the conventional ADE-FDTD method in terms of numer-
ical accuracy and numerical stability. A further numerical
example involving 3D plasmonic nanosphere is presented to
demonstrate that both the Newmark-FDTD simulation and
the BT-based ADE-FDTD simulation are in good agreement
with the Mie solution and they are superior to the conven-
tional ADE-FDTD method.
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